Skip to main content
Log in

Application of X-ray absorption spectroscopy in carbon-supported electrocatalysts

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Breakthroughs in energy storage and conversion devices depend heavily on the exploration of low-cost and high-performance materials. Carbon-supported electrocatalysts with dimensional varieties have recently attracted significant attention due to their strong structural flexibility and easy accessibility. Nevertheless, understanding the connection between their electronic, structural properties, and catalytic performance must remain a top priority. Synchrotron radiation (SR) X-ray absorption spectroscopy (XAS) techniques, including hard XAS and soft XAS, are recognized as efficient and comprehensive platforms for probing the surface, interface, and bulk electronic structure of elements of interest in the materials community. In the past decade, the flourishing development of materials science and advanced characterization technologies have led to a deeper understanding at different temporal, longitudinal, and spatial scales. In this review, we briefly describe the concept of XAS techniques and summarize their recent progress in addressing scientific questions on carbon-supported electrocatalysts through the development of advanced instruments and experimental methods. We then discuss the remaining challenges and potential research directions in next-generation materials frontiers, and suggest challenges and perspectives for shedding light on the structure–activity relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

    CAS  Google Scholar 

  2. Handoko, A. D.; Wei, F. X.; Jenndy; Yeo, B. S.; Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 2018, 1, 922–934.

    CAS  Google Scholar 

  3. De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes. Science 2019, 364, eaav3506.

    CAS  Google Scholar 

  4. Gao, D. F.; Arán-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210.

    CAS  Google Scholar 

  5. Zhao, Y. F.; Gao, W.; Li, S. W.; Williams, G. R.; Mahadi, A. H.; Ma, D. Solar- versus thermal-driven catalysis for energy conversion. Joule 2019, 3, 920–937.

    CAS  Google Scholar 

  6. Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

    CAS  Google Scholar 

  7. Sun, Z. Y.; Hu, Y. N.; Zhou, D. N.; Sun, M. R.; Wang, S.; Chen, W. X. Factors influencing the performance of copper-bearing catalysts in the CO2 reduction system. ACS Energy Lett. 2021, 6, 3992–4022.

    CAS  Google Scholar 

  8. Vasileff, A.; Zheng, Y.; Qiao, S. Z. Carbon solving carbon’s problems: Recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv. Energy Mater. 2017, 7, 1700759.

    Google Scholar 

  9. Jin, S.; Hao, Z. M.; Zhang, K.; Yan, Z. H.; Chen, J. Advances and challenges for the electrochemical reduction of CO2 to CO: From fundamentals to industrialization. Angew. Chem., Int. Ed. 2021, 60, 20627–20648.

    CAS  Google Scholar 

  10. Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem., Int. Ed. 2021, 60, 19572–19590.

    CAS  Google Scholar 

  11. Wang, J. L.; Tan, H. Y.; Zhu, Y. P.; Chu, H.; Chen, H. M. Linking the dynamic chemical state of catalysts with the product profile of electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 17254–17267.

    CAS  Google Scholar 

  12. Burdyny, T.; Smith, W. A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 2019, 12, 1442–1453.

    CAS  Google Scholar 

  13. Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

    CAS  Google Scholar 

  14. Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

    CAS  Google Scholar 

  15. Kundu, D.; Hosseini Vajargah, S.; Wan, L. W.; Adams, B.; Prendergast, D.; Nazar, L. F. Aqueous vs. nonaqueous Zn-ion batteries:Consequences of the desolvation penalty at the interface. Energy Environ. Sci. 2018, 11, 881–892.

    CAS  Google Scholar 

  16. Wang, S. B.; Ran, Q.; Yao, R. Q.; Shi, H.; Wen, Z.; Zhao, M.; Lang, X. Y.; Jiang, Q. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 2020, 11, 1634.

    CAS  Google Scholar 

  17. Zhong, C.; Liu, B.; Ding, J.; Liu, X. R.; Zhong, Y. W.; Li, Y.; Sun, C. B.; Han, X. P.; Deng, Y. D.; Zhao, N. Q. et al. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries. Nat. Energy 2020, 5, 440–449.

    CAS  Google Scholar 

  18. Cao, D. F.; Sheng, B. B.; Qi, Z. H.; Xu, W. J.; Chen, S. M.; Moses, O. A.; Long, R.; Xiong, Y. J.; Wu, X. J.; Song, L. Self-optimizing iron phosphorus oxide for stable hydrogen evolution at high current. Appl. Catal. B Environ. 2021, 298, 120559.

    CAS  Google Scholar 

  19. Zhang, Y. K.; Lin, Y. X.; Duan, T.; Song, L. Interfacial engineering of heterogeneous catalysts for electrocatalysis. Mater. Today 2021, 48, 115–134.

    CAS  Google Scholar 

  20. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Google Scholar 

  21. Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

    CAS  Google Scholar 

  22. Lin, F.; Liu, Y. J.; Yu, X. Q.; Cheng, L.; Singer, A.; Shpyrko, O. G.; Xin, H. L.; Tamura, N.; Tian, C. X.; Weng, T. C. et al. Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chem. Rev. 2017, 117, 13123–13186.

    CAS  Google Scholar 

  23. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

    CAS  Google Scholar 

  24. Sheng, B. B.; Cao, D. F.; Liu, C. J.; Chen, S. M.; Song, L. Support effects in electrocatalysis and their synchrotron radiation-based characterizations. J. Phys. Chem. Lett. 2021, 12, 11543–11554.

    CAS  Google Scholar 

  25. Sheng, B. B.; Cao, D. F.; Shou, H. W.; Moses, O. A.; Xu, W. J.; Xia, Y. J.; Zhou, Y. Z.; Wang, H. J.; Wan, P.; Zhu, S. et al. Support induced phase engineering toward superior electrocatalyst. Nano Res. 2022, 15, 1831–1837.

    CAS  Google Scholar 

  26. Lu, S. S.; Cheng, C. Q.; Shi, Y. M.; Wu, Y. M.; Zhang, Z. P.; Zhang, B. Unveiling the structural transformation and activity origin of heteroatom-doped carbons for hydrogen evolution. Proc. Natl. Acad. Sci. USA 2023, 120, e2300549120.

    CAS  Google Scholar 

  27. Lu, S. S.; Shi, Y. M.; Zhou, W.; Zhang, Z. P.; Wu, F.; Zhang, B. Dissolution of the heteroatom dopants and formation of orthoquinone moieties in the doped carbon materials during water electrooxidation. J. Am. Chem. Soc. 2022, 144, 3250–3258.

    CAS  Google Scholar 

  28. Lu, S. S.; Zhou, W.; Shi, Y. M.; Liu, C. B.; Yu, Y. F.; Zhang, B. Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution. Chem 2022, 8, 1415–1426.

    CAS  Google Scholar 

  29. Qiao, S. C.; He, Q.; Zhang, P. J.; Zhou, Y. Z.; Chen, S. M.; Song, L.; Wei, S. Q. Synchrotron-radiation spectroscopic identification towards diverse local environments of single-atom catalysts. J. Mater. Chem. A 2022, 10, 5771–5791.

    CAS  Google Scholar 

  30. Zhou, Y. Z.; Zhou, Q.; Liu, H. J.; Xu, W. J.; Wang, Z. X.; Qiao, S. C.; Ding, H. H.; Chen, D. L.; Zhu, J. F.; Qi, Z. M. et al. Asymmetric dinitrogen-coordinated nickel single-atomic sites for efficient CO2 electroreduction. Nat. Commun. 2023, 14, 3776.

    Google Scholar 

  31. He, Q.; Zhou, Y. Z.; Shou, H. W.; Wang, X. Y.; Zhang, P. J.; Xu, W. J.; Qiao, S. C.; Wu, C. Q.; Liu, H. J.; Liu, D. B. et al. Synergic reaction kinetics over adjacent ruthenium sites for superb hydrogen generation in alkaline media. Adv. Mater. 2022, 34, 2110604.

    CAS  Google Scholar 

  32. Guan, Y. Y.; Liu, Y. T.; Ren, Q. Y.; Dong, Z. J.; Luo, L. L. Oxidation-induced phase separation of carbon-supported CuAu nanoparticles for electrochemical reduction of CO2. Nano Res. 2023, 16, 2119–2125.

    CAS  Google Scholar 

  33. Shadike, Z.; Lee, H.; Borodin, O.; Cao, X.; Fan, X. L.; Wang, X. L.; Lin, R. Q.; Bak, S. M.; Ghose, S.; Xu, K. et al. Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes. Nat. Nanotechnol. 2021, 16, 549–554.

    CAS  Google Scholar 

  34. Jiang, H. L.; He, Q.; Zhang, Y. K.; Song, L. Structural self-reconstruction of catalysts in electrocatalysis. Acc. Chem. Res. 2018, 51, 2968–2977.

    CAS  Google Scholar 

  35. Li, J. K.; Gong, J. L. Operando characterization techniques for electrocatalysis. Energy Environ. Sci. 2020, 13, 3748–3779.

    CAS  Google Scholar 

  36. Zheng, X. R.; Han, X. P.; Cao, Y. H.; Zhang, Y.; Nordlund, D.; Wang, J. H.; Chou, S. L.; Liu, H.; Li, L. L.; Zhong, C. et al. Identifying dense NiSe2/CoSe2 heterointerfaces coupled with surface high-valence bimetallic sites for synergistically enhanced oxygen electrocatalysis. Adv. Mater. 2020, 32, 2000607.

    CAS  Google Scholar 

  37. Piao, J. Y.; Gu, L.; Wei, Z. X.; Ma, J. M.; Wu, J. P.; Yang, W. L.; Gong, Y.; Sun, Y. G.; Duan, S. Y.; Tao, X. S. et al. Phase control on surface for the stabilization of high energy cathode materials of lithium ion batteries. J. Am. Chem. Soc. 2019, 141, 4900–4907.

    CAS  Google Scholar 

  38. Lin, R. Q.; Hu, E. Y.; Liu, M. J.; Wang, Y.; Cheng, H.; Wu, J. P.; Zheng, J. C.; Wu, Q.; Bak, S.; Tong, X. et al. Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery. Nat. Commun. 2019, 10, 1650.

    Google Scholar 

  39. Zhu, K. F.; Wei, S. Q.; Shou, H. W.; Shen, F. R.; Chen, S. M.; Zhang, P. J.; Wang, C. D.; Cao, Y. Y.; Guo, X.; Luo, M. et al. Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries. Nat. Commun. 2021, 12, 6878.

    Google Scholar 

  40. Liu, Y. S.; Glans, P. A.; Chuang, C. H.; Kapilashrami, M.; Guo, J. H. Perspectives of in situ/operando resonant inelastic X-ray scattering in catalytic energy materials science. J. Electron. Spectrosc. Relat. Phenom. 2015, 200, 282–292.

    CAS  Google Scholar 

  41. Wu, J.; Yang, Y.; Yang, W. L. Advances in soft X-ray RIXS for studying redox reaction states in batteries. Dalton Trans. 2020, 49, 13519–13527.

    CAS  Google Scholar 

  42. Yang, W. L.; Devereaux, T. P. Anionic and cationic redox and interfaces in batteries: Advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sources 2018, 389, 188–197.

    CAS  Google Scholar 

  43. Yang, W. L.; Liu, X. S.; Qiao, R. M.; Olalde-Velasco, P.; Spear, J. D.; Roseguo, L.; Pepper, J. X.; Chuang, Y. D.; Denlinger, J. D.; Hussain, Z. Key electronic states in lithium battery materials probed by soft X-ray spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 2013, 190, 64–74.

    CAS  Google Scholar 

  44. Takao, S. X-ray absorption fine structure and scanning transmission electron microscopic analysis of polymer electrolyte fuel cells. Curr. Opin. Electrochem. 2020, 21, 283–288.

    CAS  Google Scholar 

  45. Liu, D. Q.; Shadike, Z.; Lin, R. Q.; Qian, K.; Li, H.; Li, K. K.; Wang, S. W.; Yu, Q. P.; Liu, M.; Ganapathy, S. et al. Review of recent development of in situ/operando characterization techniques for lithium battery research. Adv. Mater. 2019, 31, 1806620.

    Google Scholar 

  46. Yang, Y.; Xiong, Y.; Zeng, R.; Lu, X. Y.; Krumov, M.; Huang, X.; Xu, W. X.; Wang, H. S.; DiSalvo, F. J.; Brock, J. D. et al. Operando methods in electrocatalysis. ACS Catal. 2021, 11, 1136–1178.

    CAS  Google Scholar 

  47. Sedigh Rahimabadi, P.; Khodaei, M.; Koswattage, K. R. Review on applications of synchrotron-based X-ray techniques in materials characterization. X-Ray Spectrom. 2020, 49, 348–373.

    CAS  Google Scholar 

  48. Wang, Y.; Yang, Y.; Jia, S. F.; Wang, X. M.; Lyu, K.; Peng, Y. Q.; Zheng, H.; Wei, X.; Ren, H.; Xiao, L. et al. Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells. Nat. Commun. 2019, 10, 1506.

    Google Scholar 

  49. Wu, Z. B.; Kong Pang, W.; Chen, L. B.; Johannessen, B.; Guo, Z. P. In situ synchrotron X-ray absorption spectroscopy studies of anode materials for rechargeable batteries. Batter. Supercaps 2021, 4, 1547–1566.

    CAS  Google Scholar 

  50. Li, Q. H.; Qiao, R. M.; Wray, L. A.; Chen, J.; Zhuo, Z. Q.; Chen, Y. X.; Yan, S. S.; Pan, F.; Hussain, Z.; Yang, W. L. Quantitative probe of the transition metal redox in battery electrodes through soft X-ray absorption spectroscopy. J. Phys. D Appl. Phys. 2016, 49, 413003.

    Google Scholar 

  51. Rehr, J. J.; Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 2000, 72, 621–654.

    CAS  Google Scholar 

  52. de Groot, F. High-resolution X-ray emission and X-ray absorption spectroscopy. Chem. Rev. 2001, 101, 1779–1808.

    CAS  Google Scholar 

  53. Wang, M. Y.; Árnadóttir, L.; Xu, Z. J.; Feng, Z. X. In situ X-ray absorption spectroscopy studies of nanoscale electrocatalysts. Nanomicro Lett. 2019, 11, 47.

    CAS  Google Scholar 

  54. Russell, A. E.; Rose, A. X-ray absorption spectroscopy of low temperature fuel cell catalysts. Chem. Rev. 2004, 104, 4613–4636.

    CAS  Google Scholar 

  55. Rehr, J. J.; Kas, J. J.; Vila, F. D.; Prange, M. P.; Jorissen, K. Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 2010, 12, 5503–5513.

    CAS  Google Scholar 

  56. Li, J.; Che, F. L.; Pang, Y. J.; Zou, C. Q.; Howe, J. Y.; Burdyny, T.; Edwards, J. P.; Wang, Y. H.; Li, F. W.; Wang, Z. Y. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 2018, 9, 4614.

    Google Scholar 

  57. Nam, D. H.; Bushuyev, O. S.; Li, J.; De Luna, P.; Seifitokaldani, A.; Dinh, C. T.; García de Arquer, F. P.; Wang, Y. H.; Liang, Z. Q.; Proppe, A. H. et al. Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 2018, 140, 11378–11386.

    CAS  Google Scholar 

  58. Wulan, B.; Cao, X. Y.; Tan, D. X.; Shu, X. X.; Ma, J. Z.; Hou, S. Q.; Zhang, J. T. Atomic bridging of Sn single atom with nitrogen and oxygen atoms for the selective electrocatalytic reduction of CO2. CCS Chem., in press, https://doi.org/10.31635/ccschem.022.202202464.

  59. Wan, J. W.; Zhao, Z. H.; Shang, H. S.; Peng, B.; Chen, W. X.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Cao, R.; Sarangi, R. et al. In situ phosphatizing of triphenylphosphine encapsulated within metal–organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 2020, 142, 8431–8439.

    CAS  Google Scholar 

  60. Wei, S. Q.; Chen, S. M.; Su, X. Z.; Qi, Z. H.; Wang, C. D.; Ganguli, B.; Zhang, P. J.; Zhu, K. F.; Cao, Y. Y.; He, Q. et al. Manganese buffer induced high-performance disordered MnVO cathodes in zinc batteries. Energy Environ. Sci. 2021, 14, 3954–3964.

    CAS  Google Scholar 

  61. Cao, D. F.; Ye, K.; Moses, O. A.; Xu, W. J.; Liu, D. B.; Song, P.; Wu, C. Q.; Wang, C. D.; Ding, S. Q.; Chen, S. M. et al. Engineering the in-plane structure of metallic phase molybdenum disulfide via Co and O dopants toward efficient alkaline hydrogen evolution. ACS Nano 2019, 13, 11733–11740.

    CAS  Google Scholar 

  62. He, Q.; Qiao, S. C.; Zhou, Q.; Zhou, Y. Z.; Shou, H. W.; Zhang, P. J.; Xu, W. J.; Liu, D. B.; Chen, S. M.; Wu, X. et al. Confining high-valence iridium single sites onto nickel oxyhydroxide for robust oxygen evolution. Nano Lett. 2022, 22, 3832–3839.

    CAS  Google Scholar 

  63. Liu, D. B.; Li, X. Y.; Chen, S. M.; Yan, H.; Wang, C. D.; Wu, C. Q.; Haleem, Y. A.; Duan, S.; Lu, J. L.; Ge, B. H. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518.

    CAS  Google Scholar 

  64. Zhao, J. Q.; Liu, J. J.; Li, Z. H.; Wang, K. W.; Shi, R.; Wang, P.; Wang, Q.; Waterhouse, G. I. N.; Wen, X. D.; Zhang, T. R. Ruthenium-cobalt single atom alloy for CO photo-hydrogenation to liquid fuels at ambient pressures. Nat. Commun. 2023, 14, 1909.

    Google Scholar 

  65. Cao, X. Y.; Zhao, L. L.; Wulan, B.; Tan, D. X.; Chen, Q. W.; Ma, J. Z.; Zhang, J. T. Atomic bridging structure of nickel-nitrogen-carbon for highly efficient electrocatalytic reduction of CO2. Angew. Chem., Int. Ed. 2022, 61, e202113918.

    CAS  Google Scholar 

  66. Liu, D. B.; Zhao, Y.; Wu, C. Q.; Xu, W. J.; Xi, S. B.; Chen, M. X.; Yang, L.; Zhou, Y. Z.; He, Q.; Li, X. Y. et al. Triggering electronic coupling between neighboring hetero-diatomic metal sites promotes hydrogen evolution reaction kinetics. Nano Energy 2022, 98, 107296.

    CAS  Google Scholar 

  67. He, Q.; Liu, D. B.; Lee, J. H.; Liu, Y. M.; Xie, Z. H.; Hwang, S.; Kattel, S.; Song, L.; Chen, J. G. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 3033–3037.

    CAS  Google Scholar 

  68. Song, L.; Ci, L.; Lv, L.; Zhou, Z.; Yan, X.; Liu, D.; Yuan, H.; Gao, Y.; Wang, J.; Liu, L. et al. Direct synthesis of a macroscale single-walled carbon nanotube non-woven material. Adv. Mater. 2004, 16, 1529–1534.

    CAS  Google Scholar 

  69. Cao, D. F.; Liu, D. B.; Chen, S. M.; Moses, O. A.; Chen, X. J.; Xu, W. J.; Wu, C. Q.; Zheng, L. R.; Chu, S. Q.; Jiang, H. L. et al. Operando X-ray spectroscopy visualizing the chameleon-like structural reconstruction on an oxygen evolution electrocatalyst. Energy Environ. Sci. 2021, 14, 906–915.

    CAS  Google Scholar 

  70. Cao, L. L.; Luo, Q. Q.; Liu, W.; Lin, Y.; Liu, X. K.; Cao, Y. J.; Zhang, W.; Wu, Y. E.; Yang, J. L.; Yao, T. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141.

    CAS  Google Scholar 

  71. Lin, S. C.; Chang, C. C.; Chiu, S. Y.; Pai, H. T.; Liao, T. Y.; Hsu, C. S.; Chiang, W. H.; Tsai, M. K.; Chen, H. M. Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction. Nat. Commun. 2020, 11, 3525.

    CAS  Google Scholar 

  72. Tromp, M.; Dent, A. J.; Headspith, J.; Easun, T. L.; Sun, X. Z.; George, M. W.; Mathon, O.; Smolentsev, G.; Hamilton, M. L.; Evans, J. Energy dispersive XAFS: Characterization of electronically excited states of copper(I) complexes. J. Phys. Chem. B 2013, 117, 7381–7387.

    CAS  Google Scholar 

  73. Niwa, Y.; Sato, T.; Ichiyanagi, K.; Takahashi, K.; Kimura, M. Time-resolved observation of structural change of copper induced by laser shock using synchrotron radiation with dispersive XAFS. High Pressure Res. 2016, 36, 471–478.

    CAS  Google Scholar 

  74. Sekizawa, O.; Uruga, T.; Takagi, Y.; Nitta, K.; Kato, K.; Tanida, H.; Uesugi, K.; Hoshino, M.; Ikenaga, E.; Takeshita, K. et al. SPring-8 BL36XU: Catalytic reaction dynamics for fuel cells. J. Phys. Conf. Ser. 2016, 712, 012142.

    Google Scholar 

  75. Hu, Y. G.; Zhan, F.; Wang, Q.; Sun, Y. J.; Yu, C.; Zhao, X.; Wang, H.; Long, R.; Zhang, G. Z.; Gao, C. et al. Tracking mechanistic pathway of photocatalytic CO2 reaction at Ni sites using operando, time-resolved spectroscopy. J. Am. Chem. Soc. 2020, 142, 5618–5626.

    CAS  Google Scholar 

  76. Lee, S. H.; Lin, J. C.; Farmand, M.; Landers, A. T.; Feaster, J. T.; Avilés Acosta, J. E.; Beeman, J. W.; Ye, Y.; Yano, J.; Mehta, A. et al. Oxidation state and surface reconstruction of Cu under CO2 reduction conditions from in situ X-ray characterization. J. Am. Chem. Soc. 2021, 143, 588–592.

    CAS  Google Scholar 

  77. Mei, B. B.; Liu, C.; Li, J.; Gu, S. Q.; Du, X. L.; Lu, S. Y.; Song, F.; Xu, W. L.; Jiang, Z. Operando HERFD-XANES and surface sensitive Δμ analyses identify the structural evolution of copper(II) phthalocyanine for electroreduction of CO2. J. Energy Chem. 2022, 64, 1–7.

    CAS  Google Scholar 

  78. Zheng, Y. C.; Zhang, G. K.; Zhang, P. J.; Chu, S. Q.; Wu, D. J.; Sun, C. C.; Qian, B.; Chen, S. M.; Tao, S.; Song, L. Structural investigation of metallic Ni nanoparticles with N-doped carbon for efficient oxygen evolution reaction. Chem. Eng. J. 2022, 429, 132122.

    CAS  Google Scholar 

  79. Czioska, S.; Boubnov, A.; Escalera-López, D.; Geppert, J.; Zagalskaya, A.; Röse, P.; Saraçi, E.; Alexandrov, V.; Krewer, U.; Cherevko, S. et al. Increased Ir–Ir interaction in iridium oxide during the oxygen evolution reaction at high potentials probed by operando spectroscopy. ACS Catal. 2021, 11, 10043–10057.

    CAS  Google Scholar 

  80. Chu, S. Q.; Zheng, L. R.; Che, R. Z.; Zhou, A. Y.; Zhang, J.; Liu, J.; Hu, T. D. Development of pressure-modulated EXAFS method. Chin. Phys. C 2012, 36, 184–187.

    CAS  Google Scholar 

  81. Xu, W.; Zhang, G.; Shou, H.; Zhou, J.; Chen, S.; Chu, S.; Zhang, J.; Song, L. Approach to electrochemical modulating differential extended X-ray absorption fine structure. J. Synchrotron Radiat. 2022, 29, 1065–1073.

    CAS  Google Scholar 

  82. Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S. H.; Shao, Z. P.; Lim, J. Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 2020, 49, 9154–9196.

    CAS  Google Scholar 

  83. Pan, Y.; Chen, Y. J.; Wu, K. L.; Chen, Z.; Liu, S. J.; Cao, X.; Cheong, W. C.; Meng, T.; Luo, J.; Zheng, L. R. et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat. Commun. 2019, 10, 4290.

    Google Scholar 

  84. Chen, C. T.; Sette, F.; Ma, Y.; Modesti, S. Soft-X-ray magnetic circular dichroism at the L2, 3-edges of nickel. Phys. Rev. B 1990, 42, 7262–7265.

    CAS  Google Scholar 

  85. Hung, S. F. In-situ X-ray techniques for non-noble electrocatalysts. Pure Appl. Chem. 2020, 92, 733–749.

    CAS  Google Scholar 

  86. Yang, Y.; Xu, R.; Zhang, K.; Lee, S. J.; Mu, L. Q.; Liu, P. F.; Waters, C. K.; Spence, S.; Xu, Z. R.; Wei, C. X. et al. Quantification of heterogeneous degradation in Li-ion batteries. Adv. Energy Mater. 2019, 9, 1900674.

    Google Scholar 

  87. Wu, S. F.; Wang, W. X.; Li, M. C.; Cao, L. J.; Lyu, F.; Yang, M. Y.; Wang, Z. Y.; Shi, Y.; Nan, B.; Yu, S. C. et al. Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate. Nat. Commun. 2016, 7, 13318.

    CAS  Google Scholar 

  88. Xu, W. J.; Cao, D. F.; Moses, O. A.; Sheng, B. B.; Wu, C. Q.; Shou, H. W.; Wu, X. J.; Chen, S. M.; Song, L. Probing self-optimization of carbon support in oxygen evolution reaction. Nano Res. 2021, 14, 4534–4540.

    CAS  Google Scholar 

  89. Qiao, R. M.; Lucas, I. T.; Karim, A.; Syzdek, J.; Liu, X. S.; Chen, W.; Persson, K.; Kostecki, R.; Yang, W. L. Distinct solid–electrolyte-interphases on Sn (100) and (001) electrodes studied by soft X-ray spectroscopy. Adv. Mater. Interfaces 2014, 1, 1300115.

    Google Scholar 

  90. Lin, F.; Nordlund, D.; Markus, I. M.; Weng, T. C.; Xin, H. L.; Doeff, M. M. Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries. Energy Environ. Sci. 2014, 7, 3077–3085.

    CAS  Google Scholar 

  91. Han, L. L.; Hou, M. C.; Ou, P. F.; Cheng, H.; Ren, Z. H.; Liang, Z. X.; Boscoboinik, J. A.; Hunt, A.; Waluyo, I.; Zhang, S. S. et al. Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal. 2021, 11, 509–516.

    CAS  Google Scholar 

  92. Han, L. L.; Liu, X. J.; He, J.; Liang, Z. X.; Wang, H. T.; Bak, S. M.; Zhang, J. M.; Hunt, A.; Waluyo, I.; Pong, W. F. et al. Modification of the coordination environment of active sites on MoC for high-efficiency CH4 production. Adv. Energy Mater. 2021, 11, 2100044.

    CAS  Google Scholar 

  93. Zheng, X. L.; Zhang, B.; De Luna, P.; Liang, Y. F.; Comin, R.; Voznyy, O.; Han, L. L.; García de Arquer, F. P.; Liu, M.; Dinh, C. T. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 2018, 10, 149–154.

    CAS  Google Scholar 

  94. Tesch, M. F.; Bonke, S. A.; Jones, T. E.; Shaker, M. N.; Xiao, J.; Skorupska, K.; Mom, R.; Melder, J.; Kurz, P.; Knop-Gericke, A. et al. Evolution of oxygen–metal electron transfer and metal electronic states during manganese oxide catalyzed water oxidation revealed with in situ soft X-ray spectroscopy. Angew. Chem., Int. Ed. 2019, 58, 3426–3432.

    CAS  Google Scholar 

  95. Lien, H. T.; Chang, S. T.; Chen, P. T.; Wong, D. P.; Chang, Y. C.; Lu, Y. R.; Dong, C. L.; Wang, C. H.; Chen, K. H.; Chen, L. C. Probing the active site in single-atom oxygen reduction catalysts via operando X-ray and electrochemical spectroscopy. Nat. Commun. 2020, 11, 4233.

    CAS  Google Scholar 

  96. Lv, L. Y.; Tang, B.; Ji, Q. Q.; Li, N.; Wang, Y.; Feng, S. H.; Duan, H. L.; Wang, C.; Tan, H.; Yan, W. S. Highly exposed NiFeO, nanoclusters supported on boron doped carbon nanotubes for electrocatalytic oxygen evolution reaction. Chin. Chem. Lett. 2023, 34, 107524.

    CAS  Google Scholar 

  97. Jiang, H. L.; Lin, Y. X.; Chen, B. X.; Zhang, Y. K.; Liu, H. J.; Duan, X. Z.; Chen, D.; Song, L. Ternary interfacial superstructure enabling extraordinary hydrogen evolution electrocatalysis. Mater. Today 2018, 21, 602–610.

    CAS  Google Scholar 

  98. Yang, Z. K.; Wang, X. L.; Zhu, M. Z.; Leng, X. Y.; Chen, W. X.; Wang, W. Y.; Xu, Q.; Yang, L. M.; Wu, Y. E. Structural revolution of atomically dispersed Mn sites dictates oxygen reduction performance. Nano Res. 2021, 14, 4512–4519.

    CAS  Google Scholar 

  99. Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

    CAS  Google Scholar 

  100. Tian, Y. H.; Li, M.; Wu, Z. Z.; Sun, Q.; Yuan, D.; Johannessen, B.; Xu, L.; Wang, Y.; Dou, Y. H.; Zhao, H. J. et al. Edge-hosted atomic Co-N4 sites on hierarchical porous carbon for highly selective two-electron oxygen reduction reaction. Angew. Chem., Int. Ed. 2022, 61, e202213296.

    CAS  Google Scholar 

  101. Cao, D. F.; Shou, H. W.; Chen, S. M.; Song, L. Manipulating and probing the structural self-optimization in oxygen evolution reaction catalysts. Curr. Opin. Electrochem. 2021, 30, 100788.

    CAS  Google Scholar 

  102. Cao, D. F.; Xu, W. J.; Chen, S. M.; Liu, C. J.; Sheng, B. B.; Song, P.; Moses, O. A.; Song, L.; Wei, S. Q. Visualizing catalytic dynamics processes via synchrotron radiation multitechniques. Adv. Mater. 2023, 35, 2205346.

    CAS  Google Scholar 

  103. Sekizawa, O.; Uruga, T.; Higashi, K.; Kaneko, T.; Yoshida, Y.; Sakata, T.; Iwasawa, Y. Simultaneous operando time-resolved XAFS-XRD measurements of a Pt/C cathode catalyst in polymer electrolyte fuel cell under transient potential operations. ACS Sustainable Chem. Eng. 2017, 5, 3631–3636.

    CAS  Google Scholar 

  104. Ajayi, T. M.; Shirato, N.; Rojas, T.; Wieghold, S.; Cheng, X. Y.; Latt, K. Z.; Trainer, D. J.; Dandu, N. K.; Li, Y. M.; Premarathna, S. et al. Characterization of just one atom using synchrotron X-rays. Nature 2023, 618, 69–73.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported in part by the National Key R&D Program of China (Nos. 2020YFA0405800, 2022YFA1504104, and 2022YFA1605400), the National Natural Science Foundation of China (Nos. 12225508, 12322515, U1932201, U2032113, and 22075264), the Youth Innovation Promotion Association of CAS (No. 2022457), the Institute of Energy, Hefei Comprehensive National Science Center, University Synergy Innovation Program of Anhui Province (No. GXXT-2020-002), and the CAS Iterdisciplinary Innovation Team. We thank the Shanghai Synchrotron Radiation Facility (BL14W1, BL14B1, and SSRF), the Beijing Synchrotron Radiation Facility (1W1B, 4B7A, and BSRF), the Hefei Synchrotron Radiation Facility (Infrared Spectroscopy and Microspectroscopy, MCD-A and MCD-B Soochow Beamline for Energy Materials at NSRL), and the USTC Center for Micro and Nanoscale Research and Fabrication for helps in characterizations. We sincerely appreciate the kind guidance and great inspiration from Prof. Sishen Xie.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuangming Chen or Li Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, B., Chu, Y., Cao, D. et al. Application of X-ray absorption spectroscopy in carbon-supported electrocatalysts. Nano Res. 16, 12438–12452 (2023). https://doi.org/10.1007/s12274-023-6153-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6153-5

Keywords

Navigation