Skip to main content
Log in

Aligned carbon nanotubes for lithium-ion batteries: A review

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanoscale materials are gaining massive attention in recent years due to their potential to alleviate the present electrochemical electrode constraints. Possessing high conductivity (both thermally and electrically), high chemical and electrochemical stability, exceptional mechanical strength and flexibility, high specific surface area, large charge storage capacity, and excellent ion-adsorption, carbon nanotubes (CNTs) remain one of the most researched of other nanoscale materials for electrochemical energy storage. Rather than having them packed at random, CNTs perform better when packed/grown to order, vertically or horizontally aligned to a substrate. This study presents an overview of the impact of CNT alignment on the electrochemical performance of lithium-ion batteries (LIBs). The unique properties of vertically aligned CNTs (VACNTs) for LIB application were discussed. Furthermore, the mechanisms of charge storage and electrochemical performances in VACNT-based (pristine and composites) anodes and cathodes of LIBs were succinctly reviewed. In the end, the existing challenges and future directions in the field were also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hudak, N. S. Nanostructured electrode materials for lithium-ion batteries. In Lithium-ion Batteries; Pistoia, G., Ed.; Elsevier: Oxford, 2014; pp 57–82.

    Google Scholar 

  2. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

    CAS  Google Scholar 

  3. Pomerantseva, E.; Bonaccorso, F.; Feng, X. L.; Cui, Y.; Gogotsi, Y. Energy storage: The future enabled by nanomaterials. Science 2019, 366, eaan8285.

    CAS  Google Scholar 

  4. Baldwin, R. S.; Wu, J.; Bennett, W. Nanomaterials for advanced lithium-ion battery anodes. In Advanced Nanomaterials for Aerospace Applications; Cabrera, C. R.; Miranda, F., Eds.; Jenny Stanford Publishing: New York, 2014; pp 131–147.

    Google Scholar 

  5. Majdi, H. S.; Latipov, Z. A.; Borisov, V.; Yuryevna, N. O.; Kadhim, M. M.; Suksatan, W.; Khlewee, I. H.; Kianfar, E. Nano and battery anode: A review. Nanoscale Res. Lett. 2021, 16, 177.

    Google Scholar 

  6. Sun, Z. H.; Shu, M.; Li, J. B.; Liu, B.; Yao, H. Y.; Guan, S. W.; Sun, Z. H. Carbon nanotube-hyperbranched polymer core–shell nanowires with highly accessible redox-active sites for fast-charge organic lithium batteries. J. Energy Chem. 2023, 78, 30–36.

    CAS  Google Scholar 

  7. Darkwa, K. M.; Ampong, D. N.; Boamah, R.; Akromah, S.; Amedalor, R.; Agyei-Tuffour, B.; Dodoo-Arhin, D.; Goosen, N. J.; Gupta, R. K. Nanowires for electrochemical energy storage applications. Nanowires 2023, 113–134.

  8. Wang, G. X.; Shen, X. P.; Yao, J.; Park, J. Graphene nanosheets for enhanced lithium storage in lithiumion batteries. Carbon 2009, 47, 2049–2053.

    CAS  Google Scholar 

  9. Mo, R. W.; Tan, X. Y.; Li, F.; Tao, R.; Xu, J. H.; Kong, D. J.; Wang, Z. Y.; Xu, B.; Wang, X.; Wang, C. M. et al. Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities. Nat. Commun. 2020, 11, 1374.

    CAS  Google Scholar 

  10. Mu, Y. B.; Han, M. S.; Li, J. Y.; Liang, J. B.; Yu, J. Growing vertical graphene sheets on natural graphite for fast charging lithium-ion batteries. Carbon 2021, 173, 477–484.

    CAS  Google Scholar 

  11. Tian, M. Y.; Ben, L.; Jin, Z.; Ji, H. X.; Yu, H. L.; Zhao, W. W.; Huang, X. J. Excellent low-temperature electrochemical cycling of an anode consisting of Si nanoparticles seeded in Sn nanowires for lithium-ion batteries. Electrochim. Acta 2021, 396, 139224.

    CAS  Google Scholar 

  12. Nam, K. T.; Kim, D.; Yoo, P. J.; Chiang, C.; Meethong, N.; Hammond, P. T.; Chiang, Y.; Belcher, A. M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006, 80, 885–888.

    Google Scholar 

  13. Zhong, Y.; Deng, K.; Zheng, J.; Zhang, T. T.; Liu, P.; Lv, X. B.; Tian, W.; Ji, J. Y. One-step growth of the interconnected carbon nanotubes/graphene hybrids from cuttlebone-derived bi-functional catalyst for lithium-ion batteries. J. Mater. Sci. Technol. 2023, 149, 205–213.

    Google Scholar 

  14. Chen, T.; Liu, B. C.; Zheng, M. L.; Luo, Y. S. Suspensions based on LiFePO4/carbon nanotubes composites with three-dimensional conductive network for lithium-ion semi-solid flow batteries. J. Energy Storage 2023, 57, 106300.

    Google Scholar 

  15. Zhang, M. M.; Chen, J. Y.; Li, H.; Wang, C. R. Recent progress in Li-ion batteries with TiO2 nanotube anodes grown by electrochemical anodization. Rare Met. 2021, 40, 249–271.

    CAS  Google Scholar 

  16. Yin, H.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Li, C.; Huo, K. F.; Zhu, M. Q. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res. 2017, 10, 2156–2167.

    CAS  Google Scholar 

  17. Zhang, T.; Qiu, D. P.; Hou, Y. L. Free-standing and consecutive ZnSe@carbon nanofibers architectures as ultra-long lifespan anode for flexible lithium-ion batteries. Nano Energy. 2022, 94, 106909.

    CAS  Google Scholar 

  18. Yu, S. X.; Guo, B. B.; Zeng, T. B.; Qu, H. Q.; Yang, J. L.; Bai, J. M. Graphene-based lithium-ion battery anode materials manufactured by mechanochemical ball milling process: A review and perspective. Compos. Part B: Eng. 2022, 246, 110232.

    CAS  Google Scholar 

  19. Sun, X.; Yang, C. K.; Zhao, Y. J.; Li, Y.; Shang, Z. C.; Zhou, H. H.; Liu, W.; Luo, L.; Sun, X. M. Ultrathin aluminum nanosheets grown on carbon nanotubes for high performance lithium Ion batteries. Adv. Funct. Mater. 2022, 32, 2109112.

    CAS  Google Scholar 

  20. Chang, C. B.; Tsai, C. Y.; Chen, K. T.; Tuan, H. Y. Solution-grown phosphorus-hyperdoped silicon nanowires/carbon nanotube bilayer fabric as a high-performance lithium-ion battery anode. ACS Appl. Energy Mater. 2021, 4, 3160–3168.

    CAS  Google Scholar 

  21. Shi, J.; Jiang, X. S.; Ban, B. Y.; Li, J. W.; Chen, J. Carbon nanotubes-enhanced lithium storage capacity of recovered silicon/carbon anodes produced from solar-grade silicon kerf scrap. Electrochim. Acta 2021, 381, 138269.

    CAS  Google Scholar 

  22. Tian, F.; Nie, W.; Zhong, S. W.; Liu, X. L.; Tang, X. D.; Zhou, M. M.; Guo, Q. K.; Hu, S. Highly ordered carbon nanotubes to improve the conductivity of LiNi0.8Co0.15Al0.05O2 for Li-ion batteries. J. Mater. Sci. 2020, 55, 12082–12090.

    CAS  Google Scholar 

  23. Gupta, N.; Gupta, S. M.; Sharma, S. K. Carbon nanotubes: Synthesis, properties, and engineering applications. Carbon Lett. 2019, 29, 419–447.

    Google Scholar 

  24. Inoue, Y.; Hayashi, K.; Karita, M.; Nakano, T.; Shimamura, Y.; Shirasu, K.; Yamamoto, G.; Hashida, T. Study on the mechanical and electrical properties of twisted CNT yarns fabricated from CNTs with various diameters. Carbon 2021, 176, 400–410.

    CAS  Google Scholar 

  25. Okwundu, O. S.; Aniekwe, E. U.; Nwanno, C. E. Unlimited potentials of carbon: Different structures and uses (a review). Metall. Mater. Eng. 2018, 24, 145–171.

    Google Scholar 

  26. Hsia, B.; Marschewski, J.; Wang, S.; In, J. B.; Carraro, C.; Poulikakos, D.; Grigoropoulos, C. P.; Maboudian, R. Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes. Nanotechnology 2014, 25, 055401.

    CAS  Google Scholar 

  27. Reit, R.; Nguyen, J.; Ready, W. J. Growth time performance dependence of vertically aligned carbon nanotube supercapacitors grown on aluminum substrates. Electrochim. Acta. 2013, 91, 96–100.

    CAS  Google Scholar 

  28. Wang, X. H.; Sun, L. M.; Susantyoko, R. A.; Fan, Y.; Zhang, Q. Ultrahigh volumetric capacity lithium ion battery anodes with CNT-Si film. Nano Energy 2014, 8, 71–77.

    CAS  Google Scholar 

  29. Sun, L. M.; Wang, X. H.; Wang, Y. R.; Zhang, Q. Roles of carbon nanotubes in novel energy storage devices. Carbon 2017, 122, 462–474.

    CAS  Google Scholar 

  30. Huang, S.; Du, X. F.; Ma, M. B.; Xiong, L. L. Recent progress in the synthesis and applications of vertically aligned carbon nanotube materials. Nanotechnol. Rev. 2021, 10, 1592–1623.

    CAS  Google Scholar 

  31. Sharma, P.; Pavelyev, V.; Kumar, S.; Mishra, P.; Islam, S. S.; Tripathi, N. Analysis on the synthesis of vertically aligned carbon nanotubes: Growth mechanism and techniques. J. Mater. Sci. Mater. Electr. 2020, 31, 4399–4443.

    CAS  Google Scholar 

  32. Abdollahi, A.; Abnavi, A.; Ghasemi, S.; Mohajerzadeh, S.; Sanaee, Z. Flexible free-standing vertically aligned carbon nanotube on activated reduced graphene oxide paper as a high performance lithium ion battery anode and supercapacitor. Electrochim. Acta. 2019, 320, 134598.

    CAS  Google Scholar 

  33. Welna, D. T.; Qu, L. T.; Taylor, B. E.; Dai, L. M.; Durstock, M. F. Vertically aligned carbon nanotube electrodes for lithium-ion batteries. J. Power Sources 2011, 196, 1455–1460.

    CAS  Google Scholar 

  34. Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 2006, 5, 987–994.

    CAS  Google Scholar 

  35. Honda, Y.; Haramoto, T.; Takeshige, M.; Shiozaki, H.; Kitamura, T.; Ishikawa, M. Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance. Electrochem. Solid-State Lett. 2007, 10, A106–A110.

    CAS  Google Scholar 

  36. Ngo, T. D. Introduction to composite materials. In Composite and Nanocomposite Materials - From Knowledge to Industrial Applications; Ngo, T. D., Ed.; IntechOpen 2020

  37. Kasavajjula, U.; Wang, C. S.; Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163, 1003–1039.

    CAS  Google Scholar 

  38. Wang, W.; Epur, R.; Kumta, P. N. Vertically aligned silicon/carbon nanotube (VASCNT) arrays: Hierarchical anodes for lithium-ion battery. Electrochem. Commun. 2011, 13, 429–432.

    CAS  Google Scholar 

  39. Li, S. S.; Luo, Y. H.; Lv, W.; Yu, W. J.; Wu, S. D.; Hou, P. X.; Yang, Q. H.; Meng, Q. B.; Liu, C.; Cheng, H. M. Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells. Adv. Energy Mater. 2011, 1, 486–490.

    CAS  Google Scholar 

  40. Jiang, H. F.; Wei, Z. X.; Cai, X. Y.; Lai, L. F.; Ma, J. M.; Huang, W. A cathode for Li-ion batteries made of vanadium oxide on vertically aligned carbon nanotube arrays/graphene foam. Chem. Eng. J. 2019, 359, 1668–1676.

    CAS  Google Scholar 

  41. Dörfler, S.; Hagen, M.; Althues, H.; Tübke, J.; Kaskel, S.; Hoffmann, M. J. High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium-sulfur batteries. Chem. Commun. 2012, 48, 4097–4099.

    Google Scholar 

  42. Li, X. L.; Zhang, J. X.; Qi, G. C.; Cheng, J. L.; Wang, B. Vertically aligned N-doped carbon nanotubes arrays as efficient binder-free catalysts for flexible Li-CO2 batteries. Energy Storage Mater. 2021, 35, 148–156.

    Google Scholar 

  43. Abdollahi, A.; Abnavi, A.; Ghasemi, F.; Ghasemi, S.; Sanaee, Z.; Mohajerzadeh, S. Facile synthesis and simulation of MnO2 nanoflakes on vertically aligned carbon nanotubes, as a high-performance electrode for Li-ion battery and supercapacitor. Electrochim. Acta. 2021, 390, 138826.

    CAS  Google Scholar 

  44. Zou, Q. M.; Deng, L. M.; Li, D. W.; Zhou, Y. S.; Golgir, H. R.; Keramatnejad, K.; Fan, L. S.; Jiang, L.; Silvain, J. F.; Lu, Y. F. Thermally stable and electrically conductive, vertically aligned carbon nanotube/silicon infiltrated composite structures for high-temperature electrodes. ACS Appl. Mater. Interfaces 2017, 9, 37340–37349.

    CAS  Google Scholar 

  45. Hahm, M. G.; Hashim, D. P.; Vajtai, R.; Ajayan, P. M. A review: Controlled synthesis of vertically aligned carbon nanotubes. Carbon Lett. 2011, 12, 185–193.

    Google Scholar 

  46. Liu, Q. X.; Shi, X. F.; Jiang, Q. Y.; Li, R.; Zhong, S.; Zhang, R. F. Growth mechanism and kinetics of vertically aligned carbon nanotube arrays. EcoMat. 2021, 3, e12118.

    CAS  Google Scholar 

  47. Gangele, A.; Sharma, C. S.; Pandey, A. K. Synthesis of patterned vertically aligned carbon nanotubes by PECVD using different growth techniques: A review. J. Nanosci. Nanotechnol. 2017, 17, 2256–2273.

    CAS  Google Scholar 

  48. Shi, W. B.; Plata, D. L. Vertically aligned carbon nanotubes: Production and applications for environmental sustainability. Green Chem. 2018, 20, 5245–5260.

    CAS  Google Scholar 

  49. Wang, X.; Wang, T. Y.; Borovilas, J.; He, X. D.; Du, S. Y.; Yang, Y. Vertically-aligned nanostructures for electrochemical energy storage. Nano Res. 2019, 12, 2002–2017.

    Google Scholar 

  50. Zhang, Q.; Huang, J. Q.; Zhao, M. Q.; Qian, W. Z.; Wei, F. Carbon nanotube mass production: Principles and processes. ChemSusChem 2011, 4, 864–889.

    CAS  Google Scholar 

  51. Schmid, G. Nanoparticles: From Theory to Application; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2003

    Google Scholar 

  52. Su, F. B.; Zhao, X. S.; Wang, Y.; Zeng, J. H.; Zhou, Z. C.; Lee, J. Y. Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications. J. Phys. Chem. B. 2005, 109, 20200–20206.

    CAS  Google Scholar 

  53. Tomar, R.; Abdala, A. A.; Chaudhary, R. G.; Singh, N. B. Photocatalytic degradation of dyes by nanomaterials. Mater. Today Proc. 2020, 29, 967–973.

    CAS  Google Scholar 

  54. Leslie-Pelecky, D. L.; Rieke, R. D. Magnetic properties of nanostructured materials. Chem. Mater. 1996, 8, 1770–1783.

    CAS  Google Scholar 

  55. Krishnan, S. K.; Singh, E.; Singh, P.; Meyyappan, M.; Nalwa, H. S. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 2019, 9, 8778–8881.

    CAS  Google Scholar 

  56. Geoffrion, L. D.; Guisbiers, G. Quantum confinement: Size on the grill! J. Phys. Chem. Solids 2020, 140, 109320.

    CAS  Google Scholar 

  57. Wu, Q.; Miao, W. S.; Zhang, Y. D.; Gao, H. J.; Hui, D. Mechanical properties of nanomaterials: A review. Nanotechnol. Rev. 2020, 9, 259–273.

    CAS  Google Scholar 

  58. Lai, C. M.; Lia, L. Y.; Luo, B. Y.; Shen, J. W.; Shao, J. W. Current advances and prospects in carbon nanomaterials-based drug deliver systems for cancer therapy. Curr. Med. Chem. 2023, 30, 2710–2733.

    CAS  Google Scholar 

  59. Khorsandi, Z.; Borjian-Boroujeni, M.; Yekani, R.; Varma, R. S. Carbon nanomaterials with chitosan: A winning combination for drug delivery systems. J. Drug Deliv. Sci. Technol. 2021, 66, 102847.

    CAS  Google Scholar 

  60. Li, Z.; Xu, K.; Qin, L. L.; Zhao, D. C.; Yang, N. L.; Wang, D.; Yang, Y. Hollow nanomaterials in advanced drug delivery systems: From single-to multiple shells. Adv. Mater. 2022, 35, 2203890.

    Google Scholar 

  61. Alipour, A.; Gholami, A.; Kalashgrani, Y. Nano protein and peptides for drug delivery and anticancer agents. J. Adv. Appl. NanoBio-Technol. 2022, 3, 60–64.

    CAS  Google Scholar 

  62. Zhang, Q. F.; Uchaker, E.; Candelaria, S. L.; Cao, G. Z. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127–3171.

    CAS  Google Scholar 

  63. Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 2012, 6, 1522–1531.

    CAS  Google Scholar 

  64. Manthiram, A.; Murugan, A. V.; Sarkar, A.; Muraliganth, T. Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 2008, 1, 621–638.

    CAS  Google Scholar 

  65. Gan, Z. H.; Yin, J. Y.; Xu, X.; Cheng, Y. H.; Yu, T. Nanostructure and advanced energy storage: Elaborate material designs lead to high-rate pseudocapacitive ion storage. ACS Nano. 2022, 16, 5131–5152.

    CAS  Google Scholar 

  66. Chen, J. M.; Lin, Y. P.; Wang, H.; Li, J. M.; Liu, S. J.; Lee, J.-M.; Zhao, Q. 2D molybdenum compounds for electrocatalytic energy conversion. Adv. Funct. Mater. 2023, 33, 2210236.

    CAS  Google Scholar 

  67. Shahid, M.; Javed, H. M. A.; Ahmad, M. I.; Qureshi, A. A.; Khan, M. I.; Alnuwaiser, M. A.; Ahmed, A.; Khan, M. A.; Tag-ElDin, E. S. M.; Shahid, A. et al. A brief assessment on recent developments in efficient electrocatalytic nitrogen reduction with 2D non-metallic nanomaterials. Nanomaterials (Basel) 2022, 12, 3413.

    CAS  Google Scholar 

  68. Li, Z. J.; Zhai, L.; Ge, Y. Y.; Huang, Z. Q.; Shi, Z. Y.; Liu, J. W.; Zhai, W.; Liang, J. Z.; Zhang, H. Wet-chemical synthesis of two-dimensional metal nanomaterials for electrocatalysis. Natl. Sci. Rev. 2022, 9, nwab142.

    CAS  Google Scholar 

  69. Liu, Y. Y.; Wang, Y. H.; Zhao, S. L.; Tang, Z. Y. Metal-organic framework-based nanomaterials for electrocatalytic oxygen evolution. Small Methods 2022, 6, 2200773.

    CAS  Google Scholar 

  70. Eivazzadeh-Keihan, R.; Noruzi, E. B.; Chidar, E.; Jafari, M.; Davoodi, F.; Kashtiaray, A.; Gorab, M. G.; Hashemi, S. M.; Javanshir, S.; Cohan, R. A. et al. Applications of carbon-based conductive nanomaterials in biosensors. Chem. Eng. J. 2022, 442, 136183.

    CAS  Google Scholar 

  71. Song, F. X.; Xu, X. J.; Ding, H. Z.; Yu, L.; Huang, H. C.; Hao, J. T.; Wu, C. H.; Liang, R.; Zhang, S. H. Recent progress in nanomaterial-based biosensors and theranostic nanomedicine for bladder cancer. Biosensors (Basel) 2023, 13, 106.

    CAS  Google Scholar 

  72. Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for biosensing applications: A review. Front. Chem. 2014, 2, 63.

    Google Scholar 

  73. Yang, G. H.; Liu, F. L.; Zhao, J. Y.; Fu, L. J.; Gu, Y. Q.; Qu, L. L.; Zhu, C. Z.; Zhu, J. J.; Lin, Y. H. MXenes-based nanomaterials for biosensing and biomedicine. Coord. Chem. Rev. 2023, 479, 215002.

    CAS  Google Scholar 

  74. Shahid-Ul-Islam; Bairagi, S.; Kamali, M. R. Review on green biomass-synthesized metallic nanoparticles and composites and their photocatalytic water purification applications: Progress and perspectives. Chem. Eng. J. Adv. 2023, 14, 100460.

    CAS  Google Scholar 

  75. Yu, S. J.; Tang, H.; Zhang, D.; Wang, S. Q.; Qiu, M. Q.; Song, G.; Fu, D.; Hu, B. W.; Wang, X. K. MXenes as emerging nanomaterials in water purification and environmental remediation. Sci. Total Environ. 2022, 811, 152280.

    CAS  Google Scholar 

  76. Singh, K. K.; Singh, A.; Rai, S. A study on nanomaterials for water purification. Mater. Today Proc. 2022, 51, 1157–1163.

    CAS  Google Scholar 

  77. Savage, N.; Diallo, M. S. Nanomaterials and water purification: Opportunities and challenges. J. Nanopart. Res. 2005, 7, 331–342.

    CAS  Google Scholar 

  78. Rahman, M. A.; Song, G. S.; Bhatt, A. I.; Wong, Y. C.; Wen, C. E. Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 647–678.

    CAS  Google Scholar 

  79. Ge, M. Z.; Cao, C. Y.; Biesold, G. M.; Sewell, C. D.; Hao, S. M.; Huang, J. Y.; Zhang, W.; Lai, Y. K.; Lin, Z. Q. Recent advances in silicon-based electrodes: From fundamental research toward practical applications. Adv. Mater. 2021, 33, 2004577.

    CAS  Google Scholar 

  80. Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429.

    CAS  Google Scholar 

  81. Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887.

    CAS  Google Scholar 

  82. Jiao, F.; Bruce, P. G. Mesoporous crystalline β-MnO2-A reversible positive electrode for rechargeable lithium batteries. Adv. Mater. 2007, 19, 657–660.

    CAS  Google Scholar 

  83. Kukovecz, Á.; Kozma, G.; Konya, Z. Multi-walled carbon nanotubes. In Springer Handbook of Nanomaterials; Vajtai, R., Ed.; Springer: Berlin Heidelberg, 2013; pp. 147–188.

    Google Scholar 

  84. Zhu, S.; Sheng, J.; Chen, Y.; Ni, J. F.; Li, Y. Carbon nanotubes for flexible batteries: Recent progress and future perspective. Natl. Sci. Rev. 2021, 8, nwaa261.

    CAS  Google Scholar 

  85. Tîlmaciu, C. M.; Morris, M. C. Carbon nanotube biosensors. Front. Chem. 2015, 3, 59.

    Google Scholar 

  86. Thostenson, E. T.; Ren, Z. F.; Chou, T. W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912.

    CAS  Google Scholar 

  87. Lin, C. T.; Lee, C. Y.; Chin, T. S.; Xiang, R.; Ishikawa, K.; Shiomi, J.; Maruyama, S. Anisotropic electrical conduction of vertically-aligned single-walled carbon nanotube films. Carbon 2011, 49, 1446–1452.

    CAS  Google Scholar 

  88. Ganesh, E. N. Single walled and multi walled carbon nanotube structure, synthesis and applications. Int. J. Innov. Technol. Explor. Eng. 2013, 2, 311–320.

    Google Scholar 

  89. Devi, R.; Gill, S. S. A squared bossed diaphragm piezoresistive pressure sensor based on CNTs for low pressure range with enhanced sensitivity. Microsyst. Technol. 2021, 27, 3225–3233.

    CAS  Google Scholar 

  90. Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A. Carbon nanotubes—The route toward applications. Science 2002, 297, 787–792.

    CAS  Google Scholar 

  91. Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube-polymer composites: Chemistry, processing, mechanical, and electrical properties. Prog. Polym. Sci. 2010, 35, 357–401.

    CAS  Google Scholar 

  92. Collins, P. G.; Avouris, P. The electronic properties of carbon nanotubes. Contemp. Concep. Conden. Matt. Sci. 2008, 3, 49–81.

    Google Scholar 

  93. Flygare, M.; Svensson, K. Influence of crystallinity on the electrical conductivity of individual carbon nanotubes. Carbon Trends. 2021, 5, 100125.

    CAS  Google Scholar 

  94. Collins, P. G.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706–709.

    CAS  Google Scholar 

  95. Das, S. A review on Carbon Nano-tubes—A new era of nanotechnology. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 774–783.

    Google Scholar 

  96. Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680.

    CAS  Google Scholar 

  97. Goudah, G.; Suliman, S. M. A.; Elfaki, E. A. Carbon nanotubes: Challenges and opportunities. In 2013 International Conference on Computing, Electrical, and Electronic Engineering (ICCEEE), Khartoum, Sudan, 2013, pp 74–81.

  98. Abdalla, M.; Dean, D.; Theodore, M.; Fielding, J.; Nyairo, E.; Price, G. Magnetically processed carbon nanotube/epoxy nanocomposites: Morphology, thermal, and mechanical properties. Polymer 2010, 51, 1614–1620.

    CAS  Google Scholar 

  99. Lan, Y. C.; Wang, Y.; Ren, Z. F. Physics and applications of aligned carbon nanotubes. Adv. Phys. 2011, 60, 553–678.

    CAS  Google Scholar 

  100. Yu, M. F.; Files, B. S.; Arepalli, S.; Ruoff, R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000, 84, 5552–5555.

    CAS  Google Scholar 

  101. Ruoff, R. S.; Tersoff, J.; Lorents, D. C.; Subramoney, S.; Chan, B. Radial deformation of carbon nanotubes by van der Waals forces. Nature 1993, 364, 514–516.

    CAS  Google Scholar 

  102. Pothnis, J. R.; Kalyanasundaram, D.; Gururaja, S. Enhancement of open hole tensile strength via alignment of carbon nanotubes infused in glass fiber-epoxy-CNT multi-scale composites. Compos. Part A: Appl. Sci. Manuf. 2021, 140, 106155.

    CAS  Google Scholar 

  103. Chen, S.; Tao, K. J.; Chen, X.; Meng, Y. Q.; Wang, M. Y.; Zhou, J.; Chen, C.; Wang, Y. L.; Hui, K. N.; Bielawski, C. W. et al. Regulating lithium plating and stripping by using vertically aligned graphene/CNT channels decorated with ZnO particles. Chem.Eur. J. 2021, 27, 15706–15715.

    CAS  Google Scholar 

  104. Sun, X. M.; Chen, T.; Yang, Z. B.; Peng, H. S. The alignment of carbon nanotubes: An effective route to extend their excellent properties to macroscopic scale. Acc. Chem. Res. 2013, 46, 539–549.

    CAS  Google Scholar 

  105. Zhang, H.; Cao, G. P.; Yang, Y. S.; Gu, Z. N. Comparison between electrochemical properties of aligned carbon nanotube array and entangled carbon nanotube electrodes. J. Electrochem. Soc. 2008, 155, K19–K22.

    CAS  Google Scholar 

  106. Rahman, R.; Servati, P. Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films. Nanotechnology 2012, 23, 055703.

    Google Scholar 

  107. Thostenson, E. T.; Chou, T. W. Aligned multi-walled carbon nanotube-reinforced composites: Processing and mechanical characterization. J. Phys. D Appl. Phys. 2002, 35, L77–L80.

    CAS  Google Scholar 

  108. Mei, H.; Bai, Q. L.; Dassios, K.; Li, H. Q.; Cheng, L. F.; Galiotis, C. Morphological and microstructural property comparison of bulk and aligned Cvd-grown carbon nanotubes. Adv. Compos. Lett. 2014, 23, 10.1177/096369351402300101.

    Google Scholar 

  109. Chen, J. J. Effects of structure, purity, and alignment on the heat conduction properties of a nanostructured material comprising carbon nanotubes. DYSONA Appl. Sci. 2022, 3, 46–55.

    Google Scholar 

  110. Cao, Q.; Hur, S. H.; Zhu, Z. T.; Sun, Y. G.; Wang, C. J.; Meitl, M. A.; Shim, M.; Rogers, J. A. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv. Mater. 2006, 18, 304–309.

    CAS  Google Scholar 

  111. Ishikawa, F. N.; Chang, H. K.; Ryu, K.; Chen, P. C.; Badmaev, A.; De Arco, L. G.; Shen, G. Z.; Zhou, C. W. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 2009, 3, 73–79.

    CAS  Google Scholar 

  112. Seah, C. M.; Chai, S. P.; Mohamed, A. R. Synthesis of aligned carbon nanotubes. Carbon 2011, 49, 4613–4635.

    CAS  Google Scholar 

  113. Zhang, M.; Atkinson, K. R.; Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 2004, 306, 1358–1361.

    CAS  Google Scholar 

  114. Liu, K.; Sun, Y. H.; Chen, L.; Feng, C.; Feng, X. F.; Jiang, K. L.; Zhao, Y. G.; Fan, S. S. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 2008, 8, 700–705.

    CAS  Google Scholar 

  115. Goh, P. S.; Ismail, A. F.; Ng, B. C. Directional alignment of carbon nanotubes in polymer matrices: Contemporary approaches and future advances. Compos. Part A: Appl. Sci. Manuf. 2014, 56, 103–126.

    CAS  Google Scholar 

  116. Goh, G. L.; Agarwala, S.; Yeong, W. Y. Directed and on-demand alignment of carbon nanotube: A review toward 3D printing of electronics. Adv. Mater. Interfaces 2019, 6, 1801318.

    Google Scholar 

  117. Ma, Y. F.; Wang, B.; Wu, Y. P.; Huang, Y.; Chen, Y. S. The production of horizontally aligned single-walled carbon nanotubes. Carbon 2011, 49, 4098–4110.

    CAS  Google Scholar 

  118. Azam, M. A.; Manaf, N. S. A.; Talib, E.; Bistamam, M. S. A. Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: A review. Ionics 2013, 19, 1455–1476.

    CAS  Google Scholar 

  119. Zhang, R. F.; Zhang, Y. Y.; Wei, F. Horizontally aligned carbon nanotube arrays: Growth mechanism, controlled synthesis, characterization, properties, and applications. Chem. Soc. Rev. 2017, 46, 3661–3715.

    CAS  Google Scholar 

  120. Yin, Z. F.; Ding, A.; Zhang, H.; Zhang, W. The relevant approaches for aligning carbon nanotubes. Micromachines (Basel) 2022, 13, 1863.

    Google Scholar 

  121. Cao, Y. F.; Zhou, T.; Wu, K. J.; Yong, Z. Z.; Zhang, Y. Y. Aligned carbon nanotube fibers for fiber-shaped solar cells, supercapacitors, and batteries. RSC Adv. 2021, 11, 6628–6643.

    CAS  Google Scholar 

  122. Kohls, A.; Ditty, M. M.; Dehghandehnavi, F.; Zheng, S. Y. Vertically aligned carbon nanotubes as a unique material for biomedical applications. ACS Appl. Mater. Interfaces 2022, 14, 6287–6306.

    CAS  Google Scholar 

  123. Mizuno, K.; Ishii, J.; Kishida, H.; Hayamizu, Y.; Yasuda, S.; Futaba, D. N.; Yumura, M.; Hata, K. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 2009, 106, 6044–6047.

    CAS  Google Scholar 

  124. Paul, S. J.; Elizabeth, I.; Gupta, B. K. Ultrasensitive wearable strain sensors based on a VACNT/PDMS thin film for a wide range of human motion monitoring. ACS Appl. Mater. Interfaces 2021, 13, 8871–8879.

    CAS  Google Scholar 

  125. Ertl, G. Press Release, Nobel Prize, Chemie 2019. Nobel Lect. Chem. 2015, 37–69.

  126. Winter, M.; Barnett, B.; Xu, K. Before Li Ion batteries. Chem. Rev. 2018, 118, 11433–11456.

    CAS  Google Scholar 

  127. Mezei, F. 2011. Basics concepts. In Neutrons in Soft Matter; Imae, T.; Kanaya, T.; Furusaka, M.; Torikai, N., Eds.; John Wiley & Sons, Inc.: Hoboken, 2011; pp 1–28.

    Google Scholar 

  128. Doeff, M. M. Batteries: Overview of Battery Cathodes. Lawrence Berkeley National Laboratory: Berkeley., 2014: 709–739.

    Google Scholar 

  129. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    CAS  Google Scholar 

  130. De Las Casas, C.; Li, W. Z. A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 2012, 208, 74–85.

    CAS  Google Scholar 

  131. Lee, S. H.; Yu, S. H.; Lee, J. E.; Jin, A. H.; Lee, D. J.; Lee, N.; Jo, H.; Shin, K.; Ahn, T. Y.; Kim, Y. W. et al. Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement. Nano Lett. 2013, 13, 4249–4256.

    CAS  Google Scholar 

  132. Wang, H. L.; Cui, L. F.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978–13980.a.

    CAS  Google Scholar 

  133. Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, E170–E192.

    CAS  Google Scholar 

  134. Su, J.; Gao, Z. G.; Xie, Y. Y.; Zhang, Z. L.; Wang, H. Boosting Li-storage properties of conversion-type anodes for lithium-ion batteries via steric effect of intercalation-type materials: A case of MnCO3. Compos. Part B: Eng. 2021, 212, 108733.

    CAS  Google Scholar 

  135. Lee, S.; Song, M.; Kim, S.; Mathew, V.; Sambandam, B.; Hwang, J. Y.; Kim, J. High lithium storage properties in a manganese sulfide anodeviaan intercalation-cum-conversion reaction. J. Mater. Chem. A 2020, 8, 17537–17549.

    CAS  Google Scholar 

  136. Tagbo, P. C.; Okaro, C. A.; Ugwuoke, C. O.; Obetta, H. U.; Okwundu, O. S.; Ezugwu, S.; Ezema, F. I. Zinc anode in hydrodynamically enhanced aqueous battery systems. In Electrode Materials for Energy Storage and Conversion; Kebede, M. A.; Ezema, F. I., Eds.; CRC Press: Boca Raton, 2021; pp 47–70.

    Google Scholar 

  137. Yu, S. H.; Feng, X. R.; Zhang, N.; Seok, J.; Abruña, H. D. Understanding conversion-type electrodes for lithium rechargeable batteries. Acc. Chem. Res. 2018, 51, 273–281.

    CAS  Google Scholar 

  138. Wang, F.; Robert, R.; Chernova, N. A.; Pereira, N.; Omenya, F.; Badway, F.; Hua, X.; Ruotolo, M.; Zhang, R. G.; Wu, L. J. et al. Conversion reaction mechanisms in lithium ion batteries: Study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 2011, 133, 18828–18836.

    CAS  Google Scholar 

  139. Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.

    CAS  Google Scholar 

  140. Goward, G. R.; Taylor, N. J.; Souza, D. C. S.; Nazar, L. F. The true crystal structure of Li17M4 (M = Ge, Sn, Pb)-revised from Li22M5. J. Alloys Compd. 2001, 329, 82–91.

    CAS  Google Scholar 

  141. Garcia, A.; Biswas, S.; McNulty, D.; Roy, A.; Raha, S.; Trabesinger, S.; Nicolosi, V.; Singha, A.; Holmes, J. D. One-step grown carbonaceous germanium nanowires and their application as highly efficient lithium-ion battery anodes. ACS Appl. Energy Mater. 2022, 5, 1922–1932.

    CAS  Google Scholar 

  142. Chan, C. K.; Patel, R. N.; O’Connell, M. J.; Korgel, B. A.; Cui, Y. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 2010, 4, 1443–1450.

    CAS  Google Scholar 

  143. Wang, F.; Li, P.; Li, W.; Wang, D. H. Electrochemical synthesis of multidimensional nanostructured silicon as a negative electrode material for lithium-ion battery. ACS Nano 2022, 16, 4689–7700.

    Google Scholar 

  144. Gavrilin, I. M.; Kudryashova, Y. O.; Kuz’mina, A. A.; Kulova, T. L.; Skundin, A. M.; Emets, V. V.; Volkov, R. L.; Dronov, A. A.; Borgardt, N. I.; Gavrilov, S. A. High-rate and low-temperature performance of germanium nanowires anode for lithium-ion batteries. J. Electroanal. Chem. 2021, 888, 115209.

    CAS  Google Scholar 

  145. Yang, Z. X.; Dong, Y. J.; Liu, C.; Feng, X. Q.; Jin, H. C.; Ma, X. H.; Ding, F.; Li, B. Q.; Bai, L. Y.; Ouyang, Y. G. et al. Design and synthesis of high-silicon silicon suboxide nanowires by radio-frequency thermal plasma for high-performance lithium-ion battery anodes. Appl. Surf. Sci. 2023, 614, 156235.

    CAS  Google Scholar 

  146. Gao, S. S.; Zhao, T. Y.; Wang, D. X.; Huang, J.; Xiang, Y. L.; Yu, Y. J. Ge nanowires on top of a Ge substrate for applications in anodes of Li and Na ion batteries: A first-principles study. RSC Adv. 2022, 12, 9163–9169.

    CAS  Google Scholar 

  147. Chandran, K. S. R. A critical review of silicon nanowire electrodes and their energy storage capacities in Li-ion cells. RSC Adv. 2023, 13, 3947–3957.

    Google Scholar 

  148. Zheng, X.; Miao, X.; Xiao, Y. F.; Chen, Y.; Hu, T.; Gong, X. H.; Wu, C. G.; Wang, G. J.; Hou, Y. J. Synthesis and electrochemical performance of Ag nanowires coating tungsten diselenide as efficient nanocomposite for lithium-ion storage. Mater. Lett. 2023, 336, 133820.

    CAS  Google Scholar 

  149. Rashad, M.; Geaney, H. Vapor-solid-solid growth of silicon nanowires using magnesium seeds and their electrochemical performance in Li-ion battery anodes. Chem. Eng. J. 2023, 452, 139397.

    CAS  Google Scholar 

  150. Wen, Z. H.; Lu, G. H.; Mao, S.; Kim, H.; Cui, S. M.; Yu, K. H.; Huang, X. K.; Hurley, P. T.; Mao, O.; Chen, J. H. Silicon nanotube anode for lithium-ion batteries. Electrochem. Commun. 2013, 9, 67–70.

    Google Scholar 

  151. Song, T.; Xia, J. L.; Lee, J. H.; Lee, D. H.; Kwon, M. S.; Choi, J. M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I. et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 2010, 10, 1710–1716.

    CAS  Google Scholar 

  152. Guo, T.; Luo, G. Y.; Shi, C. Y.; Shi, H. L.; Shi, Z. X.; He, B. F.; Chen, J. B. Thermal burst synthesis of high-performance Si nanotube sheets for lithium-ion batteries. ACS Sustainable Chem. Eng. 2022, 10, 4031–4039.

    CAS  Google Scholar 

  153. Kim, J. H.; Kim, S.; Han, J. H.; Seo, S. B.; Choi, Y. R.; Lim, J.; Kim, Y. A. Perspective on carbon nanotubes as conducting agent in lithium-ion batteries: The status and future challenges. Carbon Lett. 2023, 33, 325–333.

    Google Scholar 

  154. Yang, X. X.; Wu, L. W.; Hou, J.; Meng, B. Y.; Ali, R.; Liu, Y. F.; Jian, X. Symmetrical growth of carbon nanotube arrays on FeSiAl micro-flake for enhancement of lithium-ion battery capacity. Carbon 2022, 189, 93–103.

    CAS  Google Scholar 

  155. Zhong, S. Y.; Liu, H. Z.; Wei, D. H.; Hu, J.; Zhang, H.; Hou, H. S.; Peng, M. X.; Zhang, G. H.; Duan, H. G. Long-aspect-ratio N-rich carbon nanotubes as anode material for sodium and lithium ion batteries. Chem. Eng. J. 2020, 395, 125054.

    CAS  Google Scholar 

  156. Moyer-Vanderburgh, K.; Ma, M. C.; Park, S. J.; Jue, M. L.; Buchsbaum, S. F.; Wu, K. J.; Wood, M.; Ye, J. C.; Fornasiero, F. Growth and performance of high-quality SWCNT forests on Inconel foils as lithium-ion battery anodes. ACS Appl. Mater. Interfaces 2022, 14, 54981–54991.

    CAS  Google Scholar 

  157. Chen, H. Y.; Li, M. X.; Li, C. P.; Li, X.; Wu, Y. L.; Chen, X. C.; Wu, J. X.; Li, X. Y.; Chen, Y. M. Electrospun carbon nanofibers for lithium metal anodes: Progress and perspectives. Chin. Chem. Lett. 2022, 33, 141–152.

    CAS  Google Scholar 

  158. Zhao, Y.; Yan, J. H.; Yu, J. Y.; Ding, B. Electrospun nanofiber electrodes for lithium-ion batteries. Macromol. Rapid Commun. 2022, 44, 2200740.

    Google Scholar 

  159. Xin, Y.; Mou, H. Y.; Miao, C.; Nie, S. Q.; Wen, M. Y.; He, G. W.; Xiao, W. Encapsulating Sn-Cu alloy particles into carbon nanofibers as improved performance anodes for lithium-ion batteries. J. Alloys Compd. 2022, 922, 166176.

    CAS  Google Scholar 

  160. Culebras, M.; Collins, G. A.; Beaucamp, A.; Geaney, H.; Collins, M. N. Lignin/Si hybrid carbon nanofibers towards highly efficient sustainable Li-ion anode materials. Eng. Sci. 2022, 17, 195–203.

    CAS  Google Scholar 

  161. Jiao, L. S.; Liu, Z. B.; Sun, Z. H.; Wu, T. S.; Gao, Y. Z.; Li, H. Y.; Li, F. H.; Niu, L. An advanced lithium ion battery based on a high quality graphitic graphene anode and a Li[Ni0.6Co0.2Mn0.2]O2 cathode. Electrochim. Acta 2018, 259, 48–55.

    CAS  Google Scholar 

  162. Kukułka, W.; Kierzek, K.; Stankiewicz, N.; Chen, X. C.; Tang, T.; Mijowska, E. Well-designed porous graphene flakes for lithium-ion batteries with outstanding rate performance. Langmuir 2019, 35, 12613–12619.

    Google Scholar 

  163. Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Tan, W. K.; Kar, K. K.; Matsuda, A. Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries. Prog. Energy Combust. Sci. 2019, 75, 100786.

    Google Scholar 

  164. Sun, H.; Varzi, A.; Pellegrini, V.; Dinh, D. A.; Raccichini, R.; Del Rio-Castillo, A. E.; Prato, M.; Colombo, M.; Cingolani, R.; Scrosati, B. et al. How much does size really matter. Exploring the limits of graphene as Li ion battery anode material. Solid State Commun. 2017, 251, 88–93.

    CAS  Google Scholar 

  165. Kokai, F.; Sorin, R.; Chigusa, H.; Hanai, K.; Koshio, A.; Ishihara, M.; Koga, Y.; Hasegawa, M.; Imanishi, N.; Takeda, Y. Ultrasonication fabrication of high quality multilayer graphene flakes and their characterization as anodes for lithium ion batteries. Diam. Relat. Mater. 2012, 29, 63–68.

    CAS  Google Scholar 

  166. Kim, W. S.; Hwa, Y.; Jeun, J. H.; Sohn, H. J.; Hong, S. H. Synthesis of SnO2 Nano hollow spheres and their size effects in lithium ion battery anode application. J. Power Sources 2013, 225, 108–112.

    CAS  Google Scholar 

  167. Wang, F.; Wang, B.; Yu, Z. L.; Lv, Q.; Jin, F.; Bao, C. Y.; Wang, D. L. A simple and green self-conversion method to construct silicon hollow spheres for high-performance Li-ion battery anodes. Electrochim. Acta 2023, 443, 141950.

    CAS  Google Scholar 

  168. Pan, Q. C.; Ding, Y. J.; Yan, Z. X.; Cai, Y. Z.; Zheng, F. H.; Huang, Y. G.; Wang, H. Q.; Li, Q. Y. Designed synthesis of Fe3O4@NC yolk–shell hollow spheres as high performance anode material for lithium-ion batteries. J. Alloys Compd. 2020, 821, 153569.

    CAS  Google Scholar 

  169. Sun, B.; Chen, Z. X.; Kim, H. S.; Ahn, H.; Wang, G. X. MnO/C core–shell nanorods as high capacity anode materials for lithiumion batteries. J. Power Sources 2011, 196, 3346–3349.

    CAS  Google Scholar 

  170. Van, C. D.; Jeong, J. R.; Yoon, K.; Kang, K.; Lee, M. H. Core–shell structure of Mo-based nanoparticle/carbon nanotube/amorphous carbon composites as high-performance anodes for lithium-ion batteries. ACS Appl. Nano Mater. 2022, 5, 6555–6563.

    Google Scholar 

  171. Su, J. T.; Lin, S. H.; Cheng, C. C.; Cheng, P. Y.; Lu, S. Y. Porous core–shell B-doped silicon-carbon composites as electrode materials for lithium ion capacitors. J. Power Sources 2022, 531, 231345.

    CAS  Google Scholar 

  172. An, W. L.; He, P.; Che, Z. Z.; Xiao, C. M.; Guo, E. M.; Pang, C. L.; He, X. Q.; Ren, J. G.; Yuan, G. H.; Du, N. et al. Scalable synthesis of pore-rich Si/C@C core–shell-structured microspheres for practical long-life lithium-ion battery anodes. ACS Appl. Mater. Interfaces 2022, 14, 10308–10318.

    CAS  Google Scholar 

  173. Sun, C. H.; Lin, Y. Y.; Li, W. L.; Fan, Y. C.; Liu, H. Y.; Sun, Y. H.; Nan, J. M. In-situ growth of core–shell structure of tremella fuciformis shaped SnS@Sulfur doped carbon composite as anode materials for high performance lithium-ion batteries. J. Alloys Compd. 2023, 935, 168087.

    CAS  Google Scholar 

  174. Shi, Q. T.; Zhou, J. H.; Ullah, S.; Yang, X. Q.; Tokarska, K.; Trzebicka, B.; Ta, H. Q.; Rümmeli, M. H. A review of recent developments in Si/C composite materials for Li-ion batteries. Energy Storage Mater. 2021, 34, 735–754.

    Google Scholar 

  175. Yang, X.; Zheng, G. X.; Wang, Q. Y.; Chen, X.; Han, Y.; Zhang, D. Q.; Zhang, Y. C. Functional application of multi-element metal composite materials. J. Alloys Compd. 2022, 895, 162622.

    CAS  Google Scholar 

  176. Rehman, W. U.; Jiang, Z. Y.; Qu, Z. G.; Xu, Y. L.; Wang, X.; Ullah, I. Preparation of Mn2SnO4 wrapped with N-doped reduced graphene oxide as a stable anode material for lithium-ion storage. J. Alloys Compd. 2023, 939, 168829.

    CAS  Google Scholar 

  177. Yuan, S.; Lai, Q. H.; Duan, X.; Wang, Q. Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: A review. J. Energy Storage 2023, 61, 106716.

    Google Scholar 

  178. Wang, Y.; Luo, S. N.; Chen, M.; Wu, L. M. Uniformly confined germanium quantum dots in 3D ordered porous carbon framework for high-performance Li-ion battery. Adv. Funct. Mater. 2020, 30, 2000373.

    CAS  Google Scholar 

  179. Wei, C. L.; Wang, Y. S.; Zhang, Y. C.; Tan, L. W.; Qian, Y.; Tao, Y.; Xiong, S. L.; Feng, J. K. Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 3576–3584.

    CAS  Google Scholar 

  180. Gao, W. L.; Pumera, M. 3D printed nanocarbon frameworks for Li-ion battery cathodes. Adv. Funct. Mater. 2021, 31, 2007285.

    CAS  Google Scholar 

  181. Li, Y. J.; Li, J. P.; Xiao, H.; Xie, T. C.; Zheng, W. T.; He, J. L.; Zhu, H. J.; Huang, S. M. A novel 3D Li/Li9Al4/Li-Mg alloy anode for superior lithium metal batteries. Adv. Funct. Mater. 2023, 33, 2213905.

    CAS  Google Scholar 

  182. Chen, Y.; Zou, Y. M.; Shen, X. P.; Qiu, J. X.; Lian, J. B.; Pu, J. R.; Li, S.; Du, F. H.; Li, S. Q.; Ji, Z. Y. et al. Ge nanoparticles uniformly immobilized on 3D interconnected porous graphene frameworks as anodes for high-performance lithium-ion batteries. J. Energy Chem. 2022, 69, 161–173.

    Google Scholar 

  183. Burukhin, A.; Brylev, O.; Hany, P.; Churagulov, B. R. Hydrothermal synthesis of LiCoO2 for lithium rechargeable batteries. Solid State Ion. 2002, 151, 259–263.

    CAS  Google Scholar 

  184. Cao, Q.; Zhang, H. P.; Wang, G. J.; Xia, Q.; Wu, Y. P.; Wu, H. Q. A novel carbon-coated LiCoO2 as cathode material for lithium ion battery. Electrochem. Commun. 2007, 9, 1228–1232.

    CAS  Google Scholar 

  185. Zhang, J.; Xiang, Y. J.; Yu, Y.; Xie, S.; Jiang, G. S.; Chen, C. H. Electrochemical evaluation and modification of commercial lithium cobalt oxide powders. J. Power Sources 2004, 132, 187–194.

    CAS  Google Scholar 

  186. Huang, X.; Rui, X. H.; Hng, H. H.; Yan, Q. Y. Vanadium pentoxide-based cathode materials for lithium-ion batteries: Morphology control, carbon hybridization, and cation doping. Part. Part. Syst. Charact. 2015, 32, 276–294.

    CAS  Google Scholar 

  187. Tang, X.; Lin, B. H.; Ge, Y.; Ge, Y.; Lu, C. J.; Savilov, S. V.; Aldoshin, S. M.; Xia, H. LiMn2O4 nanorod arrays: A potential three-dimensional cathode for lithium-ion microbatteries. Mater. Res. Bull. 2015, 69, 2–6.

    CAS  Google Scholar 

  188. Gnanaraj, J. S.; Pol, V. G.; Gedanken, A.; Aurbach, D. Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method. Electrochem. Commun. 2003, 5, 940–945.

    CAS  Google Scholar 

  189. Eftekhari, A. LiMn2O4 electrode prepared by gold-titanium codeposition with improved cyclability. J. Power Sources 2004, 130, 260–265.

    CAS  Google Scholar 

  190. Xu, Y. N.; Chung, S. Y.; Bloking, J. T.; Chiang, Y. M.; Ching, W. Y. Electronic structure and electrical conductivity of undoped LiFePO4. Electrochem. Solid-State Lett. 2004, 7, A131–A134.

    CAS  Google Scholar 

  191. Shi, S. Q.; Liu, L. J.; Ouyang, C. Y.; Wang, D. S.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Phys. Rev. B 2003, 68, 195108.

    Google Scholar 

  192. Prosini, P. P.; Lisi, M.; Zane, D.; Pasquali, M. Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ion. 2002, 148, 45–51.

    CAS  Google Scholar 

  193. Kang, J.; Mathew, V.; Gim, J.; Kim, S.; Song, J. J.; Im, W. B.; Han, J.; Lee, J. Y.; Kim, J. Pyro-synthesis of a high rate nano-Li3V2(PO4)3/C cathode with mixed morphology for advanced Li-ion batteries. Sci. Rep. 2015, 4, 4047.

    Google Scholar 

  194. Wang, Q. H.; Xu, J. T.; Zhang, W. C.; Mao, M. L.; Wei, Z. X.; Wang, L.; Cui, C. Y.; Zhu, Y. X.; Ma, J. M. Research progress on vanadium-based cathode materials for sodium ion batteries. J. Mater. Chem. A 2018, 6, 8815–8838.

    CAS  Google Scholar 

  195. Wang, Y.; Cao, G. Z. Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 2008, 20, 2251–2269.

    CAS  Google Scholar 

  196. Wang, S. Q.; Lu, Z. D.; Wang, D.; Li, C. G.; Chen, C. H.; Yin, Y. D. Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries. J. Mater. Chem. 2011, 21, 6365–6369.

    CAS  Google Scholar 

  197. Mai, L.; Xu, L.; Han, C. H.; Xu, X.; Luo, Y. Z.; Zhao, S. Y.; Zhao, Y. L. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett. 2010, 10, 4750–4755.

    CAS  Google Scholar 

  198. Ventrapragada, L. K.; Zhu, J. Y.; Creager, S. E.; Rao, A. M.; Podila, R. A versatile carbon nanotube-based scalable approach for improving interfaces in Li-ion battery electrodes. ACS Omega. 2018, 3, 4502–4508.

    CAS  Google Scholar 

  199. Cao, W. J.; Greenleaf, M.; Li, Y. X.; Adams, D.; Hagen, M.; Doung, T.; Zheng, J. P. The effect of lithium loadings on anode to the voltage drop during charge and discharge of Li-ion capacitors. J. Power Sources 2015, 280, 600–605.

    CAS  Google Scholar 

  200. Luo, Y. F.; Wang, K.; Li, Q. Q.; Fan, S. S.; Wang, J. P. Macroscopic carbon nanotube structures for lithium batteries. Small 2020, 16, 1902719.

    CAS  Google Scholar 

  201. Lu, W.; Goering, A.; Qu, L. T.; Dai, L. M. Lithium-ion batteries based on vertically-aligned carbon nanotube electrodes and ionic liquid electrolytes. Phys. Chem. Chem. Phys. 2012, 14, 12099–12104.

    CAS  Google Scholar 

  202. Yang, Z. H.; Wu, H. Q. Electrochemical intercalation of lithium into raw carbon nanotubes. Mater. Chem. Phys. 2001, 71, 7–11.

    CAS  Google Scholar 

  203. Zhao, J. J.; Buldum, A.; Han, J.; Lu, J. P. First-principles study of Li-intercalated carbon nanotube ropes. Phys. Rev. Lett. 2000, 85, 1706–1709.

    CAS  Google Scholar 

  204. Nishidate, K.; Hasegawa, M. Energetics of lithium ion adsorption on defective carbon nanotubes. Phys. Rev. B 2005, 71, 245418.

    Google Scholar 

  205. Nishidate, K.; Sasaki, K.; Oikawa, Y.; Baba, M.; Hasegawa, M. Density functional electronic structure calculations of lithium ion adsorption on defective carbon nanotubes. e-J. l Surf. Sci. Nanotechnol. 2005, 3, 358–361.

    CAS  Google Scholar 

  206. Fagan, S. B.; Guerini, S.; Filho, J. M.; Lemos, V. Lithium intercalation into single-wall carbon nanotube bundles. Microelectron. J. 2005, 36, 499–501.

    CAS  Google Scholar 

  207. Senami, M.; Ikeda, Y.; Fukushima, A.; Tachibana, A. Theoretical study of adsorption of lithium atom on carbon nanotube. AIP Adv. 2011, 1, 042106.

    Google Scholar 

  208. Shimoda, H.; Gao, B.; Tang, X. P.; Kleinhammes, A.; Fleming, L.; Wu, Y.; Zhou, O. Lithium intercalation into opened single-wall carbon nanotubes: Storage capacity and electronic properties. Phys. Rev. Lett. 2002, 88, 015502.

    CAS  Google Scholar 

  209. Khantha, M.; Cordero, N. A.; Alonso, J. A.; Cawkwell, M.; Girifalco, L. A. Interaction and concerted diffusion of lithium in a (5, 5) carbon nanotube. Phys. Rev. B 2008, 78, 115430.

    Google Scholar 

  210. Yang, J. L.; Liu, H. J.; Chan, C. T. Theoretical study of alkali-atom insertion into small-radius carbon nanotubes to form single-atom chains. Phys. Rev. B 2001, 64, 085420.

    Google Scholar 

  211. Zhao, M. W.; Xia, Y. Y.; Liu, X. D.; Tan, Z. Y.; Huang, B. D.; Li, F.; Ji, Y. J.; Song, C. Curvature-induced condensation of lithium confined inside single-walled carbon nanotubes: First-principles calculations. Phys. Lett. A 2005, 340, 434–439.

    CAS  Google Scholar 

  212. Meunier, V.; Kephart, J.; Roland, C.; Bernholc, J. Ab initio investigations of lithium diffusion in carbon nanotube systems. Phys. Rev. Lett. 2002, 88, 075506.

    Google Scholar 

  213. Dubot, P.; Cenedese, P. Modeling of molecular hydrogen and lithium adsorption on single-wall carbon nanotubes. Phys. Rev. B 2001, 63, 241402.

    Google Scholar 

  214. Garau, C.; Frontera, A.; Quiñonero, D.; Costa, A.; Ballester, P.; Deyà, P. M. Ab initio investigations of lithium diffusion in single-walled carbon nanotubes. Chem. Phys. 2004, 297, 85–91.

    CAS  Google Scholar 

  215. Yang, S. B.; Huo, J. P.; Song, H. H.; Chen, X. H. A comparative study of electrochemical properties of two kinds of carbon nanotubes as anode materials for lithium ion batteries. Electrochim. Acta. 2008, 53, 2238–2244.

    CAS  Google Scholar 

  216. Gao, B.; Bower, C.; Lorentzen, J. D.; Fleming, L.; Kleinhammes, A.; Tang, X. P.; McNeil, L. E.; Wu, Y.; Zhou, O. Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem. Phys. Lett. 2000, 327, 69–75.

    CAS  Google Scholar 

  217. Mi, C. H.; Cao, G. S.; Zhao, X. B. A non-GIC mechanism of lithium storage in chemical etched MWNTs. J. Electroanal. Chem. 2004, 562, 217–221.

    CAS  Google Scholar 

  218. Garau, C.; Frontera, A.; Quiñonero, D.; Costa, A.; Ballester, P.; Deyà, P. M. Lithium diffusion in single-walled carbon nanotubes: A theoretical study. Chem. Phys. Lett. 2003, 374, 548–555.

    CAS  Google Scholar 

  219. Frackowiak, E.; Béguin, F. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 2002, 40, 1775–1787.

    CAS  Google Scholar 

  220. Hresko, W. Feature article. Remedial Spec. Educ. 1989, 10, 8.

    Google Scholar 

  221. Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S. W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014, 9, 393.

    Google Scholar 

  222. Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G. et al. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, 483–487.

    CAS  Google Scholar 

  223. Kawasaki, S.; Hara, T.; Iwai, Y.; Suzuki, Y. Metallic and semiconducting single-walled carbon nanotubes as the anode material of Li ion secondary battery. Mater. Lett. 2008, 62, 2917–2920.

    CAS  Google Scholar 

  224. Reddy, A. L. M.; Shaijumon, M. M.; Gowda, S. R.; Ajayan, P. M. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 2009, 9, 1002–1006.

    CAS  Google Scholar 

  225. Zhang, H. X.; Feng, C.; Zhai, Y. C.; Jiang, K. L.; Li, Q. Q.; Fan, S. S. Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: A novel binder-free and high-capacity anode material for lithium-ion batteries. Adv. Mater. 2009, 21, 2299–2304.

    CAS  Google Scholar 

  226. Chen, N. N.; Chen, L.; Li, W. X.; Xu, Z. W.; Qian, X. M.; Liu, Y. Brush-like Ni/carbon nanofibers/carbon nanotubes multi-layer network for freestanding anode in lithium ion batteries. Ceram. Int. 2019, 45, 16676–16681.

    CAS  Google Scholar 

  227. Zhang, H.; Cao, G. P.; Wang, Z. Y.; Yang, Y. S.; Shi, Z. J.; Gu, Z. N. Carbon nanotube array anodes for high-rate Li-ion batteries. Electrochim. Acta 2010, 55, 2873–2877.

    CAS  Google Scholar 

  228. Man, Y. H.; Zhang, Y. P.; Guo, P. T. Freestanding ultralong aligned carbon nanotube films as electrode materials for a lithium-ion battery. Adv. Mater. Res. 2013, 798–799, 143–146.

    Google Scholar 

  229. Bulusheva, L. G.; Arkhipov, V. E.; Fedorovskaya, E. O.; Zhang, S.; Kurenya, A. G.; Kanygin, M. A.; Asanov, I. P.; Tsygankova, A. R.; Chen, X. H.; Song, H. H. et al. Fabrication of free-standing aligned multiwalled carbon nanotube array for Li-ion batteries. J. Power Sources 2016, 311, 42–48.

    CAS  Google Scholar 

  230. Masarapu, C.; Subramanian, V.; Zhu, H. W.; Wei, B. Q. Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries. Adv. Funct. Mater. 2009, 19, 1008–1014.

    CAS  Google Scholar 

  231. Wang, G. X.; Yao, J.; Liu, H. K.; Dou, S. X.; Ahn, J. H. Growth and lithium storage properties of vertically aligned carbon nanotubes. Met. Mater. Int. 2006, 12, 413–416.

    CAS  Google Scholar 

  232. Jung, H. Y.; Hong, S.; Yu, A.; Jung, S. M.; Jeoung, S. K.; Jung, Y. J. Efficient lithium storage from modified vertically aligned carbon nanotubes with open-ends. RSC Adv. 2015, 5, 68875–68880.

    CAS  Google Scholar 

  233. Ghosh, M.; Venkatesh, G.; Rao, G. M. Vertically aligned and treelike carbon nanostructures as anode of lithium ion battery. Diam. Relat. Mater. 2018, 87, 56–60.

    CAS  Google Scholar 

  234. Wang, X. H.; Sun, L. M.; Susantyoko, R. A.; Zhang, Q. A hierarchical 3D carbon nanostructure for high areal capacity and flexible lithium ion batteries. Carbon 2016, 98, 504–509.

    CAS  Google Scholar 

  235. Frackowiak, E.; Gautier, S.; Gaucher, H.; Bonnamy, S.; Beguin, F. Electrochemical storage of lithium in multiwalled carbon nanotubes. Carbon 1999, 37, 61–69.

    CAS  Google Scholar 

  236. Wang, G. X.; Ahn, J. H.; Yao, J.; Lindsay, M.; Liu, H. K.; Dou, S. X. Preparation and characterization of carbon nanotubes for energy storage. J. Power Sources 2003, 119–121, 16–23.

    Google Scholar 

  237. Claye, A. S.; Fischer, J. E.; Huffman, C. B.; Rinzler, A. G.; Smalley, R. E. Solid-state electrochemistry of the Li single wall carbon nanotube system. J. Electrochem. Soc. 2000, 147, 2845–2852.

    CAS  Google Scholar 

  238. Gao, B.; Kleinhammes, A.; Tang, X. P.; Bower, C.; Fleming, L.; Wu, Y.; Zhou, O. Electrochemical intercalation of single-walled carbon nanotubes with lithium. Chem. Phys. Lett. 1999, 307, 153–157.

    CAS  Google Scholar 

  239. Wang, W.; Ruiz, I.; Guo, S. R.; Favors, Z.; Bay, H. H.; Ozkan, M.; Ozkan, C. S. Hybrid carbon nanotube and graphene nanostructures for lithium ion battery anodes. Nano Energy 2014, 3, 113–118.

    CAS  Google Scholar 

  240. Xu, J. M.; Han, Z.; Wu, J. S.; Song, K. X.; Wu, J.; Gao, H. F.; Mi, Y. H. Synthesis and electrochemical performance of vertical carbon nanotubes on few-layer graphene as an anode material for Li-ion batteries. Mater. Chem. Phys. 2018, 205, 359–365.

    CAS  Google Scholar 

  241. Yitzhack, N.; Auinat, M.; Sezin, N.; Ein-Eli, Y. Carbon nanotube tissue as anode current collector for flexible Li-ion batteries—Understanding the controlling parameters influencing the electrochemical performance. APL Mater. 2018, 6, 111102.

    Google Scholar 

  242. Adenusi, H.; Chass, G. A.; Passerini, S.; Tian, K. V.; Chen, G. H. Lithium batteries and the solid electrolyte interphase (SEI)—Progress and outlook. Adv. Energy Mater. 2023, 13, 2203307.

    CAS  Google Scholar 

  243. Heiskanen, S. K.; Kim, J.; Lucht, B. L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule 2019, 3, 2322–2333.

    CAS  Google Scholar 

  244. Wang, A. P.; Kadam, S.; Li, H.; Shi, S. Q.; Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithiumion batteries. npj Comput. Mater. 2018, 4, 15.

    Google Scholar 

  245. Peled, E.; Menkin, S. Review—SEI: Past, present, and future. J. Electrochem. Soc. 2017, 164, A1703–A1719.

    CAS  Google Scholar 

  246. Ezzedine, M.; Zamfir, M. R.; Jardali, F.; Leveau, L.; Caristan, E.; Ersen, O.; Cojocaru, C. S.; Florea, I. Insight into the formation and stability of solid electrolyte interphase for nanostructured silicon-based anode electrodes used in Li-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 24734–24746.

    CAS  Google Scholar 

  247. Arai, S.; Fukuoka, R. A carbon nanotube-reinforced noble tin anode structure for lithium-ion batteries. J. Appl. Electrochem. 2016, 46, 331–338.

    CAS  Google Scholar 

  248. Chen, J. Z.; Zhang, L.; Gao, F.; Ren, M. X.; Hou, Y. L.; Zhao, D. L. Core–shell structured Si@Cu nanoparticles segregated in graphene-carbon nanotube networks enable high reversible capacity and rate capability of anode for lithium-ion batteries. J. Electroanal. Chem. 2023, 943, 117614.

    CAS  Google Scholar 

  249. Wang, W.; Kumta, P. N. Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes. ACS Nano 2010, 4, 2233–2241.

    CAS  Google Scholar 

  250. Sun, L.; Liu, Y. X.; Shao, R.; Wu, J.; Jiang, R. Y.; Jin, Z. Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Mater. 2022, 46, 482–502.

    Google Scholar 

  251. Xue, L. G.; Xu, G. J.; Li, Y.; Li, S. L.; Fu, K.; Shi, Q.; Zhang, X. W. Carbon-coated Si nanoparticles dispersed in carbon nanotube networks as anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 21–25.

    CAS  Google Scholar 

  252. Weng, W.; Lin, H. J.; Chen, X. L.; Ren, J.; Zhang, Z. T.; Qiu, L. B.; Guan, G. Z.; Peng, H. S. Flexible and stable lithium ion batteries based on three-dimensional aligned carbon nanotube/silicon hybrid electrodes. J. Mater. Chem. A 2014, 2, 9306–9312.

    CAS  Google Scholar 

  253. Fu, K.; Yildiz, O.; Bhanushali, H.; Wang, Y. X.; Stano, K.; Xue, L. G.; Zhang, X. W.; Bradford, P. D. Aligned carbon nanotube-silicon sheets: A novel nano-architecture for flexible lithium ion battery electrodes. Adv. Mater. 2013, 25, 5109–5114.

    CAS  Google Scholar 

  254. Yildiz, O.; Dirican, M.; Fang, X. M.; Fu, K.; Jia, H.; Stano, K.; Zhang, X. W.; Bradford, P. D. Hybrid carbon nanotube fabrics with sacrificial nanofibers for flexible high performance lithium-ion battery anodes. J. Electrochem. Soc. 2019, 166, A473–A479.

    CAS  Google Scholar 

  255. Evanoff, K.; Khan, J.; Balandin, A. A.; Magasinski, A.; Ready, W. J.; Fuller, T. F.; Yushin, G. Towards ultrathick battery electrodes: Aligned carbon nanotube-enabled architecture. Adv. Mater. 2012, 24, 533–537.

    CAS  Google Scholar 

  256. Barrett, L. K.; Fan, J.; Laughlin, K.; Baird, S.; Harb, J. N.; Vanfleet, R. R.; Davis, R. C. Carbon monolith scaffolding for high volumetric capacity silicon Li-ion battery anodes. J. Vac. Sci. Technol. B 2017, 35, 041802.

    Google Scholar 

  257. Fan, Y.; Zhang, Q.; Xiao, Q. Z.; Wang, X. H.; Huang, K. High performance lithium ion battery anodes based on carbon nanotube-silicon core–shell nanowires with controlled morphology. Carbon 2013, 59, 264–269.

    CAS  Google Scholar 

  258. Epur, R.; Ramanathan, M.; Datta, M. K.; Hong, D. H.; Jampani, P. H.; Gattu, B.; Kumta, P. N. Scribable multi-walled carbon nanotube-silicon nanocomposites: A viable lithium-ion battery system. Nanoscale 2015, 7, 3504–3510.

    CAS  Google Scholar 

  259. Fan, Y.; Zhang, Q.; Lu, C. X.; Xiao, Q. Z.; Wang, X. H.; Tay, B. K. High performance carbon nanotube-Si core–shell wires with a rationally structured core for lithium ion battery anodes. Nanoscale 2013, 5, 1503–1506.

    CAS  Google Scholar 

  260. Harpak, N.; Davidi, G.; Melamed, Y.; Cohen, A.; Patolsky, F. Self-catalyzed vertically aligned carbon nanotube-silicon core–shell array for highly stable, high-capacity lithium-ion batteries. Langmuir 2020, 36, 889–896.

    CAS  Google Scholar 

  261. Ho, D. N.; Yildiz, O.; Bradford, P.; Zhu, Y. T.; Fedkiw, P. S. A silicon-impregnated carbon nanotube mat as a lithium-ion cell anode. J. Appl. Electrochem. 2018, 48, 127–133.

    CAS  Google Scholar 

  262. Gohier, A.; Laïk, B.; Kim, K. H.; Maurice, J. L.; Pereira-Ramos, J. P.; Cojocaru, C. S.; Van, P. T. High-rate capability silicon decorated vertically aligned carbon nanotubes for Li-ion batteries. Adv. Mater. 2012, 24, 2592–2597.

    CAS  Google Scholar 

  263. Jessl, S.; Engelke, S.; Copic, D.; Baumberg, J. J.; De Volder, M. Anisotropic carbon nanotube structures with high aspect ratio nanopores for Li-ion battery anodes. ACS Appl. Nano Mater. 2021, 4, 6299–6305.

    CAS  Google Scholar 

  264. Yoon, S.; Park, C. M.; Sohn, H. J. Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries. Electrochem. Solid-State Lett. 2008, 11, A42–A45.

    CAS  Google Scholar 

  265. Seo, M. H.; Park, M.; Lee, K. T.; Kim, K.; Kim, J.; Cho, J. High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ. Sci. 2011, 4, 425–428.

    CAS  Google Scholar 

  266. Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115–3141.

    CAS  Google Scholar 

  267. Cui, G. L.; Gu, L.; Kaskhedikar, N.; Van Aken, P. A.; Maier, J. A novel germanium/carbon nanotubes nanocomposite for lithium storage material. Electrochim. Acta 2010, 55, 985–988.

    CAS  Google Scholar 

  268. Susantyoko, R. A.; Wang, X. H.; Sun, L. M.; Pey, K. L.; Fitzgerald, E.; Zhang, Q. Germanium coated vertically-aligned multiwall carbon nanotubes as lithium-ion battery anodes. Carbon 2014, 77, 551–559.

    CAS  Google Scholar 

  269. Gao, C. T.; Kim, N. D.; Salvatierra, R. V.; Lee, S. K.; Li, L. L.; Li, Y. W.; Sha, J.; Silva, G. A. L.; Fei, H. L.; Xie, E. Q. et al. Germanium on seamless graphene carbon nanotube hybrids for lithium ion anodes. Carbon 2017, 123, 433–439.

    CAS  Google Scholar 

  270. Wang, X. H.; Susantyoko, R. A.; Fan, Y.; Sun, L. M.; Xiao, Q. Z.; Zhang, Q. Vertically aligned CNT-supported thick Ge films as high-performance 3D anodes for lithium ion batteries. Small 2014, 10, 2826–2829.

    CAS  Google Scholar 

  271. Courtney, I. A.; Dahn, J. R. Electrochemical and in situ X-Ray diffraction studies of the reaction of lithium with Tin oxide composites. J. Electrochem. Soc. 1997, 144, 2045–2052.

    CAS  Google Scholar 

  272. Kim, M. G.; Sim, S.; Cho, J. Novel core–shell Sn-Cu anodes for lithium rechargeable batteries prepared by a redox-transmetalation reaction. Adv. Mater. 2010, 22, 5154–5158.

    CAS  Google Scholar 

  273. Sun, L. M.; Wang, X. H.; Susantyoko, R. A.; Zhang, Q. High performance binder-free Sn coated carbon nanotube array anode. Carbon 2015, 82, 282–287.

    CAS  Google Scholar 

  274. Deng, W. N.; Chen, X. H.; Liu, Z.; Hu, A. P.; Tang, Q. L.; Li, Z.; Xiong, Y. N. Three-dimensional structure-based tin disulfide/vertically aligned carbon nanotube arrays composites as high-performance anode materials for lithium ion batteries. J. Power Sources 2015, 277, 131–138.

    CAS  Google Scholar 

  275. Liu, X. M.; Huang, Z. D.; Oh, S. W.; Zhang, B.; Ma, P. C.; Yuen, M. M. F.; Kim, J. K. Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review. Compos. Sci. Technol. 2012, 72, 121–144.

    CAS  Google Scholar 

  276. Mallakpour, S.; Khadem, E. Carbon nanotube-metal oxide nanocomposites: Fabrication, properties and applications. Chem. Eng. J. 2016, 302, 344–367.

    CAS  Google Scholar 

  277. Zhao, Y.; Wang, L. P.; Sougrati, M. T.; Feng, Z. X.; Leconte, Y.; Fisher, A.; Srinivasan, M.; Xu, Z. C. A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 2017, 7, 1601424.

    Google Scholar 

  278. Wu, Y.; Wang, J. P.; Jiang, K. L.; Fan, S. S. Applications of carbon nanotubes in high performance lithium ion batteries. Front. Phys. 2014, 9, 351–369.

    Google Scholar 

  279. Seman, R. N. A. R.; Azam, M. A.; Mohamad, A. A. Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors. Renew. Sustain. Energy Rev. 2017, 75, 644–659.

    CAS  Google Scholar 

  280. Cao, K. Z.; Jin, T.; Yang, L.; Jiao, L. F. Recent progress in conversion reaction metal oxide anodes for Li-ion batteries. Mater. Chem. Front. 2017, 1, 2213–2242.

    CAS  Google Scholar 

  281. Chen, Y.; Chen, X. Y.; Zhang, Y. L. A comprehensive review on metal-oxide nanocomposites for high-performance lithium-ion battery anodes. Energy Fuels 2021, 35, 6420–6442.

    CAS  Google Scholar 

  282. Chen, J. S.; Lou, X. W. D. SnO2-based nanomaterials: Synthesis and application in lithium-ion batteries. Small 2013, 9, 1877–1893.

    CAS  Google Scholar 

  283. Sehrawat, P.; Julien, C.; Islam, S. S. Carbon nanotubes in Li-ion batteries: A review. Mater. Sci. Eng. B 2016, 213, 12–40.

    CAS  Google Scholar 

  284. Zhu, K. L.; Luo, Y. F.; Zhao, F.; Hou, J. W.; Wang, X. W.; Ma, H.; Wu, H.; Zhang, Y. G.; Jiang, K. L.; Fan, S. S. et al. Free-standing, binder-free Titania/super-aligned carbon nanotube anodes for flexible and fast-charging Li-ion batteries. ACS Sustainable Chem. Eng. 2018, 6, 3426–3433.

    CAS  Google Scholar 

  285. Pawlitzek, F.; Pampel, J.; Schmuck, M.; Althues, H.; Schumm, B.; Kaskel, S. High-power lithium ion batteries based on preorganized necklace type Li4Ti5O12/VACNT Nano-composites. J. Power Sources 2016, 325, 1–6.

    CAS  Google Scholar 

  286. Sun, L.; Kong, W. B.; Wu, H. C.; Wu, Y.; Wang, D. T.; Zhao, F.; Jiang, K. L.; Li, Q. Q.; Wang, J. P.; Fan, S. S. Mesoporous Li4Ti5O12 nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries. Nanoscale 2016, 8, 617–625.

    CAS  Google Scholar 

  287. Wu, Y.; Wu, H. C.; Luo, S.; Wang, K.; Zhao, F.; Wei, Y.; Liu, P.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Entrapping electrode materials within ultrathin carbon nanotube network for flexible thin film lithium ion batteries. RSC Adv. 2014, 4, 20010–20016.

    CAS  Google Scholar 

  288. Ohzuku, T.; Ueda, A.; Yamamoto, N. Zero-strain insertion material of Li [Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 1995, 142, 1431–1435.

    CAS  Google Scholar 

  289. Belharouak, I.; Koenig, G. M.; Amine, K. Electrochemistry and safety of Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric vehicle Li-ion battery applications. J. Power Sources 2011, 196, 10344–10350.

    CAS  Google Scholar 

  290. Yuan, T.; Yu, X.; Cai, R.; Zhou, Y. K.; Shao, Z. P. Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance. J. Power Sources 2010, 195, 4997–5004.

    CAS  Google Scholar 

  291. Bach, S.; Pereira-Ramos, J. P.; Baffier, N. Electrochemical properties of sol-gel Li4/3Ti5/3O4. J. Power Sources 1999, 81–82, 273–276.

    Google Scholar 

  292. Lou, F. L.; Zhou, H. T.; Tran, T. D.; Buan, M. E. M.; Vullum-Bruer, F.; Rønning, M.; Walmsley, J. C.; Chen, D. Coaxial carbon/metal oxide/aligned carbon nanotube arrays as high-performance anodes for lithium ion batteries. ChemSusChem 2014, 7, 1335–1346.

    CAS  Google Scholar 

  293. Luo, S.; Wu, H. C.; Wu, Y.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Mn3O4 nanoparticles anchored on continuous carbon nanotube network as superior anodes for lithium ion batteries. J. Power Sources 2014, 249, 463–469.

    CAS  Google Scholar 

  294. Li, Q.; Wu, Y. Q.; Wang, Z. M.; Ming, H.; Wang, W. X.; Yin, D. M.; Wang, L. M.; Alshareef, H. N.; Ming, J. Carbon nanotubes coupled with metal ion diffusion layers stabilize oxide conversion reactions in high-voltage lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 16276–16285.

    CAS  Google Scholar 

  295. Jessl, S.; Copic, D.; Engelke, S.; Ahmad, S.; De Volder, M. Hydrothermal coating of patterned carbon nanotube forest for structured lithium-ion battery electrodes. Small 2019, 15, 1901201.

    CAS  Google Scholar 

  296. Wu, Y.; Wei, Y.; Wang, J. P.; Jiang, K. L.; Fan, S. S. Conformal Fe3O4 sheath on aligned carbon nanotube scaffolds as high-performance anodes for lithium ion batteries. Nano Lett. 2013, 13, 818–823.

    CAS  Google Scholar 

  297. Susantyoko, R. A.; Wang, X. H.; Xiao, Q. Z.; Fitzgerald, E.; Zhang, Q. Sputtered nickel oxide on vertically-aligned multiwall carbon nanotube arrays for lithium-ion batteries. Carbon 2014, 68, 619–627.

    CAS  Google Scholar 

  298. Deng, W. N.; Chen, X. H.; Hu, A. P.; Zhang, S. Y. Graphitic carbon-wrapped NiO embedded three dimensional nitrogen doped aligned carbon nanotube arrays with long cycle life for lithium ion batteries. RSC Adv. 2018, 8, 28440–28446.

    CAS  Google Scholar 

  299. He, X. F.; Wu, Y.; Zhao, F.; Wang, J. P.; Jiang, K. L.; Fan, S. S. Enhanced rate capabilities of Co3O4/carbon nanotube anodes for lithium ion battery applications. J. Mater. Chem. A. 2013, 1, 11121–11125.

    CAS  Google Scholar 

  300. Liu, W. W.; Lu, C. X.; Liang, K.; Tay, B. K. A high-performance anode material for Li-ion batteries based on a vertically aligned CNTs/NiCo2O4 core/shell structure. Part. Part. Syst. Charact. 2014, 31, 1151–1157.

    CAS  Google Scholar 

  301. Zhu, K. L.; Li, C. Y.; Jiao, Y. S.; Zhu, J. W.; Ren, H. T.; Luo, Y. F.; Fan, S. S.; Liu, K. Free-standing hybrid films comprising of ultra-dispersed Titania nanocrystals and hierarchical conductive network for excellent high rate performance of lithium storage. Nano Res. 2021, 14, 2301–2308.

    CAS  Google Scholar 

  302. Park, M.; Zhang, X. C.; Chung, M.; Less, G. B.; Sastry, A. M. A review of conduction phenomena in Li-ion batteries. J. Power Sources 2010, 195, 7904–7929.

    CAS  Google Scholar 

  303. Pawlitzek, F.; Althues, H.; Schumm, B.; Kaskel, S. Nanostructured networks for energy storage: Vertically aligned carbon nanotubes (VACNT) as current collectors for high-power Li4Ti5O12(LTO)//LiMn2O4 (LMO) lithium-ion batteries. Batteries 2017, 3, 37.

    Google Scholar 

  304. Ning, G. Q.; Zhang, S. C.; Xiao, Z. H.; Wang, H. B.; Ma, X. L. Efficient conductive networks constructed from ultra-low concentration carbon nanotube suspension for Li ion battery cathodes. Carbon 2018, 132, 323–328.

    CAS  Google Scholar 

  305. Yilmaz, M.; Raina, S.; Hsu, S. H.; Kang, W. P. Micropatterned arrays of vertically-aligned CNTs grown on aluminum as a new cathode platform for LiFePO4 integration in lithium-ion batteries. Ionics 2019, 25, 421–427.

    CAS  Google Scholar 

  306. Luo, S.; Wang, K.; Wang, J. P.; Jiang, K. L.; Li, Q. Q.; Fan, S. S. Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries. Adv. Mater. 2012, 24, 2294–2298.

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Science Foundation of the United States (Nos. 1506640, 2134375, and 2213923). We would like to express our gratitude to Dr. Arun Thapa for his invaluable inputs during the revision of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nwanno, C.E., Li, W. Aligned carbon nanotubes for lithium-ion batteries: A review. Nano Res. 16, 12384–12410 (2023). https://doi.org/10.1007/s12274-023-6006-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6006-2

Keywords

Navigation