Skip to main content
Log in

pH- and near-infrared light-responsive, biomimetic hydrogels from aqueous dispersions of carbon nanotubes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Owing to their low flexibility, poor processability and a lack of responsiveness, inorganic materials are usually non-ideal for constructing a living organism. Hence, to date, lifelike materials with structural hierarchies and adaptive properties usually rely on light and soft organic molecules, although few exceptions have been acquired using two-dimensional (2D) inorganic nanosheets. Herein, with a systematic study on the gelation behavior of carbon-based 0D quantum dots, 1D nanotubes, and 3D fullerenes, we find that acidified 1D carbon nanotubes (CNTs) can serve as an alternative building block for fabricating purely inorganic biomimetic soft materials. The as-prepared CNT gels exhibit not only a pH- or photothermal-triggered mechanical and tribological adaptivity, which allows them to simulate the behavior of sea cucumbers, peacock mantis shrimps, and mammalian muscles or cortical bones, but also a unique damping property that is similar to spider’s cuticular pad. Their high elasticity, effective lubrication, excellent biocompatibility, and controllable friction and wear also allow them to function as a new type of smart lubricants, whose tribological properties can be regulated either by its internal pH changes or spatiotemporally by near-infrared (NIR) light irradiations, free of any toxic and flammable base oils or additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sano, K.; Igarashi, N.; Ebina, Y.; Sasaki, T.; Hikima, T.; Aida, T.; Ishida, Y. A mechanically adaptive hydrogel with a reconfigurable network consisting entirely of inorganic nanosheets and water. Nat. Commun. 2020, 11, 6026.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Hu, L. L.; Yang, Y.; Hao, J. C.; Xu, L. Dual-driven mechanically and tribologically adaptive hydrogels solely constituted of graphene oxide and water. Nano Lett. 2022, 22, 6004–6009.

    CAS  PubMed  ADS  Google Scholar 

  3. Kouwer, P. H. J.; Koepf, M.; Le Sage, V. A. A.; Jaspers, M.; Van Buul, A. M.; Eksteen-Akeroyd, Z. H.; Woltinge, T.; Schwartz, E.; Kitto, H. J.; Hoogenboom, R. et al. Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature 2013, 493, 651–655.

    CAS  PubMed  ADS  Google Scholar 

  4. Palagi, S.; Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 2018, 3, 113–124.

    CAS  ADS  Google Scholar 

  5. de Espinosa, L. M.; Meesorn, W.; Moatsou, D.; Weder, C. Bioinspired polymer systems with stimuli-responsive mechanical properties. Chem. Rev. 2017, 117, 12851–12892.

    Google Scholar 

  6. De Almeida, P.; Jaspers, M.; Vaessen, S.; Tagit, O.; Portale, G.; Rowan, A. E.; Kouwer, P. H. J. Cytoskeletal stiffening in synthetic hydrogels. Nat. Commun. 2019, 10, 609.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Romera, M. F.c C.; Göstl, R.; Shaikh, H.; Ter Huurne, G.; Schill, J.; Voets, I. K.; Storm, C.; Sijbesma, R. P. Mimicking active biopolymer networks with a synthetic hydrogel. J. Am. Chem. Soc. 2019, 141, 1989–1997.

    Google Scholar 

  8. Sano, K.; Arazoe, Y. O.; Ishida, Y.; Ebina, Y.; Osada, M.; Sasaki, T.; Hikima, T.; Aida, T. Extra-large mechanical anisotropy of a hydrogel with maximized electrostatic repulsion between cofacially aligned 2D electrolytes. Angew. Chem., Int. Ed. 2018, 57, 12508–12513.

    CAS  Google Scholar 

  9. Xue, P.; Bisoyi, H. K.; Chen, Y. H.; Zeng, H.; Yang, J. J.; Yang, X.; Lv, P. F.; Zhang, X. M.; Priimagi, A.; Wang, L. et al. Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem., Int. Ed. 2021, 60, 3390–3396.

    CAS  Google Scholar 

  10. Zhang, Z. M.; Cheng, L.; Zhao, J.; Zhang, H.; Zhao, X. Y.; Liu, Y. H.; Bai, R. X.; Pan, H.; Yu, W.; Yan, X. Z. Muscle-mimetic synergistic covalent and supramolecular polymers: Phototriggered formation leads to mechanical performance boost. J. Am. Chem. Soc. 2020, 143, 902–911.

    PubMed  Google Scholar 

  11. Zhang, W.; Wu, B. H.; Sun, S. T.; Wu, P. Y. Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat. Commun. 2021, 12, 4082.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Li, B.; Liu, J.; Lyu, F.; Deng, Z.; Yi, B.; Du, P.; Yao, X.; Zhu, G.; Xu, Z.; Lu, J. Mineral hydrogel from inorganic salts: Biocompatible synthesis, all-in-one charge storage, and possible implications in the origin of life. Adv. Funct. Mater. 2022, 32, 2109302.

    CAS  Google Scholar 

  13. Studart, A. R. Towards high-performance bioinspired composites. Adv. Mater. 2012, 24, 5024–5044.

    CAS  PubMed  Google Scholar 

  14. Wegst, U. G. K.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36.

    CAS  PubMed  ADS  Google Scholar 

  15. Yang, Y.; Sun, H.; Zhang, B.; Hu, L. L.; Xu, L.; Hao, J. C. Hydrogels totally from inorganic nanosheets and water with mechanical robustness, self-healing, controlled lubrication and anticorrosion. Nano Res. 2023, 16, 1533–1544.

    CAS  ADS  Google Scholar 

  16. Kang, H. Z.; Trondoli, A. C.; Zhu, G. Z.; Chen, Y.; Chang, Y. J.; Liu, H. P.; Huang, Y. F.; Zhang, X. L.; Tan, W. H. Near-infrared light-responsive core–shell nanogels for targeted drug delivery. ACS Nano 2011, 5, 5094–5099.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, Z. Y.; Shi, Y. L.; Zhu, A. L.; Zhao, Y. L.; Wang, H. Y.; Binks, B. P.; Wang, J. J. Light-responsive, reversible emulsification and demulsification of oil-in-water pickering emulsions for catalysis. Angew. Chem., Int. Ed. 2021, 60, 3928–3933.

    CAS  Google Scholar 

  18. Holá, K.; Sudolská, M.; Kalytchuk, S.; Nachtigallová, D.; Rogach, A. L.; Otyepka, M.; Zbořil, R. Graphitic nitrogen triggers red fluorescence in carbon dots. ACS Nano 2017, 11, 12402–12410.

    PubMed  Google Scholar 

  19. Worsley, K. A.; Kalinina, I.; Bekyarova, E.; Haddon, R. C. Functionalization and dissolution of nitric acid treated single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 18153–18158.

    CAS  PubMed  Google Scholar 

  20. Chiang, L. Y.; Upasani, R. B.; Swirczewski, J. W.; Soled, S. Evidence of hemiketals incorporated in the structure of fullerols derived from aqueous acid chemistry. J. Am. Chem. Soc. 1993, 115, 5453–5457.

    CAS  Google Scholar 

  21. Michot, L. J.; Bihannic, I.; Maddi, S.; Funari, S. S.; Baravian, C.; Levitz, P.; Davidson, P. Liquid-crystalline aqueous clay suspensions. Proc. Natl. Acad. Sci. USA 2006, 103, 16101–16104.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Nagai, N.; Ihara, K.; Itoi, A.; Kodaira, T.; Takashima, H.; Hakuta, Y.; Bando, K. K.; Itoh, N.; Mizukami, F. Fabrication of boehmite and Al2O3 nonwovens from boehmite nanofibres and their potential as the sorbent. J. Mater. Chem. 2012, 22, 21225–21231.

    CAS  Google Scholar 

  23. Mourad, M. C. D.; Byelov, D. V.; Petukhov, A. V.; Lekkerkerker, H. N. W. Structure of the repulsive gel/glass in suspensions of charged colloidal platelets. J. Phys.: Condens. Matter 2008, 20, 494201.

    Google Scholar 

  24. Zhang, J.; Wang, H. Q.; Li, X. Y.; Song, S. S.; Song, A. X.; Hao, J. C. Two gelation mechanisms of deoxycholate with inorganic additives: Hydrogen bonding and electrostatic interactions. J. Phys. Chem. B 2016, 120, 6812–6818.

    CAS  PubMed  Google Scholar 

  25. Ishida, Y.; Chabanne, L.; Antonietti, M.; Shalom, M. Morphology control and photocatalysis enhancement by the one-pot synthesis of carbon nitride from preorganized hydrogen-bonded supramolecular precursors. Langmuir 2014, 30, 447–451.

    CAS  PubMed  Google Scholar 

  26. Huang, H. Y.; Dong, Z. C.; Ren, X. Y.; Jia, B.; Li, G. W.; Zhou, S. W.; Zhao, X.; Wang, W. Z. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. Nano Res. 2023, 16, 3475–3515.

    ADS  Google Scholar 

  27. Wang, W. Z.; Jia, B.; Xu, H. R.; Li, Z. L.; Qiao, L. P.; Zhao, Y. R.; Huang, H. Y.; Zhao, X.; Guo, B. L. Multiple bonds crosslinked antibacterial, conductive and antioxidant hydrogel adhesives with high stretchability and rapid self-healing for MRSA infected motion skin wound healing. Chem. Eng. J. 2023, 468, 143362.

    CAS  Google Scholar 

  28. Zhao, X.; Liang, Y. P.; Huang, Y.; He, J. H.; Han, Y.; Guo, B. L. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv. Funct. Mater. 2020, 30, 1910748.

    CAS  Google Scholar 

  29. Thurmond, F. A.; Trotter, J. A. Morphology and biomechanics of the microfibrillar network of sea cucumber dermis. J. Exp. Biol. 1996, 199, 1817–1828.

    CAS  PubMed  Google Scholar 

  30. Motokawa, T.; Tsuchi, A. Dynamic mechanical properties of body-wall dermis in various mechanical states and their implications for the behavior of sea cucumbers. Biol. Bull. 2003, 205, 261–275.

    PubMed  Google Scholar 

  31. Chen, H.; Zhang, X. Y.; Shang, L.; Su, Z. Q. Programmable anisotropic hydrogels with localized photothermal/magnetic responsive properties. Adv. Sci. 2022, 9, 2202173.

    CAS  Google Scholar 

  32. Zhu, W.; Ma, X. Y.; Gou, M. L.; Mei, D. Q.; Zhang, K.; Chen, S. C. 3D printing of functional biomaterials for tissue engineering. Curr. Opin. Biotechnol. 2016, 40, 103–112.

    CAS  PubMed  Google Scholar 

  33. Martin, J. J.; Fiore, B. E.; Erb, R. M. Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat. Commun. 2015, 6, 8641.

    PubMed  ADS  Google Scholar 

  34. Geeves, M. A.; Holmes, K. C. The molecular mechanism of muscle contraction. Adv. Protein Chem. 2005, 71, 161–193.

    CAS  PubMed  Google Scholar 

  35. Behrmann, E.; Müller, M.; Penczek, P. A.; Mannherz, H. G.; Manstein, D. J.; Raunser, S. Structure of the rigor actin-tropomyosin-myosin complex. Cell 2012, 150, 327–338.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Park, B.; Shin, J. H.; Ok, J.; Park, S.; Jung, W.; Jeong, C.; Choy, S.; Jo, Y. J.; Kim, T. I. Cuticular pad-inspired selective frequency damper for nearly dynamic noise-free bioelectronics. Science 2022, 376, 624–629.

    CAS  PubMed  ADS  Google Scholar 

  37. Barth, F. G. A Spider’s World: Senses and Behavior; Springer: Berlin, 2002.

    Google Scholar 

  38. Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

    CAS  PubMed  ADS  Google Scholar 

  39. Lee, J.; Ihle, S. J.; Pellegrino, G. S.; Kim, H.; Yea, J.; Jeon, C. Y.; Son, H. C.; Jin, C.; Eberli, D.; Schmid, F. et al. Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron. 2021, 4, 291–301.

    CAS  Google Scholar 

  40. Yu, B.; Liu, Z. L.; Ma, C. B.; Sun, J. J.; Liu, W. M.; Zhou, F. Ionic liquid modified multi-walled carbon nanotubes as lubricant additive. Tribol. Int. 2015, 81, 38–42.

    CAS  Google Scholar 

  41. Bai, Y. Y.; Yu, Q. L.; Zhang, J. Y.; Cai, M. R.; Liang, Y. M.; Zhou, F.; Liu, W. M. Soft-nanocomposite lubricants of supramolecular gel with carbon nanotubes. J. Mater. Chem. A 2019, 7, 7654–7663.

    CAS  Google Scholar 

  42. Choi, H. J.; Lee, S. M.; Bae, D. H. Wear characteristic of aluminum-based composites containing multi-walled carbon nanotubes. Wear 2010, 270, 12–18.

    CAS  Google Scholar 

  43. Ru, Y. F.; Fang, R. C.; Gu, Z. D.; Jiang, L.; Liu, M. J. Reversibly thermosecreting organogels with switchable lubrication and anti-icing performance. Angew. Chem., Int. Ed. 2020, 59, 11876–11880.

    CAS  Google Scholar 

  44. Lin, P.; Zhang, R.; Wang, X. L.; Cai, M. R.; Yang, J.; Yu, B.; Zhou, F. Articular cartilage inspired bilayer tough hydrogel prepared by interfacial modulated polymerization showing excellent combination of high load-bearing and low friction performance. ACS Macro Lett. 2016, 5, 1191–1195.

    CAS  PubMed  Google Scholar 

  45. Wu, Y.; Wei, Q. B.; Cai, M. R.; Zhou, F. Interfacial friction control. Adv. Mater. Interfaces 2015, 2, 1400392.

    Google Scholar 

  46. He, J. H.; Shi, M. T.; Liang, Y. P.; Guo, B. L. Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chem. Eng. J. 2020, 394, 124888.

    CAS  Google Scholar 

  47. Wang, M.; Zhang, X. Z.; Chen, C. L.; Wen, Y.; Wen, Q. C.; Fu, Q.; Deng, H. Aramid-based aerogels for driving water evaporation through both photo-thermal and electro-thermal effects. J. Mater. Chem. A 2023, 11, 7711–7723.

    CAS  Google Scholar 

  48. Xiong, Z. C.; Zhu, Y. J.; Qin, D. D.; Chen, F. F.; Yang, R. L. Flexible fire-resistant photothermal paper comprising ultralong hydroxyapatite nanowires and carbon nanotubes for solar energy-driven water purification. Small 2018, 14, 1803387.

    Google Scholar 

  49. Yang, H.; Qi, D. P.; Liu, Z. Y.; Chandran, B. K.; Wang, T.; Yu, J. C.; Chen, X. D. Soft thermal sensor with mechanical adaptability. Adv. Mater. 2016, 28, 9175–9181.

    CAS  PubMed  Google Scholar 

  50. Wei, S. X.; Lu, W.; Shi, H. H.; Wu, S. S.; Le, X. X.; Yin, G. Q.; Liu, Q. Q.; Chen, T. Light-writing and projecting multicolor fluorescent hydrogels for on-demand information display. Adv. Mater. 2023, 35, 2300615.

    CAS  Google Scholar 

  51. Zhang, X. B.; Pint, C. L.; Lee, M. H.; Schubert, B. E.; Jamshidi, A.; Takei, K.; Ko, H.; Gillies, A.; Bardhan, R.; Urban, J. J. et al. Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites. Nano Lett. 2011, 11, 3239–3244.

    CAS  PubMed  ADS  Google Scholar 

  52. Li, C. X.; Mezzenga, R. Functionalization of multiwalled carbon nanotubes and their pH-responsive hydrogels with amyloid fibrils. Langmuir 2012, 28, 10142–10146.

    CAS  PubMed  Google Scholar 

  53. Gregg, A.; De Volder, M. F. L.; Baumberg, J. J. Light-actuated anisotropic microactuators from CNT/hydrogel nanocomposites. Adv. Opt. Mater. 2022, 10, 2200180.

    CAS  Google Scholar 

  54. Deng, Z. X.; Hu, T. L.; Lei, Q.; He, J. K.; Ma, P. X.; Guo, B. L. Stimuli-responsive conductive nanocomposite hydrogels with high stretchability, self-healing, adhesiveness, and 3D printability for human motion sensing. ACS Appl. Mater. Interfaces 2019, 11, 6796–6808.

    CAS  PubMed  Google Scholar 

  55. Vashist, A.; Kaushik, A.; Vashist, A.; Sagar, V.; Ghosal, A.; Gupta, Y. K.; Ahmad, S.; Nair, M. Advances in carbon nanotubes-hydrogel hybrids in nanomedicine for therapeutics. Adv. Healthcare Mater. 2018, 7, 1701213.

    Google Scholar 

  56. Li, H. J.; Liang, Y.; Gao, G. R.; Wei, S. X.; Jian, Y. K.; Le, X. X.; Lu, W.; Liu, Q. Q.; Zhang, J. W.; Chen, T. Asymmetric bilayer CNTs-elastomer/hydrogel composite as soft actuators with sensing performance. Chem. Eng. J. 2021, 415, 128988.

    CAS  Google Scholar 

  57. Deng, Z. X.; Guo, Y.; Zhao, X.; Ma, P. X.; Guo, B. L. Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host–guest interactions. Chem. Mater. 2018, 30, 1729–1742.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Hundred Talents Program of Chinese Academy of Sciences (No. E30247YB), Special Talents Program of Lanzhou Institute of Chemical Physics (No. E0SX0282), the National Natural Science Foundation of Shandong Province (No. ZR2022QB190), and the Innovative Research Funds of Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing (Nos. E1R06SXM07, E2R06SXM14).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingcheng Hao or Lu Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Yu, X., Hao, J. et al. pH- and near-infrared light-responsive, biomimetic hydrogels from aqueous dispersions of carbon nanotubes. Nano Res. 17, 3120–3129 (2024). https://doi.org/10.1007/s12274-023-6034-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6034-y

Keywords

Navigation