Skip to main content
Log in

Manipulating fast Li2S redox via carbon confinement and oxygen defect engineering of In2O3 for lithium–sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium–sulfur (Li–S) batteries have been considered as promising energy storage systems due to the merits of high energy density and low cost. However, the lithium polysulfides (LiPSs) diffusion and sluggish redox kinetics hamper the battery performance. In this work, low-bandgap indium oxide (In2O3) with dense oxygen vacancies (In2O3−x, 0 < x < 3) confined in nitrogen-doped carbon column (NC) is developed as a desirable LiPSs immobilizer and promoter to address these intractable problems. The NC confined In2O3−x with rich O vacancies (In2O3−x@NC) lowers the bandgap of 1.78 eV, strengthens the chemical adsorbability to LiPSs, and catalyzes the bidirectional Li2S redox. Attributed to the structural and chemical cooperativities, the obtained sulfur electrodes exhibit a stable cycling over 550 cycles at 1.0 C and splendid rate capability up to 4.0 C. More significantly, when the sulfur-loading reaches as high as 5.5 mg·cm−2, the cathodes achieve an areal capacity of 5.12 mAh·cm−2 at 0.1 C. The strategy of NC confined catalyst with rich defects engineering demonstrates great promise in the development of practical Li–S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peng, H. J.; Huang, J. Q.; Zhang, Q. A review of flexible lithium–sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem. Soc. Rev. 2017, 46, 5237–5288.

    Article  CAS  PubMed  Google Scholar 

  2. Li, G. R.; Wang, S.; Zhang, Y. N.; Li, M.; Chen, Z. W.; Lu, J. Revisiting the role of polysulfides in lithium–sulfur batteries. Adv. Mater. 2018, 30, 1705590.

    Article  Google Scholar 

  3. Peng, H. J.; Huang, J. Q.; Liu, X. Y.; Cheng, X. B.; Xu, W. T.; Zhao, C. Z.; Wei, F.; Zhang, Q. Healing high-loading sulfur electrodes with unprecedented long cycling life: Spatial heterogeneity control. J. Am. Chem. Soc. 2017, 139, 8458–8466.

    Article  CAS  PubMed  Google Scholar 

  4. Su, D. W.; Zhou, D.; Wang, C. Y.; Wang, G. X. Toward high performance lithium–sulfur batteries based on Li2S cathodes and beyond: Status, challenges, and perspectives. Adv. Funct. Mater. 2018, 28, 1800154.

    Article  Google Scholar 

  5. Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519–527.

    Article  CAS  PubMed  Google Scholar 

  6. Guo, P. Q.; Chen, W. X.; Zhou, Y. F.; Xie, F. Y.; Qian, G. Y.; Jiang, P. F.; He, D. Y.; Lu, X. Transition metal d-band center tuning by interfacial engineering to accelerate polysulfides conversion for robust lithium–sulfur batteries. Small 2022, 18, 2205158.

    Article  CAS  Google Scholar 

  7. Zhang, M.; Chen, W.; Xue, L. X.; Jiao, Y.; Lei, T. Y.; Chu, J. W.; Huang, J. W.; Gong, C. H.; Yan, C. Y.; Yan, Y. C. et al. Adsorption-catalysis design in the lithium–sulfur battery. Adv. Energy Mater. 2020, 10, 1903008.

    Article  CAS  Google Scholar 

  8. Tao, X. Y.; Wang, J. G.; Liu, C.; Wang, H. T.; Yao, H. B.; Zheng, G. Y.; Seh, Z. W.; Cai, Q. X.; Li, W. Y.; Zhou, G. M. et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat. Commun. 2016, 7, 11203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, Y. W.; Niu, S. Z.; Lv, W.; Zhang, C.; Yang, Q. H. Promoted conversion of polysulfides by MoO2 inlaid ordered mesoporous carbons towards high performance lithium–sulfur batteries. Chin. Chem. Lett. 2019, 30, 521–524.

    Article  CAS  Google Scholar 

  10. Liu, T. F.; Hu, H. L.; Ding, X. F.; Yuan, H. D.; Jin, C. B.; Nai, J. W.; Liu, Y. J.; Wang, Y.; Wan, Y. H.; Tao, X. Y. 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020). Energy Storage Mater. 2020, 30, 346–366

    Article  Google Scholar 

  11. Shen, Z. H.; Jin, X.; Tian, J. M.; Li, M.; Yuan, Y. F.; Zhang, S.; Fang, S. S.; Fan, X.; Xu, W. G.; Lu, H. et al. Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries. Nat. Catal. 2022, 5, 555–563.

    Article  CAS  Google Scholar 

  12. Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C. H.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985.

    Article  CAS  PubMed  Google Scholar 

  13. Shi, Z. X.; Ding, Y. F.; Zhang, Q.; Sun, J. Y. Electrocatalyst modulation toward bidirectional sulfur redox in Li-S batteries: From strategic probing to mechanistic understanding. Adv. Energy Mater. 2022, 12, 2201056.

    Article  CAS  Google Scholar 

  14. Wang, P.; Xi, B. J.; Huang, M.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv. Energy Mater. 2021, 11, 2002893.

    Article  CAS  Google Scholar 

  15. Fan, S.; Huang, S. Z.; Pam, M. E.; Chen, S.; Wu, Q. Y.; Hu, J. P.; Wang, Y.; Ang, L. K.; Yan, C. C.; Shi, Y. M. et al. Design multifunctional catalytic interface: Toward regulation of polysulfide and Li2S redox conversion in Li-S batteries. Small 2019, 15, 1906132.

    Article  CAS  Google Scholar 

  16. Li, Y. D.; Zhang, Q.; Shen, S. M.; Wang, S. Q.; Shi, L. L.; Liu, D. Q.; Fu, Y. J.; He, D. Y. Multi-perspective synergistic construction of dual-functional heterostructures for high-temperature Li–S batteries. Chem. Eng. J. 2023, 468, 143562.

    Article  CAS  Google Scholar 

  17. Qin, J. L.; Wang, R.; Xiao, P.; Wang, D. L. Superlattice and defect engineering enabled NC@VS2−x as trifunctional promoter for polysulfides catalytic conversion. Nano Energy 2023, 117, 108889.

    Article  CAS  Google Scholar 

  18. Qin, J. L.; Lu, Y.; Wang, R.; Li, Z. Z.; Shen, T.; Wang, D. L. Sulfurization accelerator coupled Fe1−xS electrocatalyst boosting SPAN cathode performance. Nano Res. 2023, 16, 9231–9239.

    Article  CAS  Google Scholar 

  19. Shi, Z. X.; Li, M.; Sun, J. Y.; Chen, Z. W. Defect engineering for expediting Li–S chemistry: Strategies, mechanisms, and perspectives. Adv. Energy Mater. 2021, 11, 2100332.

    Article  CAS  Google Scholar 

  20. Shi, Z. X.; Sun, Z. T.; Cai, J. S.; Yang, X. Z.; Wei, C. H.; Wang, M. L.; Ding, Y. F.; Sun, J. Y. Manipulating electrocatalytic Li2S redox via selective dual-defect engineering for Li–S batteries. Adv. Mater. 2021, 33, 2103050.

    Article  CAS  Google Scholar 

  21. Wang, Y. K.; Zhang, R. F.; Chen, J.; Wu, H.; Lu, S. Y.; Wang, K.; Li, H. L.; Harris, C. J.; Xi, K.; Kumar, R. V. et al. Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering. Adv. Energy Mater. 2019, 9, 1900953.

    Article  Google Scholar 

  22. Li, H. J.; Song, Y. H.; Xi, K.; Wang, W.; Liu, S.; Li, G. R.; Gao, X. P. Sulfur vacancies in Co9S8x/N-doped graphene enhancing the electrochemical kinetics for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2021, 9, 10704–10713.

    Article  CAS  Google Scholar 

  23. Qi, Y. H.; Song, L. Z.; Ouyang, S. X.; Liang, X. C.; Ning, S. B.; Zhang, Q. Q.; Ye, J. H. Photoinduced defect engineering: Enhanced photothermal catalytic performance of 2D black In2O3x nanosheets with bifunctional oxygen vacancies. Adv. Mater. 2020, 32, 1903915.

    Article  CAS  Google Scholar 

  24. Hua, W. X.; Li, H.; Pei, C.; Xia, J. Y.; Sun, Y. F.; Zhang, C.; Lv, W.; Tao, Y.; Jiao, Y.; Zhang, B. S. et al. Selective catalysis remedies polysulfide shuttling in lithium–sulfur batteries. Adv. Mater. 2021, 33, 2101006.

    Article  CAS  Google Scholar 

  25. Yao, H. B.; Zheng, G. Y.; Hsu, P. C.; Kong, D. S.; Cha, J. J.; Li, W. Y.; Seh, Z. W.; McDowell, M. T.; Yan, K.; Liang, Z. et al. Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nat. Commun. 2014, 5, 3943.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, C. Q.; Fei, B.; Yang, D. W.; Zhan, H. B.; Wang, J. A.; Diao, J. F.; Li, J. S.; Henkelman, G.; Cai, D. P.; Biendicho, J. J. et al. Robust lithium–sulfur batteries enabled by highly conductive WSe2-based superlattices with tunable interlayer space. Adv. Funct. Mater. 2022, 32, 2201322.

    Article  CAS  Google Scholar 

  27. Guo, T. Q.; Song, Y. Z.; Sun, Z. T.; Wu, Y. H.; Xia, Y.; Li, Y. Y.; Sun, J. H.; Jiang, K.; Dou, S. X.; Sun, J. Y. Bio-templated formation of defect-abundant VS2 as a bifunctional material toward highperformance hydrogen evolution reactions and lithium–sulfur batteries. J. Energy Chem. 2020, 42, 34–42.

    Article  Google Scholar 

  28. Lin, H. B.; Zhang, S. L.; Zhang, T. R.; Ye, H. L.; Yao, Q. F.; Zheng, G. W.; Lee, J. Y. Elucidating the catalytic activity of oxygen deficiency in the polysulfide conversion reactions of lithium–sulfur batteries. Adv. Energy Mater. 2018, 8, 1801868.

    Article  Google Scholar 

  29. Zou, K. Y.; Chen, X. X.; Jing, W. T.; Dai, X.; Wang, P. F.; Liu, Y.; Qiao, R.; Shi, M.; Chen, Y. Z.; Sun, J. J. et al. Facilitating catalytic activity of indium oxide in lithium–sulfur batteries by controlling oxygen vacancies. Energy Storage Mater. 2022, 48, 133–144.

    Article  Google Scholar 

  30. Luo, D.; Zhang, Z.; Li, G. R.; Cheng, S. B.; Li, S.; Li, J. D.; Gao, R.; Li, M.; Sy, S.; Deng, Y. P. et al. Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb2O5x nanocluster toward superior Li–S performance. ACS Nano 2020, 14, 4849–4860.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, W.; Huai, L. Y.; Wu, S. Y.; Shan, J. W.; Zhu, J. L.; Liu, Z. G.; Yue, L. G.; Li, Y. Y. Ultrahigh-volumetric-energy-density lithium–sulfur batteries with lean electrolyte enabled by cobalt-doped MoSe2/Ti3C2Tx MXene bifunctional catalyst. ACS Nano 2021, 15, 11619–11633.

    Article  CAS  PubMed  Google Scholar 

  32. Li, Z. H.; Zhou, C.; Hua, J. H.; Hong, X. F.; Sun, C. L.; Li, H. W.; Xu, X.; Mai, L. Q. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability. Adv. Mater. 2020, 32, 1907444.

    Article  CAS  Google Scholar 

  33. Zhang, L. L.; Chen, X.; Wan, F.; Niu, Z. Q.; Wang, Y. J.; Zhang, Q.; Chen, J. Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium–sulfur batteries. ACS Nano 2018, 12, 9578–9586.

    Article  CAS  PubMed  Google Scholar 

  34. Chen, X.; Peng, H. J.; Zhang, R.; Hou, T. Z.; Huang, J. Q.; Li, B.; Zhang, Q. An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition-metal sulfides. ACS Energy Lett. 2017, 2, 795–801.

    Article  CAS  Google Scholar 

  35. Qiu, C.; Qian, K.; Yu, J.; Sun, M. Z.; Cao, S. F.; Gao, J. Q.; Yu, R. X.; Fang, L. Z.; Yao, Y. W.; Lu, X. Q. et al. MOF-transformed In2O3–x@C nanocorn electrocatalyst for efficient CO2 reduction to HCOOH. Nanomicro Lett. 2022, 14, 167.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kong, L.; Chen, X.; Li, B. Q.; Peng, H. J.; Huang, J. Q.; Xie, J.; Zhang, Q. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium–sulfur batteries. Adv. Mater. 2018, 30, 1705219.

    Article  Google Scholar 

  37. Wei, C. H.; Tian, M.; Wang, M. L.; Shi, Z. X.; Yu, L. H.; Li, S.; Fan, Z. D.; Yang, R. Z.; Sun, J. Y. Universal in situ crafted MOx-MXene heterostructures as heavy and multifunctional hosts for 3D-printed Li-S batteries. ACS Nano 2020, 14, 16073–16084.

    Article  CAS  PubMed  Google Scholar 

  38. Li, N. R.; Yu, L. H.; Xi, J. Y. Integrated design of interlayer/current-collector: Heteronanowires decorated carbon microtube fabric for high-loading and lean-electrolyte lithium–sulfur batteries. Small 2021, 17, 2103001.

    Article  CAS  Google Scholar 

  39. Fan, F. Y.; Carter, W. C.; Chiang, Y. M. Mechanism and kinetics of Li2S precipitation in lithium–sulfur batteries. Adv. Mater. 2015, 27, 5203–5209.

    Article  CAS  PubMed  Google Scholar 

  40. Schütt, K. T.; Sauceda, H. E.; Kindermans, P. J.; Tkatchenko, A.; Müller, K. R. SchNet—A deep learning architecture for molecules and materials. J. Chem. Phys. 2018, 148, 241722.

    Article  PubMed  Google Scholar 

  41. Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yuan, H.; Peng, H. J.; Li, B. Q.; Xie, J.; Kong, L.; Zhao, M.; Chen, X.; Huang, J. Q.; Zhang, Q. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries. Adv. Energy Mater. 2019, 9, 1802768.

    Article  Google Scholar 

  43. Kong, L.; Li, B. Q.; Peng, H. J.; Zhang, R.; Xie, J.; Huang, J. Q.; Zhang, Q. Porphyrin- derived graphene-based nanosheets enabling strong polysulfide chemisorption and rapid kinetics in lithium–sulfur batteries. Adv. Energy Mater. 2018, 8, 1800849.

    Article  Google Scholar 

  44. Zhang, G.; Zhang, Z. W.; Peng, H. J.; Huang, J. Q.; Zhang, Q. A toolbox for lithium–sulfur battery research: Methods and protocols. Small Methods 2017, 1, 1700134.

    Article  Google Scholar 

  45. Peng, H. J.; Xu, W. T.; Zhu, L.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q. 3D carbonaceous current collectors: The origin of enhanced cycling stability for high-sulfur-loading lithium–sulfur batteries. Adv. Funct. Mater. 2016, 26, 6351–6358.

    Article  CAS  Google Scholar 

  46. Qin, J. L.; Wang, R.; Pei, X.; Wang, D. L. Engineering cooperative catalysis in Li-S batteries. Adv. Energy Mater. 2023, 13, 2300611.

    Article  CAS  Google Scholar 

  47. Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

    Article  Google Scholar 

  48. Han, P.; Chung, S. H.; Manthiram, A. Pyrrolic-type nitrogen-doped hierarchical macro/mesoporous carbon as a bifunctional host for high-performance thick cathodes for lithium–sulfur batteries. Small 2019, 15, 1900690.

    Article  Google Scholar 

  49. Yang, Y. C.; Chen, C.; Hu, J. H.; Deng, Y. H.; Zhang, Y.; Yang, D. High performance lithium–sulfur batteries by facilely coating a conductive carbon nanotube or graphene layer. Chin. Chem. Lett. 2018, 29, 1777–1780.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22279036) and the Innovation and Talent Recruitment Base of New Energy Chemistry and Device (No. B21003). The authors thank the Analytical and Testing Center of Huazhong University of Science and Technology (HUST) for allowing use of its facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deli Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, J., Wang, R., Yuan, Z. et al. Manipulating fast Li2S redox via carbon confinement and oxygen defect engineering of In2O3 for lithium–sulfur batteries. Nano Res. 17, 5179–5187 (2024). https://doi.org/10.1007/s12274-024-6442-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6442-7

Keywords

Navigation