Skip to main content
Log in

Bismuth clusters pinned on TiO2 porous nanowires boosting charge transfer for CO2 photoreduction to CH4

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Artificial photosynthesis in carbon dioxide (CO2) conversion into value-added chemicals attracts considerable attention but suffers from the low activity induced by sluggish separation of photogenerated carriers and the kinetic bottleneck-induced unsatisfied selectivity. Herein, we prepare a new-style Bi/TiO2 catalyst formed by pinning bismuth clusters on TiO2 nanowires through being confined by pores, which exhibits high activity and selectivity towards photocatalytic production of CH4 from CO2. Boosted charge transfer from TiO2 through Bi to the reactants is revealed via in situ X-ray photon spectroscopy and time-resolved photoluminescence (PL). Further, in situ Fourier transform infrared results confirm that Bi/TiO2 not only overcomes the multi-electron kinetics challenge of CO2 to CH4 via boosting charge transfer, but also facilitates proton production and transfer as well as the intermediates CHO and CH3O generation, ultimately achieving the tandem catalysis towards methanation. Theoretical calculation also underlies that the more favorable reaction step from CO to CHO on Bi/TiO2 results in CH4 production with higher selectivity. Our work brings new insights into rational design of photocatalysts with high performance and the formation mechanism of CO2 to CH4 for solar energy storage in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dogutan, D. K.; Nocera, D. G. Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. Acc. Chem. Res. 2019, 52, 3143–3148.

    Article  CAS  PubMed  Google Scholar 

  2. Zhong, M.; Tran, K.; Min, Y. M.; Wang, C. H.; Wang, Z. Y.; Dinh, C. T.; De Luna, P.; Yu, Z. Q.; Rasouli, A. S.; Brodersen, P. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020, 581, 178–183.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Chen, R.; Wan, L. L.; Luo, J. S. Extraterrestrial artificial photosynthesis. Joule 2022, 6, 944–946.

    Article  Google Scholar 

  4. Yu, J. G.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 2014, 136, 8839–8842.

    Article  CAS  PubMed  Google Scholar 

  5. Guo, Z. J.; Hu, Y. H.; Dong, S.; Chen, L.; Ma, L.; Zhou, Y.; Wang, L.; Wang, J. “Spring-loaded” mechanism for chemical fixation of carbon dioxide with epoxides. Chem Catal. 2022, 2, 519–530.

    Article  CAS  Google Scholar 

  6. Wang, Y.; Wang, K. W.; Meng, J. Z.; Ban, C. G.; Duan, Y. Y.; Feng, Y. J.; Jing, S. J.; Ma, J. P.; Yu, D. M.; Gan, L. Y. et al. Constructing atomic surface concaves on Bi5O7Br nanotube for efficient photocatalytic CO2 reduction. Nano Energy 2023, 109, 108305.

    Article  CAS  Google Scholar 

  7. Li, J.; Huang, H. L.; Xue, W. J.; Sun, K.; Song, X. H.; Wu, C. R.; Nie, L.; Li, Y.; Liu, C. Y.; Pan, Y. et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 2021, 4, 719–729.

    Article  CAS  Google Scholar 

  8. Liu, P. G.; Huang, Z. X.; Gao, X. P.; Hong, X.; Zhu, J. F.; Wang, G. M.; Wu, Y. E.; Zeng, J.; Zheng, X. S. Synergy between palladium single atoms and nanoparticles via hydrogen spillover for enhancing CO2 photoreduction to CH4. Adv. Mater. 2022, 34, 2200057.

    Article  CAS  Google Scholar 

  9. Ma, J. P.; Ren, J.; Jia, Y. M.; Wu, Z.; Chen, L.; Haugen, N. O.; Huang, H. T.; Liu, Y. S. High efficiency bi-harvesting light/vibration energy using piezoelectric zinc oxide nanorods for dye decomposition. Nano Energy 2019, 62, 376–383.

    Article  CAS  Google Scholar 

  10. Ma, J. P.; Jing, S. J.; Wang, Y.; Liu, X.; Gan, L. Y.; Wang, C.; Dai, J. Y.; Han, X. D.; Zhou, X. Y. Piezo-electrocatalysis for CO2 reduction driven by vibration. Adv. Energy Mater. 2022, 12, 2200253.

    Article  CAS  Google Scholar 

  11. Wang, Y.; Meng, J. Z.; Jing, S. J.; Wang, K. W.; Ban, C. G.; Feng, Y. J.; Duan, Y. Y.; Ma, J. P.; Gan, L. Y.; Zhou, X. Y. Origin of bismuth-rich strategy in bismuth oxyhalide photocatalysts. Energy Environ. Mater., in press, DOI: https://doi.org/10.1002/eem2.12432.

  12. Ban, C. G.; Duan, Y. Y.; Wang, Y.; Ma, J. P.; Wang, K. W.; Meng, J. Z.; Liu, X.; Wang, C.; Han, X. D.; Cao, G. Z. et al. Isotype heterojunction-boosted CO2 photoreduction to CO. Nano-Micro Lett. 2022, 14, 74.

    Article  ADS  CAS  Google Scholar 

  13. Di, J.; Chen, C.; Zhu, C.; Long, R.; Chen, H. L.; Cao, X. Z.; Xiong, J.; Weng, Y. X.; Song, L.; Li, S. Z. et al. Surface local polarization induced by bismuth-oxygen vacancy pairs tuning non-covalent interaction for CO2 photoreduction. Adv. Energy Mater. 2021, 11, 2102389.

    Article  CAS  Google Scholar 

  14. Guo, Q.; Zhou, C. Y.; Ma, Z. B.; Yang, X. M. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. 2019, 31, 1901997.

    Article  CAS  Google Scholar 

  15. Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.

    Article  CAS  PubMed  Google Scholar 

  16. He, Y. Q.; Lei, Q.; Li, C. G.; Han, Y.; Shi, Z.; Feng, S. H. Defect engineering of photocatalysts for solar-driven conversion of CO2 into valuable fuels. Mater. Today 2021, 50, 358–384.

    Article  CAS  Google Scholar 

  17. Wan, L. L.; Zhou, Q. X.; Wang, X.; Wood, T. E.; Wang, L.; Duchesne, P. N.; Guo, J. L.; Yan, X. L.; Xia, M. K.; Li, Y. F. et al. Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nat. Catal. 2019, 2, 889–898.

    Article  CAS  Google Scholar 

  18. Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 2019, 4, 690–699.

    Article  ADS  CAS  Google Scholar 

  19. Feng, Y. J.; Wang, Y.; Wang, K. W.; Ma, J. P.; Duan, Y. Y.; Liu, J.; Lu, X.; Zhang, B.; Wang, G. Y.; Zhou, X. Y. Ultra-fine Cu clusters decorated hydrangea-like titanium dioxide for photocatalytic hydrogen production. Rare Metals 2022, 41, 385–395.

    Article  CAS  Google Scholar 

  20. Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660.

    Article  Google Scholar 

  21. Zhang, F.; Li, Y. H.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 reduction. Appl. Catal. B Environ. 2020, 268, 118380.

    Article  CAS  Google Scholar 

  22. Li, X.; Jiang, H. P.; Ma, C. C.; Zhu, Z.; Song, X. H.; Wang, H. Q.; Huo, P. W.; Li, X. Y. Local surface plasma resonance effect enhanced Z-scheme ZnO/Au/g-C3N4 film photocatalyst for reduction of CO2 to CO. Appl. Catal. B Environ. 2021, 283, 119638.

    Article  CAS  Google Scholar 

  23. Ye, L.; Chai, G. L.; Wen, Z. H. Zn-MOF-74 derived n-doped mesoporous carbon as pH-universal electrocatalyst for oxygen reduction reaction. Adv. Funct. Mater. 2017, 27, 1606190.

    Article  Google Scholar 

  24. Wu, X. H.; Zhou, S.; Wang, Z. Y.; Liu, J. S.; Pei, W.; Yang, P. J.; Zhao, J. J.; Qiu, J. S. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater. Adv. Energy Mater. 2019, 9, 1901333.

    Article  Google Scholar 

  25. Wang, Z. Y.; Jiang, S. D.; Duan, C. Q.; Wang, D.; Luo, S. H.; Liu, Y. G. In situ synthesis of Co3O4 nanoparticles confined in 3D nitrogen-doped porous carbon as an efficient bifunctional oxygen electrocatalyst. Rare Matals 2020, 39, 1383–1394.

    Article  CAS  Google Scholar 

  26. Spencer, M. S. Models of strong metal-support interaction (SMSI) in Pt on TiO2 catalysts. J. Catal. 1985, 93, 216–223.

    Article  CAS  Google Scholar 

  27. Bernal, S.; Calvino, J. J.; Cauqui, M. A.; Gatica, J. M.; Larese, C.; Pérez Omil, J. A.; Pintado, J. M. Some recent results on metal/support interaction effects in NM/CeO2 (NM: noble metal) catalysts. Catal. Today 1999, 50, 175–206.

    Article  CAS  Google Scholar 

  28. Du, X. R.; Huang, Y. K.; Pan, X. L.; Han, B.; Su, Y.; Jiang, Q. K.; Li, M. R.; Tang, H. L.; Li, G.; Qiao, B. T. Size-dependent strong metal-support interaction in TiO2 supported Au nanocatalysts. Nat. Commun. 2020, 11, 5811.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rodriguez, J. A.; Ma, S.; Liu, P.; Hrbek, J.; Evans, J.; Pérez, M. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science 2007, 318, 1757–1760.

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Yan, H.; He, K.; Samek, I. A.; Jing, D.; Nanda, M. G.; Stair, P. C.; Notestein, J. M. Tandem In2O3-Pt/Al2O3 catalyst for coupling of propane dehydrogenation to selective H2 combustion. Science 2021, 371, 1257–1260.

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Rae, B. D.; Long, B. M.; Badger, M. R.; Price, G. D. Functions, compositions, and evolution of the two types of carboxysomes: Polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiol. Mol. Biol. Rev. 2013, 77, 357–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Staunton, J.; Weissman, K. J. Polyketide biosynthesis: A millennium review. Nat. Prod. Rep. 2001, 18, 380–416.

    Article  CAS  PubMed  Google Scholar 

  33. Lin, F. X.; Lv, F.; Zhang, Q. H.; Luo, H.; Wang, K.; Zhou, J. H.; Zhang, W. Y.; Zhang, W. S.; Wang, D. W.; Gu, L. et al. Local coordination regulation through tuning atomic-scale cavities of Pd metallene toward efficient oxygen reduction electrocatalysis. Adv. Mater. 2022, 34, 2202084.

    Article  CAS  Google Scholar 

  34. Yang, X. C.; Sun, J. K.; Kitta, M.; Pang, H.; Xu, Q. Encapsulating highly catalytically active metal nanoclusters inside porous organic cages. Nat. Catal. 2018, 1, 214–220.

    Article  CAS  Google Scholar 

  35. Yuan, Y.; Yang, Y. J.; Faheem, M.; Zou, X. Q.; Ma, X. J.; Wang, Z. Y.; Meng, Q. H.; Wang, L. L.; Zhao, S.; Zhu, G. S. Molecularly imprinted porous aromatic frameworks serving as porous artificial enzymes. Adv. Mater. 2018, 30, 1800069.

    Article  Google Scholar 

  36. Li, Y. X.; Hui, D. P.; Sun, Y. Q.; Wang, Y.; Wu, Z. J.; Wang, C. Y.; Zhao, J. C. Boosting thermo-photocatalytic CO2 conversion activity by using photosynthesis-inspired electron-proton-transfer mediators. Nat. Commun. 2021, 12, 123.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, X. L.; Sun, X. H.; Guo, S. X.; Bond, A. M.; Zhang, J. Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential. Energy Environ. Sci. 2019, 12, 1334–1340.

    Article  CAS  Google Scholar 

  38. Dou, H. L.; Long, D.; Rao, X.; Zhang, Y. P.; Qin, Y. M.; Pan, F.; Wu, K. Photocatalytic degradation kinetics of gaseous formaldehyde flow using TiO2 nanowires. ACS Sustainable Chem. Eng. 2019, 7, 4456–4465.

    Article  CAS  Google Scholar 

  39. Jiao, Z. B.; Shang, M. D.; Liu, J. M.; Lu, G. X.; Wang, X. S.; Bi, Y. P. The charge transfer mechanism of Bi modified TiO2 nanotube arrays: TiO2 serving as a “charge-transfer-bridge”. Nano Energy 2017, 31, 96–104.

    Article  CAS  Google Scholar 

  40. Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2020, 59, 1295–1301.

    Article  CAS  Google Scholar 

  41. Yang, G. H.; Miao, W. K.; Yuan, Z. M.; Jiang, Z. Y.; Huang, B. B.; Wang, P.; Chen, J. C. Bi quantum dots obtained via in situ photodeposition method as a new photocatalytic CO2 reduction cocatalyst instead of noble metals: Borrowing redox conversion between Bi2O3 and Bi. Appl. Catal. B Environ. 2018, 237, 302–308.

    Article  CAS  Google Scholar 

  42. Jiang, X. L.; Lin, L.; Rong, Y. W.; Li, R. T.; Jiang, Q. K.; Yang, Y. Y.; Gao, D. F. Boosting CO2 electroreduction to formate via bismuth oxide clusters. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-022-5073-0.

  43. Wang, C.; Wang, K. W.; Feng, Y. B.; Li, C.; Zhou, X. Y.; Gan, L. Y.; Feng, Y. J.; Zhou, H. J.; Zhang, B.; Qu, X. L. et al. Co and Pt dual-single-atoms with oxygen-coordinated Co-O-Pt dimer sites for ultrahigh photocatalytic hydrogen evolution efficiency. Adv. Mater. 2021, 33, 2003327.

    Article  CAS  Google Scholar 

  44. Wang, B.; Feng, W. H.; Zhang, L. L.; Zhang, Y.; Huang, X. Y.; Fang, Z. B.; Liu, P. In situ construction of a novel Bi/CdS nanocomposite with enhanced visible light photocatalytic performance. Appl. Catal. B Environ. 2017, 206, 510–519.

    Article  CAS  Google Scholar 

  45. Zhu, J. Y.; Li, Y. P.; Wang, X. J.; Zhao, J.; Wu, Y. S.; Li, F. T. Simultaneous phosphorylation and Bi modification of BiOBr for promoting photocatalytic CO2 reduction. ACS Sustainable Chem. Eng. 2019, 7, 14953–14961.

    Article  CAS  Google Scholar 

  46. Wang, H. W.; Gu, X. K.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Chen, S.; Cao, L. N.; Li, W. X.; Lu, J. L. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity. Sci. Adv. 2019, 5, eaat6413.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  47. Wang, Y. J.; Zhuang, G. L.; Zhang, J. W.; Luo, F.; Cheng, X.; Sun, F. L.; Fu, S. S.; Lu, T. B.; Zhang, Z. M. Co-dissolved isostructural polyoxovanadates to construct single-atom-site catalysts for efficient CO2 photoreduction. Angew. Chem., Int. Ed. 2023, 62, e202216592.

    Article  CAS  Google Scholar 

  48. Hülsey, M. J.; Zhang, B.; Ma, Z. R.; Asakura, H.; Do, D. A.; Chen, W.; Tanaka, T.; Zhang, P.; Wu, Z. L.; Yan, N. In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nat. Commun. 2019, 10, 1330.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  49. Zhu, Q. B.; Xuan, Y. M.; Zhang, K.; Chang, K. Enhancing photocatalytic CO2 reduction performance of g-C3N4-based catalysts with non-noble plasmonic nanoparticles. Appl. Catal. B Environ. 2021, 297, 120440.

    Article  CAS  Google Scholar 

  50. Yang, J. J.; Zhang, Y.; Xie, X. Y.; Fang, W. H.; Cui, G. L. Photocatalytic reduction of carbon dioxide to methane at the Pd-supported TiO2 interface: Mechanistic insights from theoretical studies. ACS Catal. 2022, 12, 8558–8571.

    Article  CAS  Google Scholar 

  51. Liu, L. J.; Zhao, C. Y.; Li, Y. Spontaneous dissociation of CO2 to CO on defective surface of Cu(I)/TiO2−x nanoparticles at room temperature. J. Phys. Chem. C 2012, 116, 7904–7912.

    Article  CAS  Google Scholar 

  52. Wang, W.; Deng, C. Y.; Xie, S. J.; Li, Y. F.; Zhang, W. Y.; Sheng, H.; Chen, C. C.; Zhao, J. C. Photocatalytic C–C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II). J. Am. Chem. Soc. 2021, 143, 2984–2993.

    Article  CAS  PubMed  Google Scholar 

  53. Vasileff, A.; Zhi, X.; Xu, C. C.; Ge, L.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Selectivity control for electrochemical CO2 reduction by charge redistribution on the surface of copper alloys. ACS Catal. 2019, 9, 9411–9417.

    Article  CAS  Google Scholar 

  54. Yi, J. D.; Xie, R. K.; Xie, Z. L.; Chai, G. L.; Liu, T. F.; Chen, R. P.; Huang, Y. B.; Cao, R. Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem., Int. Ed. 2020, 59, 23641–23648.

    Article  CAS  Google Scholar 

  55. Firet, N. J.; Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 2017, 7, 606–612.

    Article  CAS  Google Scholar 

  56. Wu, W. C.; Chuang, C. C.; Lin, J. L. Bonding geometry and reactivity of methoxy and ethoxy groups adsorbed on powdered TiO2. J. Phys. Chem. B. 2000, 104, 8719–8724.

    Article  CAS  Google Scholar 

  57. Ji, Y. F.; Luo, Y. New mechanism for photocatalytic reduction of CO2 on the anatase TiO2(101) surface: The essential role of oxygen vacancy. J. Am. Chem. Soc. 2016, 138, 15896–15902.

    Article  CAS  PubMed  Google Scholar 

  58. Ji, Y. F.; Luo, Y. Theoretical study on the mechanism of photoreduction of CO2 to CH4 on the anatase TiO2(101) surface. ACS Catal. 2016, 6, 2018–2025.

    Article  CAS  Google Scholar 

  59. Di, J.; Chen, C.; Yang, S. Z.; Chen, S. M.; Duan, M. L.; Xiong, J.; Zhu, C.; Long, R.; Hao, W.; Chi, Z. et al. Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat. Commun. 2019, 10, 2840.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported in part by the National Natural Science Foundation of China (Nos. 52125103, 52071041 and 12074048), the Project for Fundamental and Frontier Research in Chongqing (Nos. cstc2020jcyj-msxmX0777 and cstc2020jcyj-msxmX0796). We would like to thank Ms. C. Y. Y. from the Analytical and Testing Center at Chongqing University for her helpful TRPL measurement and Ms. H. J. Z. for XRD characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang Han, Danmei Yu or Xiaoyuan Zhou.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, J., Wang, K., Wang, Y. et al. Bismuth clusters pinned on TiO2 porous nanowires boosting charge transfer for CO2 photoreduction to CH4. Nano Res. 17, 1190–1198 (2024). https://doi.org/10.1007/s12274-023-5990-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5990-6

Keywords

Navigation