Skip to main content
Log in

High performance wide frequency band triboelectric nanogenerator based on multilayer wave superstructure for harvesting vibration energy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Efficiently converting the random vibration energy widely existed in human activities and natural environments into electricity is significant to the local power supply of sensor nodes in the internet of things. However, the conversion efficiency of energy harvester is relatively low due to the limitation of device’s intrinsic frequency. In this work, a multi-layered, wavy super-structured-triboelectric nanogenerator (SS-TENG) is designed, whose output performances can be greatly promoted by combining the charge excitation mechanism. The steel sheet acts not only as an electrode but also as a supporter for the overall frame of SS-TENG, which effectively improves the space utilization rate and results in a volume charge density up to 129 mC·m−3. In addition, the resonant frequency width of the SS-TENG can be widened by changing the parameters of the superstructure. For demonstration, the SS-TENG can sustainably drive two temperature and humidity sensors in parallel by harvesting vibration energy. This work may provide an effective strategy for harvesting vibration energy and broadening frequency response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khan, I.; Belqasmi, F.; Glitho, R.; Crespi, N.; Morrow, M.; Polakos, P. Wireless sensor network virtualization: A survey. IEEE Commun. Surv. Tutor. 2016, 18, 553–576.

    Article  Google Scholar 

  2. Majid, M.; Habib, S.; Javed, A. R.; Rizwan, M.; Srivastava, G.; Gadekallu, T. R.; Lin, J. C. Applications of wireless sensor networks and internet of things frameworks in the industry revolution 4.0: A systematic literature review. Sensors (Basel) 2022, 22, 2087.

    Article  Google Scholar 

  3. Kim, W. G.; Kim, D.; Jeon, S. B.; Park, S. J.; Tcho, I. W.; Jin, I. K.; Han, J. K.; Choi, Y. K. Multidirection and multiamplitude triboelectric nanogenerator composed of porous conductive polymer with prolonged time of current generation. Adv. Energy Mater. 2018, 8, 1800654.

    Article  Google Scholar 

  4. Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.

    Article  Google Scholar 

  5. Mrozik, W.; Rajaeifar, M. A.; Heidrich, O.; Christensen, P. Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy Environ. Sci. 2021, 14, 6099–6121.

    Article  CAS  Google Scholar 

  6. Wang, J.; Li, S. M.; Yi, F.; Zi, Y. L.; Lin, J.; Wang, X. F.; Xu, Y. L.; Wang, Z. L. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 2016, 7, 12744.

    Article  CAS  Google Scholar 

  7. Guo, H. Y.; Wen, Z.; Zi, Y. L.; Yeh, M. H.; Wang, J.; Zhu, L. P.; Hu, C. G.; Wang, Z. L. A water-proof triboelectric-electromagnetic hybrid generator for energy harvesting in harsh environments. Adv. Energy Mater. 2016, 6, 1501593.

    Article  Google Scholar 

  8. Wu, H.; Wang, Z. K.; Zi, Y. L. Multi-mode water-tube-based triboelectric nanogenerator designed for low-frequency energy harvesting with ultrahigh volumetric charge density. Adv. Energy Mater. 2021, 11, 2100038.

    Article  CAS  Google Scholar 

  9. Huang, L. B.; Xu, W.; Bai, G. X.; Wong, M. C.; Yang, Z. B.; Hao, J. H. Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator. Nano Energy 2016, 30, 36–42.

    Article  CAS  Google Scholar 

  10. Shao, H. Y.; Cheng, P.; Chen, R. X.; Xie, L. J.; Sun, N.; Shen, Q. Q.; Chen, X. P.; Zhu, Q. Q.; Zhang, Y.; Liu, Y. N. et al. Triboelectric-electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 2018, 10, 54.

    Article  Google Scholar 

  11. Kim, M. K.; Kim, M. S.; Jo, S. E.; Kim, Y. J. Triboelectric-thermoelectric hybrid nanogenerator for harvesting frictional energy. Smart Mater. Struct. 2016, 25, 125007.

    Article  Google Scholar 

  12. Yang, H. M.; Deng, M. M.; Zeng, Q. X.; Zhang, X. M.; Hu, J.; Tang, Q.; Yang, H. K.; Hu, C. G.; Xi, Y.; Wang, Z. L. Polydirectional microvibration energy collection for self-powered multifunctional systems based on hybridized nanogenerators. ACS Nano 2020, 14, 3328–3336.

    Article  CAS  Google Scholar 

  13. Wu, H.; Wang, J. Y.; Wu, Z. Y.; Kang, S. L.; Wei, X. L.; Wang, H. Q.; Luo, H.; Yang, L. J.; Liao, R. J.; Wang, Z. L. Multi-parameter optimized triboelectric nanogenerator based self-powered sensor network for broadband Aeolian vibration online-monitoring of transmission lines. Adv. Energy Mater. 2022, 12, 2103654.

    Article  CAS  Google Scholar 

  14. Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521.

    Article  CAS  Google Scholar 

  15. Yuan, Z. X.; Liu, W. Q.; Zhang, S.; Zhu, Q.; Hu, G. D. Bandwidth broadening through stiffness merging using the nonlinear cantilever generator. Mech. Syst. Signal Process. 2019, 132, 1–17.

    Article  Google Scholar 

  16. Hu, S. T.; Yuan, Z. H.; Li, R. N.; Cao, Z.; Zhou, H. L.; Wu, Z. Y.; Wang, Z. L. Vibration-driven triboelectric nanogenerator for vibration attenuation and condition monitoring for transmission lines. Nano Lett. 2022, 22, 5584–5591.

    Article  CAS  Google Scholar 

  17. Li, Z. J.; Zuo, L.; Luhrs, G.; Lin, L. J.; Qin, Y. X. Electromagnetic energy-harvesting shock absorbers: Design, modeling, and road tests. IEEE Trans. Veh. Technol. 2013, 62, 1065–1074.

    Article  Google Scholar 

  18. Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A. Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator. J. Appl. Mech. Tech. Phys. 2015, 56, 813–822.

    Article  Google Scholar 

  19. Cheng, P.; Guo, H. Y.; Wen, Z.; Zhang, C. L.; Yin, X.; Li, X. Y.; Liu, D.; Song, W. X.; Sun, X. H.; Wang, J. et al. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy 2019, 57, 432–439.

    Article  CAS  Google Scholar 

  20. Shepelin, N. A.; Glushenkov, A. M.; Lussini, V. C.; Fox, P. J.; Dicinoski, G. W.; Shapter, J. G.; Ellis, A. V. New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy Environ. Sci. 2019, 12, 1143–1176.

    Article  CAS  Google Scholar 

  21. Sezer, N.; Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2021, 80, 105567.

    Article  CAS  Google Scholar 

  22. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  23. Zhu, G.; Peng, B.; Chen, J.; Jing, Q. S.; Wang, Z. L. Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy 2015, 14, 126–138.

    Article  CAS  Google Scholar 

  24. Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radialarrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.

    Article  Google Scholar 

  25. Guo, H. Y.; Chen, J.; Wang, L. F.; Wang, A. C.; Li, Y. F.; An, C. H.; He, J. H.; Hu, C. G.; Hsiao, V. K. S.; Wang, Z. L. A highly efficient triboelectric negative air ion generator. Nat. Sustain. 2020, 4, 147–153.

    Article  Google Scholar 

  26. He, W. C.; Liu, W. L.; Fu, S. K.; Wu, H. Y.; Shan, C. C.; Wang, Z.; Xi, Y.; Wang, X.; Guo, H. Y.; Liu, H. et al. Ultrahigh performance triboelectric nanogenerator enabled by charge transmission in interfacial lubrication and potential decentralization design. Research (Wash. D C) 2022, 2022, 9812865.

    CAS  Google Scholar 

  27. He, W. C.; Shan, C. C.; Wu, H. Y.; Fu, S. K.; Li, Q. Y.; Li, G.; Zhang, X. M.; Du, Y.; Wang, J.; Wang, X. et al. Capturing dissipation charge in charge space accumulation area for enhancing output performance of sliding triboelectric nanogenerator. Adv. Energy Mater. 2022, 12, 2201454.

    Article  CAS  Google Scholar 

  28. Liu, G. L.; Guo, H. Y.; Xu, S. X.; Hu, C. G.; Wang, Z. L. Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Adv. Energy Mater. 2019, 9, 1900801.

    Article  Google Scholar 

  29. He, X.; Zi, Y. L.; Guo, H. Y.; Zheng, H. W.; Xi, Y.; Wu, C. S.; Wang, J.; Zhang, W.; Lu, C. H.; Wang, Z. L. A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics. Adv. Funct. Mater. 2017, 27, 1604378.

    Article  Google Scholar 

  30. Liang, X.; Jiang, T.; Liu, G. X.; Feng, Y. W.; Zhang, C.; Wang, Z. L. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 2020, 13, 277–285.

    Article  Google Scholar 

  31. Wang, H. M.; Xu, L.; Bai, Y.; Wang, Z. L. Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat. Commun. 2020, 11, 4203.

    Article  Google Scholar 

  32. He, W. C.; Liu, W. L.; Chen, J.; Wang, Z.; Liu, Y. K.; Pu, X. J.; Yang, H. M.; Tang, Q.; Yang, H. K.; Guo, H. Y. et al. Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 2020, 11, 4277.

    Article  CAS  Google Scholar 

  33. Xu, M. Y.; Wang, P. H.; Wang, Y. C.; Zhang, S. L.; Wang, A. C.; Zhang, C. L.; Wang, Z. J.; Pan, X. X.; Wang, Z. L. A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self-powered vibration sensing. Adv. Energy Mater. 2018, 8, 1702432.

    Article  Google Scholar 

  34. Luo, X. X.; Zhu, L. P.; Wang, Y. C.; Li, J. Y.; Nie, J. J.; Wang, Z. L. A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv. Funct. Mater. 2021, 31, 2104928.

    Article  CAS  Google Scholar 

  35. Yang, W. Q.; Chen, J.; Jing, Q. S.; Yang, J.; Wen, X. N.; Su, Y. J.; Zhu, G.; Bai, P.; Wang, Z. L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 2014, 24, 4090–4096.

    Article  CAS  Google Scholar 

  36. Zhang, H. L.; Yang, Y.; Su, Y. J.; Chen, J.; Adams, K.; Lee, S.; Hu, C. G.; Wang, Z. L. Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor. Adv. Funct. Mater. 2014, 24, 1401–1407.

    Article  CAS  Google Scholar 

  37. Liu, G. L.; Guo, H. Y.; Chen, L.; Wang, X.; Wei, D. P.; Hu, C. G. Double-induced-mode integrated triboelectric nanogenerator based on spring steel to maximize space utilization. Nano Res. 2016, 9, 3355–3363.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key Research and Development Program (No. 2021YFA1201602), the NSFC (No. 62004017), the Fundamental Research Funds for the Central Universities (No. 2021CDJQY-019), and the Graduate Research and Innovation Foundation of Chongqing, China (No. CYB22047). J. C. also wants to acknowledge the supports from the Natural Science Foundation of Chongqing (No. cstc2021jcyjmsxmX0746) and the Scientific Research Project of Chongqing Education Committee (No. KJQN202100522).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Chen, Wencong He or Hengyu Guo.

Electronic Supplementary Material

12274_2023_5476_MOESM1_ESM.pdf

High performance wide frequency band triboelectric nanogenerator based on multilayer wave superstructure for harvesting vibration energy

Supplementary material, approximately 1.89 MB.

Supplementary material, approximately 3.13 MB.

Supplementary material, approximately 5.23 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Chang, W., Li, G. et al. High performance wide frequency band triboelectric nanogenerator based on multilayer wave superstructure for harvesting vibration energy. Nano Res. 16, 6933–6939 (2023). https://doi.org/10.1007/s12274-023-5476-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5476-6

Keywords

Navigation