Skip to main content
Log in

Dual MOFs composites: MIL-53 coated with amorphous UiO-66 for enhanced photocatalytic oxidation of tetracycline and methylene blue

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this work, we proposed a novel strategy for the photocatalytic degradation of the target pollutants tetracycline (TC) and methylene blue (MB) using core—shell dual metal-organic frameworks (MOFs) composites. A series of mesoporous composites MIL-53@UiO-66 were synthesized by solvent-thermal synthesis via coating UiO-66 on the surface of MIL-53. The results show that under the same degradation conditions, only 30 and 15 min are needed to degrade 93% of TC and 96% of MB in the photo-Fenton reaction system, respectively. The amorphous shell layer brings stronger adsorption to the catalyst. MIL-53@UiO-66 composites with equalizing Fermi level are formed to promote photon absorption and electron transfer. Meanwhile, the MIL-53@UiO-66 composites with excellent stability will be a promising catalyst for environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, S. H.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Nanostructured metal phosphides: From controllable synthesis to sustainable catalysis. Chem. Soc. Rev. 2021, 50, 7539–7586.

    CAS  Google Scholar 

  2. Qi, M. Y.; Conte, M.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 2021, 121, 13051–13085.

    CAS  Google Scholar 

  3. Das, K.; Bariki, R.; Majhi, D.; Mishra, A.; Das, K. K.; Dhiman, R.; Mishra, B. G. Facile synthesis and application of CdS/Bi20TiO32/Bi4Ti3O12 ternary heterostructure: A synergistic multi-heterojunction photocatalyst for enhanced endosulfan degradation and hydrogen evolution reaction. Appl. Catal. B Environ. 2022, 303, 120902.

    CAS  Google Scholar 

  4. Weng, B.; Qi, M. Y.; Han, C.; Tang, Z. R.; Xu, Y. J. Photocorrosion inhibition of semiconductor-based photocatalysts: Basic principle, current development, and future perspective. ACS Catal. 2019, 9, 4642–4687.

    CAS  Google Scholar 

  5. Das, K.; Bariki, R.; Pradhan, S. K.; Majhi, D.; Dash, P.; Mishra, A.; Dhiman, R.; Nayak, B.; Mishra, B. G. Boosting the photocatalytic performance of Bi2Fe4O9 through formation of Z-scheme heterostructure with In2S3: Applications towards water decontamination. Chemosphere 2022, 306, 135600.

    CAS  Google Scholar 

  6. Naghdi, S.; Cherevan, A.; Giesriegl, A.; Guillet-Nicolas, R.; Biswas, S.; Gupta, T.; Wang, J.; Haunold, T.; Bayer, B. C.; Rupprechter, G.; et, al. Selective ligand removal to improve accessibility of active sites in hierarchical MOFs for heterogeneous photocatalysis. Nat. Commun. 2022, 13, 282–18086.

    CAS  Google Scholar 

  7. Singh, B. K.; Lee, S.; Na, K. An overview on metal-related catalysts: Metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites. Rare Met. 2020, 39, 751–766.

    CAS  Google Scholar 

  8. Chen, H.; Liu, Y. T.; Cai, T.; Dong, W. Y.; Tang, L.; Xia, X. N.; Wang, L. L.; Li, T. Boosting photocatalytic performance in mixed-valence MIL-53(Fe) by changing FeII/FeIII ratio. ACS Appl. Mater. Interfaces 2019, 11, 28791–28800.

    CAS  Google Scholar 

  9. Gao, D.; Zhang, Y. P.; Yan, H. Y.; Li, B. Z.; He, Y. F.; Song, P. F.; Wang, R. M. Construction of UiO-66@MoS2 flower-like hybrids through electrostatically induced self-assembly with enhanced photodegradation activity towards lomefloxacin. Sep. Purif. Technol. 2021, 265, 118486.

    CAS  Google Scholar 

  10. Zhang, Y. F.; Park, S. J. Facile construction of MoO3@ZIF-8 core—shell nanorods for efficient photoreduction of aqueous Cr(VI). Appl. Catal. B Environ. 2019, 240, 92–101.

    CAS  Google Scholar 

  11. Chen, H. Y.; Yuan, X. Z.; Jiang, L. B.; Wang, H.; Yu, H. B.; Wang, X. X. Intramolecular modulation of iron-based metal organic framework with energy level adjusting for efficient photocatalytic activity. Appl. Catal. B Environ. 2022, 302, 120823.

    CAS  Google Scholar 

  12. Pu, M. J.; Guan, Z. Y.; Ma, Y. W.; Wan, J. Q.; Wang, Y.; Brusseau, M. L.; Chi, H. Y. Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution. Appl. Catal. A Gen. 2018, 549, 82–92.

    CAS  Google Scholar 

  13. Luo, L. B.; Dong, S. Y.; Cui, H.; Sun, L. H.; Huang, T. L. Indium sulfide deposited MIL-53(Fe) microrods: Efficient visible-light-driven photocatalytic reduction of hexavalent chromium. J. Colloid Interface Sci. 2022, 606, 1299–1310.

    CAS  Google Scholar 

  14. Xiang, X.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. MIL-53(Fe)-loaded polyacrylonitrile membrane with superamphiphilicity and double hydrophobicity for effective emulsion separation and photocatalytic dye degradation. Sep. Purif. Technol. 2022, 282, 119910.

    CAS  Google Scholar 

  15. Zhang, X. L.; Yuan, N.; Li, Y.; Han, L. J.; Wang, Q. B. Fabrication of new MIL-53(Fe)@TiO2 visible-light responsive adsorptive photocatalysts for efficient elimination of tetracycline. Chem. Eng. J. 2022, 428, 131077.

    CAS  Google Scholar 

  16. Chen, H.; Zeng, W. G.; Liu, Y. T.; Dong, W. Y.; Cai, T.; Tang, L.; Li, J.; Li, W. L. Unique MIL-53(Fe)/PDI supermolecule composites: Z-Scheme heterojunction and covalent bonds for uprating photocatalytic performance. ACS Appl. Mater. Interfaces 2021, 13, 16364–16373.

    CAS  Google Scholar 

  17. Zhang, B. F.; Zhang, L.; Akiyama, K.; Bingham, P. A.; Zhou, Y. T.; Kubuki, S. Self-assembly of nanosheet-supported Fe-MOF heterocrystals as a reusable catalyst for boosting advanced oxidation performance via radical and nonradical pathways. ACS Appl. Mater. Interfaces 2021, 13, 22694–22707.

    CAS  Google Scholar 

  18. Zhao, M. T.; Chen, J. Z.; Chen, B.; Zhang, X.; Shi, Z. Y.; Liu, Z. Q.; Ma, Q. L.; Peng, Y. W.; Tan, C. L.; Wu, X. J. et al. Selective epitaxial growth of oriented hierarchical metal-organic framework heterostructures. J. Am. Chem. Soc. 2020, 142, 8953–8961.

    CAS  Google Scholar 

  19. Lee, S.; Oh, S.; Oh, M. Atypical hybrid metal-organic frameworks (MOFs): A combinative process for MOF-on-MOF growth, etching, and structure transformation. Angew. Chem., Int. Ed. 2020, 59, 1327–1333.

    CAS  Google Scholar 

  20. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.

    Google Scholar 

  21. Bai, Y.; Dou, Y. B.; Xie, L. H.; Rutledge, W.; Li, J. R.; Zhou, H. C. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327–2367.

    CAS  Google Scholar 

  22. Wang, X. G.; Xu, L.; Li, M. J.; Zhang, X. Z. Construction of flexible-on-rigid hybrid-phase metal-organic frameworks for controllable multi-drug delivery. Angew. Chem., Int. Ed. 2020, 59, 18078–18086.

    CAS  Google Scholar 

  23. Zhuang, J.; Chou, L. Y.; Sneed, B. T.; Cao, Y. Z.; Hu, P.; Feng, L.; Tsung, C. K. Surfactant-mediated conformal overgrowth of core-shell metal-organic framework materials with mismatched topologies. Small 2015, 11, 5551–5555.

    CAS  Google Scholar 

  24. Liu, N.; Huang, W. Y.; Tang, M. Q.; Yin, C. C.; Gao, B.; Li, Z. M.; Tang, L.; Lei, J. Q.; Cui, L. F.; Zhang, X. D. In-situ fabrication of needle-shaped MIL-53(Fe) with 1T-MoS2 and study on its enhanced photocatalytic mechanism of ibuprofen. Chem. Eng. J. 2019, 359, 254–264.

    CAS  Google Scholar 

  25. Mota, H. P.; Quadrado, R. F. N.; Iglesias, B. A.; Fajardo, A. R. Enhanced photocatalytic degradation of organic pollutants mediated by Zn(II)-porphyrin/poly(acrylic acid) hybrid microparticles. Appl. Catal. B Environ. 2020, 277, 119208.

    CAS  Google Scholar 

  26. Zhang, C. J.; Fei, W. H.; Wang, H. Q.; Li, N. J.; Chen, D. Y.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. p-n Heterojunction of BiOI/ZnO nanorod arrays for piezo-photocatalytic degradation of bisphenol A in water. J. Hazard. Mater. 2020, 399, 123109.

    CAS  Google Scholar 

  27. Chen, T. F.; Han, S. Y.; Wang, Z. P.; Gao, H.; Wang, L. Y.; Deng, Y. H.; Wan, C. Q.; Tian, Y.; Wang, Q.; Wang, G. et al. Modified UiO-66 frameworks with methylthio, thiol and sulfonic acid function groups: The structure and visible-light-driven photocatalytic property study. Appl. Catal. B Environ. 2019, 259, 118047.

    CAS  Google Scholar 

  28. Tian, H. L.; Araya, T.; Li, R. P.; Fang, Y. F.; Huang, Y. P. Removal of MC-LR using the stable and efficient MIL-100/MIL-53 (Fe) photocatalyst: The effect of coordinate immobilized layers. Appl. Catal. B Environ. 2019, 254, 371–379.

    CAS  Google Scholar 

  29. Zhang, Y.; Zhou, J. B.; Chen, J. H.; Feng, X. Q.; Cai, W. Q. Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53(Fe) under visible light irradiation. J. Hazard. Mater. 2020, 392, 122315.

    CAS  Google Scholar 

  30. Chen, X.; Li, Q.; Li, J. J.; Chen, J.; Jia, H. P. Modulating charge separation via in situ hydrothermal assembly of low content Bi2S3 into UiO-66 for efficient photothermocatalytic CO2 reduction. Appl. Catal. B Environ. 2020, 270, 118915.

    CAS  Google Scholar 

  31. Cao, Y.; Zhao, Y. X.; Lv, Z. J.; Song, F. J.; Zhong, Q. Preparation and enhanced CO2 adsorption capacity of UiO-66/graphene oxide composites. J. Ind. Eng. Chem. 2015, 27, 102–107.

    CAS  Google Scholar 

  32. Xie, L. C.; Yang, Z. H.; Xiong, W. P.; Zhou, Y. Y.; Cao, J.; Peng, Y. R.; Li, X.; Zhou, C. Y.; Xu, R.; Zhang, Y. R. Construction of MIL-53(Fe) metal-organic framework modified by silver phosphate nanoparticles as a novel Z-Scheme photocatalyst: Visible-light photocatalytic performance and mechanism investigation. Appl. Surf. Sci. 2019, 465, 103–115.

    CAS  Google Scholar 

  33. Li, H.; Zhao, C.; Li, X.; Fu, H. F.; Wang, Z. H.; Wang, C. C. Boosted photocatalytic Cr(VI) reduction over Z-Scheme MIL-53(Fe)/Bi12O17Cl2 composites under white light. J. Alloys Compd. 2020, 844, 156147.

    CAS  Google Scholar 

  34. Zhou, Z.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Three-dimensional g-C3N4/NH2-UiO-66 graphitic aerogel hybrids with recyclable property for enhanced photocatalytic elimination of nitric oxide. Chem. Eng. J. 2021, 418, 129117.

    CAS  Google Scholar 

  35. Huang, W. Y.; Liu, N.; Zhang, X. D.; Wu, M. H.; Tang, L. Metal organic framework g-C3N4/MIL-53(Fe) heterojunctions with enhanced photocatalytic activity for Cr(VI) reduction under visible light. Appl. Surf. Sci. 2017, 425, 107–116.

    CAS  Google Scholar 

  36. Gao, Y. W.; Li, S. M.; Li, Y. X.; Yao, L. Y.; Zhang, H. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible led light mediated by persulfate. Appl. Catal. B Environ. 2017, 202, 165–174.

    CAS  Google Scholar 

  37. Cao, J.; Yang, Z. H.; Xiong, W. P.; Zhou, Y. Y.; Peng, Y. R.; Li, X.; Zhou, C. Y.; Xu, R.; Zhang, Y. R. One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: Simultaneous adsorption and photocatalysis. Chem. Eng. J. 2018, 353, 126–137.

    CAS  Google Scholar 

  38. Yang, F.; Li, W. Y.; Tang, B. H. J. Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application. J. Alloys Compd. 2018, 733, 8–14.

    CAS  Google Scholar 

  39. Lee, Y. J.; Chang, Y. J.; Hsu, J. P. Amorphous mesoporous matrix from metal-organic framework UiO-66 template with strong nucleophile substitution. Chemosphere 2021, 268, 129155.

    CAS  Google Scholar 

  40. Zan, J.; Song, H.; Zuo, S. Y.; Chen, X. R.; Xia, D. S.; Li, D. Y. MIL-53(Fe)-derived Fe2O3 with oxygen vacancy as Fenton-like photocatalysts for the elimination of toxic organics in wastewater. J. Clean. Prod. 2020, 246, 118971.

    CAS  Google Scholar 

  41. Pan, T.; Chen, D. D.; Xu, W. C.; Fang, J. Z.; Wu, S. X.; Liu, Z.; Wu, K.; Fang, Z. Q. Anionic polyacrylamide-assisted construction of thin 2D-2D WO3/g-C3N4 step-scheme heterojunction for enhanced tetracycline degradation under visible light irradiation. J. Hazard. Mater. 2020, 393, 122366.

    CAS  Google Scholar 

  42. Cui, Y. Q.; Nengzi, L. C.; Gou, J. F.; Huang, Y.; Li, B.; Cheng, X. W. Fabrication of dual Z-Scheme MIL-53(Fe)/α-Bi2O3/g-C3N4 ternary composite with enhanced visible light photocatalytic performance. Sep. Purif. Technol. 2020, 232, 115959.

    CAS  Google Scholar 

  43. Li, X. P.; Zeng, Z. T.; Zeng, G. M.; Wang, D. B.; Xiao, R.; Wang, Y. R.; Zhou, C. Y.; Yi, H.; Ye, S. J.; Yang, Y. et al. A “bottle-around-ship” like method synthesized yolk—shell Ag3PO4@MIL-53(Fe) Z-scheme photocatalysts for enhanced tetracycline removal. J. Colloid Interface Sci. 2020, 561, 501–511.

    CAS  Google Scholar 

  44. Zhang, S. P.; Wang, Y. M.; Cao, Z.; Xu, J.; Hu, J.; Huang, Y.; Cui, C. Z.; Liu, H. L.; Wang, H. L. Simultaneous enhancements of light-harvesting and charge transfer in UiO-67/Cds/rGO composites toward ofloxacin photo-degradation. Chem. Eng. J. 2020, 381, 122771.

    CAS  Google Scholar 

  45. Tang, L.; Lv, Z. Q.; Xue, Y. C.; Xu, L.; Qiu, W. H.; Zheng, C. M.; Chen, W. Q.; Wu, M. H. MIL-53(Fe) incorporated in the lamellar BiOBr:Promoting the visible-light catalytic capability on the degradation of rhodamine B and carbamazepine. Chem. Eng. J. 2019, 374, 975–982.

    CAS  Google Scholar 

  46. Cai, H. R.; Wang, B.; Xiong, L. F.; Bi, J. L.; Hao, H. J.; Yu, X. J.; Li, C.; Liu, J. M.; Yang, S. C. Boosting photocatalytic hydrogen evolution of g-C3N4 catalyst via lowering the Fermi level of co-catalyst. Nano Res. 2022, 15, 1128–1134.

    CAS  Google Scholar 

  47. Lv, S. W.; Liu, J. M.; Zhao, N.; Li, C. Y.; Wang, Z. H.; Wang, S. Benzothiadiazole functionalized Co-doped MIL-53-NH2 with electron deficient units for enhanced photocatalytic degradation of bisphenol A and ofloxacin under visible light. J. Hazard. Mater. 2020, 387, 122011.

    CAS  Google Scholar 

  48. Ye, X. H.; Li, Y.; Luo, P. P.; He, B. C.; Cao, X. X.; Lu, T. B. Iron sites on defective BiOBr nanosheets: Tailoring the molecular oxygen activation for enhanced photocatalytic organic synthesis. Nano Res. 2022, 15, 1509–1516.

    CAS  Google Scholar 

  49. Zhang, Q. Q.; Chen, Y. H.; Zhao, C. X.; Yang, X. F.; Chen, Z. P. Facile regeneration of oxidized porous carbon nitride rods by the dearomatization of the heptazine network in bulk g-C3N4. Inorg. Chem. Front. 2022, 9, 1107–1114.

    CAS  Google Scholar 

  50. Li, Y. H.; Tang, Z. R.; Xu, Y. Z. Multifunctional graphene-based composite photocatalysts oriented by multifaced roles of graphene in photocatalysis. Chin. J. Catal. 2022, 43, 708–730.

    CAS  Google Scholar 

  51. Zou, X.; Zhao, X. S.; Zhang, J. X.; Lv, W.; Qiu, L.; Zhang, Z. H. Photocatalytic degradation of ranitidine and reduction of nitrosamine dimethylamine formation potential over MXene-Ti3C2/MoS2 under visible light irradiation. J. Hazard. Mater. 2021, 413, 125424.

    CAS  Google Scholar 

  52. Zhang, F.; Li, Y. H.; Li, J. Y.; Tang, Z. R.; Xu, Y. Z. 3D graphene-based gel photocatalysts for environmental pollutants degradation. Environ. Pollut. 2019, 253, 365–376.

    CAS  Google Scholar 

  53. Lu, G.; Song, B.; Li, Z.; Liang, H. Y.; Zou, X. J. Photocatalytic degradation of naphthalene on CeVO4 nanoparticles under visible light. Chem. Eng. J. 2020, 402, 125645.

    CAS  Google Scholar 

  54. Meng, J. Q.; Wang, X. Y.; Yang, X.; Hu, A.; Guo, Y. H.; Yang, Y. X. Enhanced gas-phase photocatalytic removal of aromatics over direct Z-scheme-dictated H3PW12O40/g-C3N4 film-coated optical fibers. Appl. Catal. B Environ. 2019, 251, 168–180.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the funds awarded by the National Natural Science Foundation of China (Nos. 21878017 and 51773012). The authors are grateful to the support of this research from the Mass Transfer and Separation Laboratory in Beijing University of Chemical Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Meng or Junsu Jin.

Electronic Supplementary Material

12274_2022_5200_MOESM1_ESM.pdf

Dual MOFs composites: MIL-53 coated with amorphous UiO-66 for enhanced photocatalytic oxidation of tetracycline and methylene blue

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhao, X., Meng, H. et al. Dual MOFs composites: MIL-53 coated with amorphous UiO-66 for enhanced photocatalytic oxidation of tetracycline and methylene blue. Nano Res. 16, 6160–6166 (2023). https://doi.org/10.1007/s12274-022-5200-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5200-y

Keywords

Navigation