Skip to main content
Log in

Double-induced-mode integrated triboelectric nanogenerator based on spring steel to maximize space utilization

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Integrated multilayered triboelectric nanogenerators (TENGs) are an efficient approach to solve the insufficient energy problem caused by a single-layered TENG for achieving high output power density. However, most integrated multilayered TENGs have a relatively large volume. Here, a double-induced-mode integrated triboelectric nanogenerator (DI-TENG) based on spring steel plates is presented as a cost-effective, simple, and high-performance device for ambient vibration energy harvesting. The unique stackable rhombus structure, in which spring steel plates act both as skeletons and as electrodes, can enhance the output performance and maximize space utilization. The DI-TENG with five repeated units in a volume of 12 cm × 5 cm × 0.4 cm can generate a short-circuit current of 51 μA and can transfer charges of 1.25 μC in a half period. The contrast experiment is conducted systematically and the results have proved that the DI-TENG has a great advantage over the single-induced-mode TENG (SI-TENG) with only one side of a friction layer on its electrode. Besides, the DI-TENG can easily power a commercial calculator and can be used as a door switch sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evan, D. The internet of things: How the next evolution of the internet is changing everything. http://www.cisco.com/c/dam/ en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf (accessed Jun 13, 2016).

    Google Scholar 

  2. Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

    Article  Google Scholar 

  3. Qin, Y.; Wang, X. D.; Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813.

    Article  Google Scholar 

  4. Wu, N.; Cheng, X. F.; Zhong, Q. Z.; Zhong, J. W.; Li, W. B.; Wang, B.; Hu, B.; Zhou, J. Cellular polypropylene piezoelectret for human body energy harvesting and health monitoring. Adv. Funct. Mater. 2015, 25, 4788–4794.

    Article  Google Scholar 

  5. Beeby, S. P.; Tudor, M. J.; White, N. M. Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 2006, 17, R175–R195.

    Article  Google Scholar 

  6. Li, W. B.; Wu, N.; Zhong, J. W.; Zhong, Q. Z.; Zhao, S.; Wang, B.; Cheng, X. F.; Li, S. L.; Liu, K.; Hu, B. et al. Theoretical study of cellular piezoelectret generators. Adv. Funct. Mater. 2016, 26, 1964–1974.

    Article  Google Scholar 

  7. Wang, L.; Yuan, F. G. Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 2008, 17, 045009.

    Article  Google Scholar 

  8. Lu, S. N.; Liao, Q. L.; Qi, J. J.; Liu, S.; Liu, Y. C.; Liang, Q. J.; Zhang, G. J.; Zhang, Y. The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction. Nano Res. 2016, 9, 372–379.

    Article  Google Scholar 

  9. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator! Nano Energy 2012, 1, 328–334.

    Article  Google Scholar 

  10. Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

    Article  Google Scholar 

  11. Liu, Y.; Niu, S. M.; Wang, Z. L. Theory of tribotronics. Adv. Electron. Mater. 2015, 1, 1500124.

    Article  Google Scholar 

  12. Cui, N. Y.; Liu, J. M.; Gu, L.; Bai, S.; Chen, X. B.; Qin, Y. Wearable triboelectric generator for powering the portable electronic devices. ACS Appl. Mater. Interfaces 2015, 7, 18225–18230.

    Article  Google Scholar 

  13. Guo, H. Y.; He, X. M.; Zhong, J. W.; Zhong, Q. Z.; Leng, Q.; Hu, C. G.; Chen, J.; Tian, L.; Xi, Y.; Zhou, J. A nanogenerator for harvesting airflow energy and light energy. J. Mater. Chem. A 2014, 2, 2079–2087.

    Article  Google Scholar 

  14. Xie, Y. N.; Wang, S. H.; Niu, S. M.; Lin, L.; Jing, Q. S.; Yang, J.; Wu, Z. Y.; Wang, Z. L. Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 2014, 26, 6599–6607.

    Article  Google Scholar 

  15. Tang, W.; Jiang, T.; Fan, F. R.; Yu, A. F.; Zhang, C.; Cao, X.; Wang, Z. L. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 2015, 25, 3718–3725.

    Article  Google Scholar 

  16. Zhu, G.; Zhou, Y. S.; Bai, P.; Meng, X. S.; Jing, Q. S.; Chen, J.; Wang, Z. L. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 2014, 26, 3788–3796.

    Article  Google Scholar 

  17. Weiss, P. S. A conversation with prof. Zhong Lin Wang, energy harvester. ACS Nano 2015, 9, 2221–2226.

    Article  Google Scholar 

  18. Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C.-Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.

    Article  Google Scholar 

  19. Zhong, Q. Z.; Zhong, J. W.; Cheng, X. F.; Yao, X.; Wang, B.; Li, W. B.; Wu, N.; Liu, K.; Hu, B.; Zhou, J. Paper-based active tactile sensor array. Adv. Mater. 2015, 27, 7130–7136.

    Article  Google Scholar 

  20. Chen, J.; Guo, H. Y.; He, X. M.; Liu, G. L.; Xi, Y.; Shi, H. F.; Hu, C. G. Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl. Mater. Interfaces 2016, 8, 736–744.

    Article  Google Scholar 

  21. Zhong, J. W.; Zhu, H. L.; Zhong, Q. Z.; Dai, J. Q.; Li, W. B.; Jang, S.-H.; Yao, Y. G.; Henderson, D.; Hu, Q. Y.; Hu, L. B. et al. Self-powered Human-interactive transparent nanopaper systems. ACS Nano 2015, 9, 7399–7406.

    Article  Google Scholar 

  22. Zhong, J. W.; Zhong, Q. Z.; Hu, Q. Y.; Wu, N.; Li, W. B.; Wang, B.; Hu, B.; Zhou, J. Stretchable self-powered fiberbased strain sensor. Adv. Funct. Mater. 2015, 25, 1798–1803.

    Article  Google Scholar 

  23. Liu, G. L.; Xu, W. N.; Xia, X. N.; Shi, H. F.; Hu, C. G. Newton’s cradle motion-like triboelectric nanogenerator to enhance energy recycle efficiency by utilizing elastic deformation. J. Mater. Chem. A 2015, 3, 21133–21139.

    Article  Google Scholar 

  24. Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282–2289.

    Article  Google Scholar 

  25. Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233.

    Article  Google Scholar 

  26. Zhang, C.; Zhou, T.; Tang, W.; Han, C. B.; Zhang, L. M.; Wang, Z. L. Rotating-disk-based direct-current triboelectric nanogenerator. Adv. Energy Mater. 2014, 4, 1301798.

    Article  Google Scholar 

  27. Yang, Y.; Zhang, H. L.; Chen, J.; Jing, Q. S.; Zhou, Y. S.; Wen, X. N.; Wang, Z. L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 2013, 7, 7342–7351.

    Article  Google Scholar 

  28. Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340.

    Article  Google Scholar 

  29. Meng, B.; Tang, W.; Zhang, X. S.; Han, M. D.; Liu, W.; Zhang, H. X. Self-powered flexible printed circuit board with integrated triboelectric generator. Nano Energy 2013, 2, 1101–1106.

    Article  Google Scholar 

  30. Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.

    Article  Google Scholar 

  31. Guo, H. Y.; Leng, Q.; He, X. M.; Wang, M. J.; Chen, J.; Hu, C. G.; Xi, Y. A triboelectric generator based on checker-like interdigital electrodes with a sandwiched pet thin film for harvesting sliding energy in all directions. Adv. Energy Mater. 2015, 5, 1400790.

    Article  Google Scholar 

  32. Han, C. B.; Zhang, C.; Tang, W.; Li, X. H.; Wang, Z. L. High power triboelectric nanogenerator based on printed circuit board (PCB) technology. Nano Res. 2015, 8, 722–730.

    Article  Google Scholar 

  33. Zhu, G.; Bai, P.; Chen, J.; Wang, Z. L. Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy 2013, 2, 688–692.

    Article  Google Scholar 

  34. Hou, T.-C.; Yang, Y.; Zhang, H. L.; Chen, J.; Chen, L.-J.; Wang, Z. L. Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy 2013, 2, 856–862.

    Article  Google Scholar 

  35. Huang, T.; Wang, C.; Yu, H.; Wang, H. Z.; Zhang, Q. H.; Zhu, M. F. Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy 2015, 14, 226–235.

    Article  Google Scholar 

  36. Zheng, Q.; Shi, B. J.; Fan, F. R.; Wang, X. X.; Yan, L.; Yuan, W. W.; Wang, S. H.; Liu, H.; Li, Z.; Wang, Z. L. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 2014, 26, 5851–5856.

    Article  Google Scholar 

  37. Lin, L.; Wang, S. H.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Hu, Y. F.; Wang, Z. L. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 2013, 13, 2916–2923.

    Article  Google Scholar 

  38. Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.

    Google Scholar 

  39. Liu, G. L.; Liu, R. P.; Guo, H. Y.; Xi, Y.; Wei, D. P.; Hu, C. G. A novel triboelectric generator based on the combination of a waterwheel-like electrode with a spring steel plate for efficient harvesting of low-velocity rotational motion energy. Adv. Electron. Mater. 2016, 2, 1500448.

    Article  Google Scholar 

  40. Chen, J.; Yang, J.; Li, Z. L.; Fan, X.; Zi, Y. L.; Jing, Q. S.; Guo, H. Y.; Wen, Z.; Pradel, K. C.; Niu, S. M. et al. Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy. ACS Nano 2015, 9, 3324–3331.

    Article  Google Scholar 

  41. Choi, D.; Lee, S.; Park, S. M.; Cho, H.; Hwang, W.; Kim, D. S. Energy harvesting model of moving water inside a tubular system and its application of a stick-type compact triboelectric nanogenerator. Nano Res. 2015, 8, 2481–2491.

    Article  Google Scholar 

  42. Bai, P.; Zhu, G.; Lin, Z.-H.; Jing, Q. S.; Chen, J.; Zhang, G.; Ma, J. S.; Wang, Z. L. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 2013, 7, 3713–3719.

    Article  Google Scholar 

  43. Yang, W. Q.; Chen, J.; Jing, Q. S.; Yang, J.; Wen, X. N.; Su, Y. J.; Zhu, G.; Bai, P.; Wang, Z. L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 2014, 24, 4090–4096.

    Article  Google Scholar 

  44. Li, X. H.; Han, C. B.; Zhang, L. M.; Wang, Z. L. Cylindrical spiral triboelectric nanogenerator. Nano Res. 2015, 8, 3197–3204.

    Article  Google Scholar 

  45. Yang, P.-K.; Lin, Z.-H.; Pradel, K. C.; Lin, L.; Li, X. H.; Wen, X. N.; He, J.-H.; Wang, Z. L. Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano 2015, 9, 901–907.

    Article  Google Scholar 

  46. Wang, J.; Wen, Z.; Zi, Y. L.; Zhou, P. F.; Lin, J.; Guo, H. Y.; Xu, Y. L.; Wang, Z. L. All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors. Adv. Funct. Mater. 2016, 26, 1070–1076.

    Article  Google Scholar 

  47. Zhang, L. M.; Xue, F.; Du, W. M.; Han, C. B.; Zhang, C.; Wang, Z. L. Transparent paper-based triboelectric nanogenerator as a page mark and anti-theft sensor. Nano Res. 2014, 7, 1215–1223.

    Article  Google Scholar 

  48. Xie, Y. N.; Wang, S. H.; Niu, S. M.; Lin, L.; Jing, Q. S.; Su, Y. J.; Wu, Z. Y.; Wang, Z. L. Multi-layered disk triboelectric nanogenerator for harvesting hydropower. Nano Energy 2014, 6, 129–136.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenguo Hu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Guo, H., Chen, L. et al. Double-induced-mode integrated triboelectric nanogenerator based on spring steel to maximize space utilization. Nano Res. 9, 3355–3363 (2016). https://doi.org/10.1007/s12274-016-1213-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1213-8

Keywords

Navigation