Skip to main content
Log in

Highly adaptive and broadband triboelectric energy harvester with stretching silicone rubber strip for variable harmonic frequency vibration

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

An enormous number of wireless sensing nodes (WSNs) are of great significance for the Internet of Things (IoT). It is tremendously prospective to realize the in-situ power supply of WSNs by harvesting unutilized mechanical vibration energy. A harmonic silicone rubber triboelectric nanogenerator (HSR-TENG) is developed focusing on ubiquitous constant working frequency machinery. The unique design of the strip serving as a flexible resonator realizes both soft contact and high and broadband output. The significant factors influencing the 1st-order vibration mode of the strip are developed for realizing the harmonic frequency adaptation to external vibration. The surface treatment of the strip improves the output performance of HSR-TENG by 49.1% as well as eliminates the adhesion effect. The HSR-TENG is able to achieve a voltage output bandwidth of 19 Hz under a vibration strength of 3.0, showing its broadband capability. The peak power density of 153.9 W/m3 is achieved and 12 × 0.5 W light-emitting diodes (LEDs) are successfully illuminated by the HSR-TENG. It can continuously power a temperature sensor by harvesting the actual compressor vibration energy. In brief, the HSR-TENG provides a promising way for constant frequency vibration energy harvesting, so as to achieve in-situ power supply for the WSNs in the vicinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mori, H.; Kundaliya, J.; Naik, K.; Shah, M. IoT technologies in smart environment: Security issues and future enhancements. Environ. Sci. Pollut. Res. 2022, 29, 47969–47987.

    Article  Google Scholar 

  2. Liu, L.; Guo, X. G.; Lee, C. Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy 2021, 88, 106304.

    Article  CAS  Google Scholar 

  3. Abadía, J. J. P.; Walther, C.; Osman, A.; Smarsly, K. A systematic survey of Internet of Things frameworks for smart city applications. Sust. Cities Soc. 2022, 83, 103949.

    Article  Google Scholar 

  4. Deng, X. J.; Jiang, Y. L.; Yang, L. T.; Yi, L. Z.; Chen, J. Y.; Liu, Y.; Li, X. Y. Learning-automata-based confident information coverage barriers for smart ocean Internet of Things. IEEE Internet Things J. 2020, 7, 9919–9929.

    Article  Google Scholar 

  5. Qiu, T.; Zhao, Z.; Zhang, T.; Chen, C.; Chen, C. L. P. Underwater Internet of Things in smart ocean: System architecture and open issues. IEEE Trans. Ind. Inform. 2020, 16, 4297–4307.

    Article  Google Scholar 

  6. Aslam, S.; Michaelides, M. P.; Herodotou, H. Internet of ships: A survey on architectures, emerging applications, and challenges. IEEE Internet Things J. 2020, 7, 9714–9727.

    Article  Google Scholar 

  7. Zhu, F. H.; Lv, Y. S.; Chen, Y. Y.; Wang, X.; Xiong, G.; Wang, F. Y. Parallel transportation systems: Toward IoT-enabled smart urban traffic control and management. IEEE Trans. Intell. Transp. Syst. 2020, 21, 4063–4071.

    Article  Google Scholar 

  8. Chopade, S. S.; Gupta, H. P.; Dutta, T. Survey on sensors and smart devices for IoT enabled intelligent healthcare system. Wirel. Pers. Commun. 2023, 131, 1957–1995.

    Article  Google Scholar 

  9. Guiloufi, A. B.; El Khediri, S.; Nasri, N.; Kachouri, A. A comparative study of energy efficient algorithms for IoT applications based on WSNs. Multimed. Tools Appl. 2023, 82, 42239–42275.

    Article  Google Scholar 

  10. Du, T. L.; Dong, F. Y.; Xi, Z. Y.; Zhu, M. X.; Zou, Y. J.; Sun, P. T.; Xu, M. Y. Recent advances in mechanical vibration energy harvesters based on triboelectric nanogenerators. Small 2023, 19, 2300401.

    Article  CAS  Google Scholar 

  11. Dogra, R.; Rani, S.; Babbar, H.; Krah, D. Energy-efficient routing protocol for next-generation application in the Internet of Things and wireless sensor networks. Wirel. Commun. Mob. Comput. 2022, 2022, 8006751.

    Article  Google Scholar 

  12. Alaerjan, A. Towards sustainable distributed sensor networks: An approach for addressing power limitation issues in WSNs. Sensors 2023, 23, 975.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liazid, H.; Lehsaini, M.; Liazid, A. Data transmission reduction using prediction and aggregation techniques in IoT-based wireless sensor networks. J. Netw. Comput. Appl. 2023, 211, 103556.

    Article  Google Scholar 

  14. Singla, J.; Mahajan, R.; Bagai, D. An energy-efficient technique for mobile-wireless-sensor-network-based IoT. ETRI J. 2022, 44, 389–399.

    Article  Google Scholar 

  15. Jafari, M.; Khan, K.; Gauchia, L. Deterministic models of Li-ion battery aging: It is a matter of scale. J. Energy Storage 2018, 20, 67–77.

    Article  Google Scholar 

  16. Hayyat, M. U.; Nawaz, R.; Siddiq, Z.; Shakoor, M. B.; Mushtaq, M.; Ahmad, S. R.; Ali, S.; Hussain, A.; Irshad, M. A.; Alsahli, A. A. et al. Investigation of lithium application and effect of organic matter on soil health. Sustainability 2021, 13, 1705.

    Article  CAS  Google Scholar 

  17. Harrop, P. Battery elimination in electronics and electrical engineering 2018–2028. GlobeNewswire: United Kingdom, 2017.

    Google Scholar 

  18. Chen, X. G.; Li, Y. M. Design, modeling, and testing of a vibration absorption device with energy harvesting based on force amplifier and piezoelectric stack. Energy Conv. Manag. 2022, 255, 115305.

    Article  Google Scholar 

  19. Yang, T.; Zhou, S. X.; Fang, S. T.; Qin, W. Y.; Inman, D. J. Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis, and applications. Appl. Phys. Rev. 2021, 8, 031317.

    Article  CAS  Google Scholar 

  20. Bansal, S.; Choi, C.; Hardwick, J.; Bagchi, B.; Tiwari, M. K.; Subramanian, S. Transmissive labyrinthine acoustic metamaterial-based holography for extraordinary energy harvesting. Adv. Eng. Mater. 2023, 25, 2201117.

    Article  CAS  PubMed  Google Scholar 

  21. Xiao, H. F.; Pan, M.; Chu, J. Y. H.; Bowen, C. R.; Bader, S.; Aranda, J.; Zhu, M. L. Hydraulic pressure ripple energy harvesting: Structures, materials, and applications. Adv. Energy Mater. 2022, 12, 2103185.

    Article  CAS  Google Scholar 

  22. Chang, C.; He, X. Y.; Han, Z. Y.; Pei, L. L.; Wang, Z. Y.; Ji, Y. L. Harvesting thermal energy via tube-based triboelectric nanogenerators within an oscillating heat pipe. Sustain. Energy Fuels 2022, 6, 693–699.

    Article  CAS  Google Scholar 

  23. Roundy, S.; Wright, P. K.; Rabaey, J. A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 2003, 26, 1131–1144.

    Article  Google Scholar 

  24. Prajwal, K. T.; Manickavasagam, K.; Suresh, R. A review on vibration energy harvesting technologies: Analysis and technologies. Eur. Phys. J. Spec. Top. 2022, 231, 1359–1371.

    Article  Google Scholar 

  25. Basaran, S. Hybrid energy harvesting system under the electromagnetic induced vibrations with non-rigid ground connection. Mech. Syst. Signal Proc. 2022, 163, 108198.

    Article  Google Scholar 

  26. Zabek, D.; Pullins, R.; Pearson, M.; Grzebielec, A.; Skoczkowski, T. Piezoelectric-silicone structure for vibration energy harvesting: Experimental testing and modelling. Smart Mater. Struct. 2021, 30, 035002.

    Article  CAS  Google Scholar 

  27. Zhao, C. Y.; Yang, Y. W.; Upadrashta, D.; Zhao, L. Y. Design, modeling, and experimental validation of a low-frequency cantilever triboelectric energy harvester. Energy 2021, 214, 118885.

    Article  Google Scholar 

  28. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  29. Guo, X.; Shao, J. J.; Willatzen, M.; Yang, Y.; Wang, Z. L. Theoretical model and optimal output of a cylindrical triboelectric nanogenerator. Nano Energy 2022, 92, 106762.

    Article  CAS  Google Scholar 

  30. Wang, Y.; Liu, X. Y.; Wang, Y. W.; Wang, H.; Wang, H.; Zhang, S. L.; Zhao, T. C.; Xu, M. Y.; Wang, Z. L. Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine Internet of Things. ACS Nano 2021, 15, 15700–15709.

    Article  CAS  PubMed  Google Scholar 

  31. Feng, J. R.; Zhou, H. L.; Cao, Z.; Zhang, E. Y.; Xu, S. X.; Li, W. T.; Yao, H. L.; Wan, L. Y.; Liu, G. L. 0.5 m triboelectric nanogenerator for efficient blue energy harvesting of all-sea areas. Adv. Sci. 2022, 9, 2204407.

    Article  Google Scholar 

  32. Ning, H.; Zhou, W. Y.; Tuo, L.; Liang, C. J.; Chen, C. J.; Li, S. Y.; Qu, H.; Wan, L. Y.; Liu, G. L. Tensegrity triboelectric nanogenerator for broadband blue energy harvesting in all-sea areas. Nano Energy 2023, 117, 108906.

    Article  CAS  Google Scholar 

  33. Tcho, I. W.; Kim, W. G.; Kim, J. K.; Kim, D. W.; Yun, S. Y.; Son, J. H.; Choi, Y. K. A flutter-driven triboelectric nanogenerator for harvesting energy of gentle breezes with a rear-fixed fluttering film. Nano Energy 2022, 98, 107197.

    Article  CAS  Google Scholar 

  34. Hu, X. Y.; Feng, J. R.; Liang, C. J.; Ning, H.; Chen, C. J.; Li, J. Y.; Wen, H. G.; Yao, H. L.; Wan, L. Y.; Liu, G. L. Round-trip oscillation triboelectric nanogenerator with high output response and low wear to harvest random wind energy. Nano Res. 2023, 16, 11259–11268.

    Article  CAS  Google Scholar 

  35. Taghavi, M.; Sadeghi, A.; Mazzolai, B.; Beccai, L.; Mattoli, V. Triboelectric-based harvesting of gas flow energy and powerless sensing applications. Appl. Surf. Sci. 2014, 323, 82–87.

    Article  CAS  Google Scholar 

  36. Gao, Y. Y.; Xu, B. G.; Tan, D.; Li, M. Q.; Wang, Y. T.; Yang, Y. J. Asymmetric-elastic-structure fabric-based triboelectric nanogenerators for wearable energy harvesting and human motion sensing. Chem. Eng. J. 2023, 466, 143079.

    Article  CAS  Google Scholar 

  37. Shan, C. C.; He, W. C.; Wu, H. Y.; Fu, S. K.; Li, K. X.; Liu, A. P.; Du, Y.; Wang, J.; Mu, Q. J.; Liu, B. Y. et al. Dual mode TENG with self-voltage multiplying circuit for blue energy harvesting and water wave monitoring. Adv. Funct. Mater., in press, DOI: https://doi.org/10.1002/adfm.202305768.

  38. Fang, L.; Zheng, Q. W.; Hou, W. C.; Gu, J. Y.; Zheng, L. A self-powered tilt angle sensor for tall buildings based on the coupling of multiple triboelectric nanogenerator units. Sens. Actuators A: Phys. 2023, 349, 114015.

    Article  CAS  Google Scholar 

  39. He, L. X.; Zhang, C. G.; Zhang, B. F.; Yang, O.; Yuan, W.; Zhou, L. L.; Zhao, Z. H.; Wu, Z. Y.; Wang, J.; Wang, Z. L. A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoring. ACS Nano 2022, 16, 6244–6254.

    Article  CAS  PubMed  Google Scholar 

  40. Wang, S. Y.; Xu, P.; Wang, X. Y.; Zheng, J. X.; Liu, X. Y.; Liu, J. H.; Chen, T. Y.; Wang, H.; Xie, G. M.; Tao, J. et al. Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception. Nano Energy 2022, 97, 107210.

    Article  CAS  Google Scholar 

  41. Zhao, H. F.; Shu, M. R.; Ai, Z. H.; Lou, Z. R.; Sou, K. W.; Lu, C. Y.; Jin, Y. C.; Wang, Z. H.; Wang, J. Y.; Wu, C. S. et al. A highly sensitive triboelectric vibration sensor for machinery condition monitoring. Adv. Energy Mater. 2022, 12, 2201132.

    Article  CAS  Google Scholar 

  42. Zhang, X. H.; Zhao, J. Q.; Fu, X. P.; Lin, Y.; Qi, Y. C.; Zhou, H.; Zhang, C. Broadband vibration energy powered autonomous wireless frequency monitoring system based on triboelectric nanogenerators. Nano Energy 2022, 98, 107209.

    Article  CAS  Google Scholar 

  43. Bang, J.; Moon, I. K.; Jeon, Y. P.; Ki, B.; Oh, J. Fully wood-based green triboelectric nanogenerators. Appl. Surf. Sci. 2021, 567, 150806.

    Article  CAS  Google Scholar 

  44. Xu, M. Y.; Wang, P. H.; Wang, Y. C.; Zhang, S. L.; Wang, A. C.; Zhang, C. L.; Wang, Z. J.; Pan, X. X.; Wang, Z. L. A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self-powered vibration sensing. Adv. Energy Mater. 2018, 8, 1702432.

    Article  Google Scholar 

  45. Yang, W. Q.; Chen, J.; Zhu, G.; Wen, X. N.; Bai, P.; Su, Y. J.; Lin, Y.; Wang, Z. L. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res. 2013, 6, 880–886.

    Article  CAS  Google Scholar 

  46. Bhatia, D.; Hwang, H. J.; Huynh, N. D.; Lee, S.; Lee, C.; Nam, Y.; Kim, J. G.; Choi, D. Continuous scavenging of broadband vibrations via omnipotent tandem triboelectric nanogenerators with cascade impact structure. Sci. Rep. 2019, 9, 8223.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Qi, Y. C.; Liu, G. X.; Gao, Y. Y.; Bu, T. Z.; Zhang, X. H.; Xu, C. Q.; Lin, Y.; Zhang, C. Frequency band characteristics of a triboelectric nanogenerator and ultra-wide-band vibrational energy harvesting. ACS Appl. Mater. Interfaces 2021, 13, 26084–26092.

    Article  CAS  PubMed  Google Scholar 

  48. Wardhana, E. M.; Mutsuda, H.; Tanaka, Y.; Nakashima, T.; Kanehira, T.; Taniguchi, N.; Maeda, S.; Yonezawa, T.; Yamauchi, M. Harvesting contact-separation-compression vibrations using a flexible and compressible triboelectric generator. Sustain. Energy Technol. Assess. 2020, 42, 100869.

    Google Scholar 

  49. Scuciato, R. F.; Carrer, J. A. M.; Mansur, W. J. Dynamic analysis of Euler–Bernoulli beams by the time-dependent boundary element method formulation. Eng. Anal. Bound. Elem. 2016, 63, 134–153.

    Article  Google Scholar 

  50. Wang, C. Y.; Wang, C. M. Structural Vibration: Exact Solutions for Strings, Membranes, Beams, and Plates; CRC Press: Boca Raton, 2014.

    Google Scholar 

  51. Narimani, A.; Golnaraghi, M. E.; Jazar, G. N. Frequency response of a piecewise linear vibration isolator. J. Vib. Control 2004, 10, 1775–1794.

    Article  Google Scholar 

  52. Qi, Y. C.; Liu, G. X.; Kuang, Y.; Wang, L.; Zeng, J. H.; Lin, Y.; Zhou, H.; Zhu, M. L.; Zhang, C. Frequency band broadening and charge density enhancement of a vibrational triboelectric nanogenerator with two stoppers. Nano Energy 2022, 99, 107427.

    Article  CAS  Google Scholar 

  53. Du, T. L.; Ge, B.; Mtui, A. E.; Zhao, C.; Dong, F. Y.; Zou, Y. J.; Wang, H.; Sun, P. T.; Xu, M. Y. A robust silicone rubber strip-based triboelectric nanogenerator for vibration energy harvesting and multifunctional self-powered sensing. Nanomaterials 2022, 12, 1248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Nos. 52101345 and 52101400), the Scientific Research Fund of Liaoning Provincial Education Department (No. LJKZ0055), the Dalian Outstanding Young Scientific and Technological Talents Project (No. 2021RJ11), and the Open Fund of National Center for International Research of Subsea Engineering Technology and Equipment (No. 3132023354).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyong Yu, Yongjiu Zou or Minyi Xu.

Electronic Supplementary Material

Supplementary material, approximately 64.9 MB.

Supplementary material, approximately 26.1 MB.

Supplementary material, approximately 59.8 MB.

12274_2023_6309_MOESM4_ESM.pdf

Highly adaptive and broadband triboelectric energy harvester with stretching silicone rubber strip for variable harmonic frequency vibration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, T., Shen, D., Xi, Z. et al. Highly adaptive and broadband triboelectric energy harvester with stretching silicone rubber strip for variable harmonic frequency vibration. Nano Res. 17, 4089–4099 (2024). https://doi.org/10.1007/s12274-023-6309-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6309-3

Keywords

Navigation