Skip to main content
Log in

Sulfurization accelerator coupled Fe1−xS electrocatalyst boosting SPAN cathode performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Sulfurized polyacrylonitrile (SPAN) cathode exhibits improved cycling stability in carbonate electrolytes due to the existent of −S 2−x − (2 ≤ n ≤ 4) units. However, it is still challenging for SPAN to achieve higher sulfur content, superior conductivity, and faster polysulfide conversion kinetics in ether electrolytes. Herein, polyacrylonitrile (PAN), 2-morpholinothiobenzothiazole (MBS), and FeCl3 coated reduced graphene oxide (rGO) were used to fabricate advanced sulfur cathode through electrospinning technology to address these problems. During PAN sulfuration reactions, the MBS with abundant unsaturated bonds served as the vulcanization accelerator to facilitate the formation of longer chain sulfur species (−S3−/−S4−) and increase the sulfur content in the SPAN electrode system. Meanwhile, Fe1−xS is in situ converted from FeCl3, which acts as the electrocatalyst to promote Li2S nucleation and decomposition reactions. As a result, the Fe1−xS/SPAN/rGO electrode with high sulfur loading of 2.0 mg·cm−2 delivers a reversible capacity of 1122 mA·hg−1 at 0.1 A·g−1. Notably, at a large current density of 5.0 A·g−1, the Fe1−xS/SPAN/rGO electrode still displays a high specific capacity of 924 mAh·g−1 with an ultra-stable cycling life over 2000 cycles. The present work provides new insights into designing of high-performance electrode materials for long-lasting Li-S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, Q. P.; Zhou, X. J.; Xu, J.; Cao, F. H.; Li, C. L. Adenine derivative host with interlaced 2D structure and dual lithiophilic-sulfiphilic sites to enable high-loading Li-S batteries. ACS Nano 2019, 13, 9520–9532.

    CAS  Google Scholar 

  2. Chen, P.; Wu, Z.; Guo, T.; Zhou, Y.; Liu, M. L.; Xia, X. F.; Sun, J. W.; Lu, L. D.; Ouyang, X. P.; Wang, X. et al. Strong chemical interaction between lithium polysulfides and flame-retardant polyphosphazene for lithium-sulfur batteries with enhanced safety and electrochemical performance. Adv. Mater. 2021, 33, 2007549.

    CAS  Google Scholar 

  3. He, B.; Rao, Z. X.; Cheng, Z. X.; Liu, D. D.; He, D. Q.; Chen, J.; Miao, Z. Y.; Yuan, L. X.; Li, Z.; Huang, Y. H. Rationally design a sulfur cathode with solid-phase conversion mechanism for high cycle-stable Li-S batteries. Adv. Energy Mater. 2021, 11, 2003690.

    CAS  Google Scholar 

  4. Wang, X. W.; Yang, Y. Y. C.; Lai, C.; Li, R. L.; Xu, H. M.; Tan, D. H. S.; Zhang, K.; Yu, W.; Fjeldberg, O.; Lin, M. et al. Dense-Stacking porous conjugated polymer as reactive-type host for high-performance lithium sulfur batteries. Angew. Chem., Int. Ed. 2021, 60, 11359–11369.

    CAS  Google Scholar 

  5. Chen, Y. W.; Niu, S. Z.; Lv, W.; Zhang, C.; Yang, Q. H. Promoted conversion of polysulfides by MoO2 inlaid ordered mesoporous carbons towards high performance lithium-sulfur batteries. Chin. Chem. Lett. 2019, 30, 521–524.

    CAS  Google Scholar 

  6. Yang, Y. C.; Chen, C.; Hu, J. H.; Deng, Y. H.; Zhang, Y.; Yang, D. High performance lithium-sulfur batteries by facilely coating a conductive carbon nanotube or graphene layer. Chin. Chem. Lett. 2018, 29, 1777–1780.

    CAS  Google Scholar 

  7. Jin, Z. Q.; Liu, Y. G.; Wang, W. K.; Wang, A. B.; Hu, B. W.; Shen, M.; Gao, T.; Zhao, P. C.; Yang, Y. S. A new insight into the lithium storage mechanism of sulfurized polyacrylonitrile with no soluble intermediates. Energy Storage Mater. 2018, 14, 272–278.

    Google Scholar 

  8. Liu, J.; Wang, M. F.; Xu, N.; Qian, T.; Yan, C. L. Progress and perspective of organosulfur polymers as cathode materials for advanced lithium-sulfur batteries. Energy Storage Mater. 2018, 15, 53–64.

    Google Scholar 

  9. Wang, W. X.; Cao, Z.; Elia, G. A.; Wu, Y. Q.; Wahyudi, W.; Abou-Hamad, E.; Emwas, A. H.; Cavallo, L.; Li, L. J.; Ming, J. Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li-S batteries and beyond in Al-S batteries. ACS Energy Lett. 2018, 3, 2899–2907.

    CAS  Google Scholar 

  10. Nakano, K.; Tatsumi, G.; Nozaki, K. Synthesis of sulfur-rich polymers: Copolymerization of episulfide with carbon disulfide by using Cl/(salph)Cr(III)Cl system. J. Am. Chem. Soc. 2007, 129, 15116–15117.

    CAS  Google Scholar 

  11. Silvano, S.; Carrozza, C. F.; de Angelis, A. R.; Tritto, I.; Boggioni, L.; Losio, S. Synthesis of sulfur-rich polymers: Copolymerization of cyclohexene sulfide and carbon disulfide using chromium complexes. Macromolecules 2020, 53, 8837–8846.

    CAS  Google Scholar 

  12. Preefer, M. B.; Oschmann, B.; Hawker, C. J.; Seshadri, R.; Wudl, F. High sulfur content material with stable cycling in lithium-sulfur batteries. Angew. Chem. 2017, 129, 15314–15318.

    Google Scholar 

  13. Wu, M.; Cui, Y.; Bhargav, A.; Losovyj, Y.; Siegel, A.; Agarwal, M.; Ma, Y.; Fu, Y. Organotrisulfide: A high capacity cathode material for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2016, 55, 10027–10031.

    CAS  Google Scholar 

  14. Oschmann, B.; Park, J.; Kim, C.; Char, K.; Sung, Y. E.; Zentel, R. Copolymerization of polythiophene and sulfur to improve the electrochemical performance in lithium-sulfur batteries. Chem. Mater. 2015, 27, 7011–7017.

    CAS  Google Scholar 

  15. Wang, J.; Yang, J.; Xie, J.; Xu, N. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 2002, 14, 963–965.

    CAS  Google Scholar 

  16. Fanous, J.; Wegner, M.; Grimminger, J.; Andresen, Ä.; Buchmeiser, M. R. Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries. Chem. Mater. 2011, 23, 5024–5028.

    CAS  Google Scholar 

  17. Zhang, S. S. Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery. Energies 2014, 7, 4588–4600.

    Google Scholar 

  18. Je, S. H.; Hwang, T. H.; Talapaneni, S. N.; Buyukcakir, O.; Kim, H. J.; Yu, J. S.; Woo, S. G.; Jang, M. C.; Son, B. K.; Coskun, A. et al. Rational sulfur cathode design for lithium-sulfur batteries: Sulfur-embedded benzoxazine polymers. ACS Energy Lett. 2016, 1, 566–572.

    CAS  Google Scholar 

  19. Liu, Y. G.; Wang, W. K.; Wang, A. B.; Jin, Z. Q.; Zhao, H. L.; Yang, Y. S. A polysulfide reduction accelerator-NiS2-modified sulfurized polyacrylonitrile as a high performance cathode material for lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 22120–22124.

    CAS  Google Scholar 

  20. Chen, X.; Peng, L. F.; Wang, L. H.; Yang, J. Q.; Hao, Z. X.; Xiang, J. W.; Yuan, K.; Huang, Y. H.; Shan, B.; Yuan, L. X. et al. Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping. Nat. Commun. 2019, 10, 1021.

    Google Scholar 

  21. Sun, Z. J.; Xiao, M.; Wang, S. J.; Han, D. M.; Song, S. Q.; Chen, G. H.; Meng, Y. Z. Sulfur-rich polymeric materials with semiinterpenetrating network structure as a novel lithium-sulfur cathode. J. Mater. Chem. A 2011, 2, 9280–9286.

    Google Scholar 

  22. Li, S. P.; Han, Z. L.; Hu, W.; Peng, L. F.; Yang, J. Q.; Wang, L. H.; Zhang, Y. Y.; Shan, B.; Xie, J. Manipulating kinetics of sulfurized polyacrylonitrile with tellurium as eutectic accelerator to prevent polysulfide dissolution in lithium-sulfur battery under dissolution-deposition mechanism. Nano Energy 2019, 60, 153–161.

    CAS  Google Scholar 

  23. Hu, Y.; Li, B.; Jiao, X. X.; Zhang, C. F.; Dai, X. H.; Song, J. X. Stable cycling of phosphorus anode for sodium-ion batteries through chemical bonding with sulfurized polyacrylonitrile. Adv. Funct. Mater. 2018, 28, 1801010.

    Google Scholar 

  24. Haridas, A. K.; Heo, J.; Liu, Y.; Ahn, H. J.; Zhao, X. H.; Deng, Z.; Agostini, M.; Matic, A.; Cho, K. K.; Ahn, J. H. Boosting high energy density lithium-ion storage via the rational design of an FeS-incorporated sulfurized polyacrylonitrile fiber hybrid cathode. ACS Appl. Mater. Interfaces 2019, 11, 29924–29933.

    CAS  Google Scholar 

  25. Hong, X. D.; Liu, Y.; Li, Y.; Wang, X.; Fu, J. W.; Wang, X. L. Application progress of polyaniline, polypyrrole and polythiophene in lithium-sulfur batteries. Polymers 2020, 12, 331.

    CAS  Google Scholar 

  26. Wang, L. H.; Chen, X.; Li, S. P.; Yang, J. Q.; Sun, Y. L.; Peng, L. F.; Shan, B.; Xie, J. Effect of eutectic accelerator in selenium-doped sulfurized polyacrylonitrile for high performance room temperature sodium-sulfur batteries. J. Mater. Chem. A 2019, 7, 12732–12739.

    CAS  Google Scholar 

  27. Marykutty, C. V.; Mathew, G.; Mathew, E. J.; Thomas, S. Studies on novel binary accelerator system in sulfur vulcanization of natural rubber. J. Appl. Polym. Sci. 2003, 90, 3173–3182.

    CAS  Google Scholar 

  28. Ghosh, P.; Katare, S.; Patkar, P.; Caruthers, J. M.; Venkatasubramanian, V.; Walker, K. A. Sulfur vulcanization of natural rubber for benzothiazole accelerated formulations: From reaction mechanisms to a rational kinetic model. Rubber Chem. Technol. 2003, 76, 592–693.

    CAS  Google Scholar 

  29. Chen, H. W.; Wang, C. H.; Hu, C. J.; Zhang, J. S.; Gao, S.; Lu, W.; Chen, L. W. Vulcanization accelerator enabled sulfurized carbon materials for high capacity and high stability of lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 1392–1395.

    CAS  Google Scholar 

  30. Wang, Y.; Shuai, Y.; Chen, K. H. Diphenyl guanidine as vulcanization accelerators in sulfurized polyacrylonitrile for high performance lithium-sulfur battery. Chem. Eng. J. 2020, 388, 124378.

    CAS  Google Scholar 

  31. Wang, X. F.; Qian, Y. M.; Wang, L. N.; Yang, H.; Li, H. L.; Zhao, Y.; Liu, T. X. Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1902929.

    Google Scholar 

  32. Liu, Y.; Yang, D. Z.; Yan, W. Q.; Huang, Q. H.; Zhu, Y. S.; Fu, L. J.; Wu, Y. P. Synergy of sulfur/polyacrylonitrile composite and gel polymer electrolyte promises heat-resistant lithium-sulfur batteries. iScience 2019, 19, 316–325.

    CAS  Google Scholar 

  33. Abdul Razzaq, A.; Yuan, X. T.; Chen, Y. J.; Hu, J. P.; Mu, Q. Q.; Ma, Y.; Zhao, X. H.; Miao, L. X.; Ahn, J. H.; Peng, Y. et al. Anchoring MOF-derived CoS2 on sulfurized polyacrylonitrile nanofibers for high areal capacity lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 1298–1306.

    CAS  Google Scholar 

  34. Lu, Y.; Liang, J. N.; Hu, Y. Z.; Liu, Y.; Chen, K.; Deng, S. F.; Wang, D. L. Accurate control multiple active sites of carbonaceous anode for high performance sodium storage: Insights into capacitive contribution mechanism. Adv. Energy Mater. 2020, 10, 1903312.

    CAS  Google Scholar 

  35. Wei, S. Y.; Ma, L.; Hendrickson, K. E.; Tu, Z. Y.; Archer, L. A. Metal-sulfur battery cathodes based on PAN-sulfur composites. J. Am. Chem. Soc. 2015, 137, 12143–12152.

    CAS  Google Scholar 

  36. Ye, H.; Lei, D. N.; Shen, L.; Ni, B.; Li, B. H.; Kang, F. Y.; He, Y. B. In-situ polymerized cross-linked binder for cathode in lithium-sulfur batteries. Chin. Chem. Lett. 2020, 31, 570–574.

    CAS  Google Scholar 

  37. Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.

    CAS  Google Scholar 

  38. Boyjoo, Y.; Shi, H. D.; Olsson, E.; Cai, Q.; Wu, Z. S.; Liu, J.; Lu, G. Q. Molecular-level design of pyrrhotite electrocatalyst decorated hierarchical porous carbon spheres as nanoreactors for lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2000651.

    CAS  Google Scholar 

  39. Lu, Y.; Qin, J. L.; Shen, T.; Yu, Y. F.; Chen, K.; Hu, Y. Z.; Liang, J. N.; Gong, M. X.; Zhang, J. J.; Wang, D. L. Hypercrosslinked polymerization enabled N-doped carbon confined Fe2O3 facilitating Li polysulfides interface conversion for Li-S batteries. Adv. Energy Mater. 2021, 11, 2101780.

    CAS  Google Scholar 

  40. Lu, Y.; Liang, J. N.; Deng, S. F.; He, Q. M.; Deng, S. Y.; Hu, Y. Z.; Wang, D. L. Hypercrosslinked polymers enabled micropore-dominant N, S co-doped porous carbon for ultrafast electron/ion transport supercapacitors. Nano Energy 2019, 65, 103993.

    CAS  Google Scholar 

  41. Deiss, E. Spurious chemical diffusion coefficients of Li+ in electrode materials evaluated with GITT. Electrochim. Acta 2005, 50, 2927–2932.

    CAS  Google Scholar 

  42. Liang, J. N.; Lu, Y.; Wang, J.; Liu, X. P.; Chen, K.; Ji, W. H.; Zhu, Y.; Wang, D. L. Well-ordered layered LiNi0.8Co0.1Mn0.1O2 submicron sphere with fast electrochemical kinetics for cathodic lithium storage. J. Energy Chem. 2020, 47, 188–195.

    Google Scholar 

  43. Wang, G.; Shao, M.; Ding, H. R.; Qi, Y.; Lian, J. B.; Li, S.; Qiu, J. X.; Li, H. M.; Huo, F. W. Multiple active sites of carbon for highrate surface-capacitive sodium-ion storage. Angew. Chem., Int. Ed. 2019, 58, 13584–13589.

    CAS  Google Scholar 

  44. Wang, Y.; Wang, G. X.; He, P. G.; Hu, J. K.; Jiang, J. H.; Fan, L. Z. Sandwich structured NASICON-type electrolyte matched with sulfurized polyacrylonitrile cathode for high performance solid-state lithium-sulfur batteries. Chem. Eng. J. 2020, 393, 124705.

    CAS  Google Scholar 

  45. Lu, Y.; He, C. E.; Gao, P. Y.; Qiu, S. Q.; Han, X. Y.; Shi, D. A.; Zhang, A. Q.; Yang, Y. K. Simultaneous polymerization enabled the facile fabrication of S-doped carbons with tunable mesoporosity for high-capacitance supercapacitors. J. Mater. Chem. A 2017, 5, 23513–23522.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFB0905600) and the Innovation Research Funds of Huazhong University of Science and Technology (HUST, No. 2172019kfyRCPY100). The authors thank the Analytical and Testing Center of HUST for allowing the use of its facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deli Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, J., Lu, Y., Wang, R. et al. Sulfurization accelerator coupled Fe1−xS electrocatalyst boosting SPAN cathode performance. Nano Res. 16, 9231–9239 (2023). https://doi.org/10.1007/s12274-023-5573-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5573-6

Keywords

Navigation