Skip to main content
Log in

Identification of chemical compositions from “featureless” optical absorption spectra: Machine learning predictions and experimental validations

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rapid and accurate chemical composition identification is critically important in chemistry. While it can be achieved with optical absorption spectrometry by comparing the experimental spectra with the reference data when the chemical compositions are simple, such application is limited in more complicated scenarios especially in nano-scale research. This is due to the difficulties in identifying optical absorption peaks (i.e., from “featureless” spectra) arose from the complexity. In this work, using the ultraviolet—visible (UV—Vis) absorption spectra of metal nanoclusters (NCs) as a demonstration, we develop a machine-learning-based method to unravel the compositions of metal NCs behind the “featureless” spectra. By implementing a one-dimensional convolutional neural network, good matches between prediction results and experimental results and low mean absolute error values are achieved on these optical absorption spectra that human cannot interpret. This work opens a door for the identification of nanomaterials at molecular precision from their optical properties, paving the way to rapid and high-throughput characterizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray ionization-principles and practice. Mass Spectrom. Rev. 1990, 9, 37–70.

    CAS  Google Scholar 

  2. Whitesides, G. M.; Ismagilov, R. F. Complexity in chemistry. Science 1999, 284, 89–92.

    CAS  Google Scholar 

  3. Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

    CAS  Google Scholar 

  4. Yan, J. Z.; Teo, B. K.; Zheng, N. F. Surface chemistry of atomically precise coinage-metal nanoclusters: From structural control to surface reactivity and catalysis. Acc. Chem. Res. 2018, 51, 3084–3093.

    CAS  Google Scholar 

  5. Chen, T. K.; Lin, H. B.; Cao, Y. T.; Yao, Q. F.; Xie, J. P. Interactions of metal nanoclusters with light: Fundamentals and applications. Adv. Mater. 2022, 34, 2103918.

    CAS  Google Scholar 

  6. Jiang, D. E.; Overbury, S. H.; Dai, S. Structure of Au15(SR)13 and its implication for the origin of the nucleus in thiolated gold nanoclusters. J. Am. Chem. Soc. 2013, 135, 8786–8789.

    CAS  Google Scholar 

  7. Tlahuice-Flores, A.; Jose-Yacamán, M.; Whetten, R. L. On the structure of the thiolated Au15 cluster. Phys. Chem. Chem. Phys. 2013, 15, 19557–19560.

    CAS  Google Scholar 

  8. Liu, P. Y.; Han, W. H.; Zheng, M. K.; Li, W. L.; Ren, J. F.; Tlahuice-Flores, A.; Xu, W. W. [Au7(SR)7] ring as a new type of protection ligand in a new atomic structure of Au15(SR)13 nanocluster. J. Phys. Chem. A 2021, 125, 5933–5938.

    CAS  Google Scholar 

  9. Chen, S.; Wang, S. X.; Zhong, J.; Song, Y. B.; Zhang, J.; Sheng, H. T.; Pei, Y.; Zhu, M. Z. The structure and optical properties of the [Au18(SR)14] nanocluster. Angew. Chem., Int. Ed. 2015, 54, 3145–3149.

    CAS  Google Scholar 

  10. Das, A.; Liu, C.; Byun, H. Y.; Nobusada, K.; Zhao, S.; Rosi, N.; Jin, R. C. Structure determination of [Au18(SR)14]. Angew. Chem., Int. Ed. 2015, 54, 3140–3144.

    CAS  Google Scholar 

  11. Zhu, M. Z.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. C. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 2008, 130, 5883–5885.

    CAS  Google Scholar 

  12. Akola, J.; Walter, M.; Whetten, R. L.; Häkkinen, H.; Grönbeck, H. On the structure of thiolate-protected Au25. J. Am. Chem. Soc. 2008, 130, 3756–3757.

    CAS  Google Scholar 

  13. Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 2008, 130, 3754–3755.

    CAS  Google Scholar 

  14. Jin, R. C. Atomically precise metal nanoclusters: Stable sizes and optical properties. Nanoscale 2015, 7, 1549–1565.

    CAS  Google Scholar 

  15. Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270.

    CAS  Google Scholar 

  16. Bootharaju, M. S.; Burlakov, V. M.; Besong, T. M. D.; Joshi, C. P.; AbdulHalim, L. G.; Black, D. M.; Whetten, R. L.; Goriely, A.; Bakr, O. M. Reversible size control of silver nanoclusters via ligand-exchange. Chem. Mater. 2015, 27, 4289–4297.

    CAS  Google Scholar 

  17. Jin, R. C.; Qian, H. F.; Wu, Z. K.; Zhu, Y.; Zhu, M. Z.; Mohanty, A.; Garg, N. Size focusing: A methodology for synthesizing atomically precise gold nanoclusters. J. Phys. Chem. Lett. 2010, 7, 2903–2910.

    Google Scholar 

  18. Knoppe, S.; Boudon, J.; Dolamic, I.; Dass, A.; Bürgi, T. Size exclusion chromatography for semipreparative scale separation of Au38(SR)24 and Au40(SR)24 and larger clusters. Anal. Chem. 2011, 83, 5056–5061.

    CAS  Google Scholar 

  19. Kimura, K.; Sugimoto, N.; Sato, S.; Yao, H.; Negishi, Y.; Tsukuda, T. Size determination of gold clusters by polyacrylamide gel electrophoresis in a large cluster region. J. Phys. Chem. C 2009, 113, 14076–14082.

    CAS  Google Scholar 

  20. Li, D.; Kumari, B.; Zhang, X. Z.; Wang, C. P.; Mei, X. F.; Rotello, V. M. Purification and separation of ultra-small metal nanoclusters. Adv. Colloid Interface Sci. 2020, 276, 102090.

    CAS  Google Scholar 

  21. Niihori, Y.; Uchida, C.; Kurashige, W.; Negishi, Y. High-resolution separation of thiolate-protected gold clusters by reversed-phase highperformance liquid chromatography. Phys. Chem. Chem. Phys. 2016, 18, 4251–4265.

    CAS  Google Scholar 

  22. Maffettone, P. M.; Banko, L.; Cui, P.; Lysogorskiy, Y.; Little, M. A.; Olds, D.; Ludwig, A.; Cooper, A. I. Crystallography companion agent for high-throughput materials discovery. Nat. Comput. Sci. 2021, 1, 290–297.

    Google Scholar 

  23. Li, J. L.; Lim, K.; Yang, H. T.; Ren, Z. K.; Raghavan, S.; Chen, P. Y.; Buonassisi, T.; Wang, X. N. AI applications through the whole life cycle of material discovery. Matter 2020, 3, 393–432.

    Google Scholar 

  24. Xu, S. D.; Li, J. L.; Cai, P. F.; Liu, X. L.; Liu, B.; Wang, X. N. Self-improving photosensitizer discovery system via bayesian search with first-principle simulations. J. Am. Chem. Soc. 2021, 143, 19769–19777.

    CAS  Google Scholar 

  25. Ren, Z. K.; Tian, S. I. P.; Noh, J.; Oviedo, F.; Xing, G. Z.; Li, J. L.; Liang, Q. H.; Zhu, R. M.; Aberle, A. G.; Sun, S. J. et al. An invertible crystallographic representation for general inverse design of inorganic crystals with targeted properties. Matter 2022, 5, 314–335.

    CAS  Google Scholar 

  26. Yang, H. T.; Li, J. L.; Lim, K. Z.; Pan, C. J.; van Truong, T.; Wang, Q.; Li, K. R.; Li, S.; Xiao, X.; Ding, M. et al. Automatic strain sensor design via active learning and data augmentation for soft machines. Nat. Mach. Intell. 2022, 4, 84–94.

    Google Scholar 

  27. Malola, S.; Häkkinen, H. Prospects and challenges for computer simulations of monolayer-protected metal clusters. Nat. Commun. 2021, 12, 2197.

    CAS  Google Scholar 

  28. Cowan, M. J.; Mpourmpakis, G. Towards elucidating structure of ligand-protected nanoclusters. Dalton Trans. 2020, 49, 9191–9202.

    CAS  Google Scholar 

  29. Li, J. L.; Chen, T. K.; Lim, K.; Chen, L. T.; Khan, S. A.; Xie, J. P.; Wang, X. N. Deep learning accelerated gold nanocluster synthesis. Adv. Intell. Syst. 2019, 1, 1900029.

    Google Scholar 

  30. Wang, S.; Wu, Z. L.; Dai, S.; Jiang, D. E. Deep learning accelerated determination of hydride locations in metal nanoclusters. Angew. Chem., Int. Ed. 2021, 60, 12289–12292.

    CAS  Google Scholar 

  31. Ouyang, R. H.; Xie, Y.; Jiang, D. E. Global minimization of gold clusters by combining neural network potentials and the basin-hopping method. Nanoscale 2015, 7, 14817–14821.

    CAS  Google Scholar 

  32. Panapitiya, G.; Avendaño-Franco, G.; Ren, P. J.; Wen, X. D.; Li, Y. W.; Lewis, J. P. Machine-learning prediction of CO adsorption in thiolated, Ag-alloyed Au nanoclusters. J. Am. Chem. Soc. 2018, 140, 17508–17514.

    CAS  Google Scholar 

  33. Jäger, M. O. J.; Morooka, E. V.; Canova F. F.; Himanen, L.; Foster, A. S. Machine learning hydrogen adsorption on nanoclusters through structural descriptors. npj Comput. Mater. 2018, 4, 37.

    Google Scholar 

  34. Jäger, M. O. J.; Ranawat, Y. S.; Canova, F. F.; Morooka, E. V.; Foster, A. S. Efficient machine-learning-aided screening of hydrogen adsorption on bimetallic nanoclusters. ACS Comb. Sci. 2020, 22, 768–781.

    Google Scholar 

  35. Pihlajamäki, A.; Hämäläinen, J.; Linja, J.; Nieminen, P.; Malola, S.; Kärkkäinen, T.; Häkkinen, H. Monte carlo simulations of Au38(SCH3)24 nanocluster using distance-based machine learning methods. J. Phys. Chem. A 2020, 124, 4827–4836.

    Google Scholar 

  36. Copp, S. M.; Gorovits, A.; Swasey, S. M.; Gudibandi, S.; Bogdanov, P.; Gwinn, E. G. Fluorescence color by data-driven design of genomic silver clusters. ACS Nano 2018, 12, 8240–8247.

    CAS  Google Scholar 

  37. Li, X. B.; Maffettone, P. M.; Che, Y.; Liu, T.; Chen, L. J.; Cooper, A. I. Combining machine learning and high-throughput experimentation to discover photocatalytically active organic molecules. Chem. Sci. 2021, 12, 10742–10754.

    CAS  Google Scholar 

  38. Hu, J. T.; Liu, T. T.; Choo, P.; Wang, S. J.; Reese, T.; Sample, A. D.; Odom, T. W. Single-nanoparticle orientation sensing by deep learning. ACS Cent. Sci. 2020, 6, 2339–2346.

    CAS  Google Scholar 

  39. Ziatdinov, M.; Dyck, O.; Maksov, A.; Li, X. F.; Sang, X. H.; Xiao, K.; Unocic, R. R.; Vasudevan, R.; Jesse, S.; Kalinin, S. V. Deep learning of atomically resolved scanning transmission electron microscopy images: Chemical identification and tracking local transformations. ACS Nano 2017, 11, 12742–12752.

    CAS  Google Scholar 

  40. Walker, S. W. C.; Anwar, A.; Psutka, J. M.; Crouse, J.; Liu, C.; Le Blanc, J. C. Y.; Montgomery, J.; Goetz, G. H.; Janiszewski, J. S.; Campbell, J. L. et al. Determining molecular properties with differential mobility spectrometry and machine learning. Nat. Commun. 2018, 9, 5096.

    Google Scholar 

  41. Sanchez-Gonzalez, A.; Micaelli, P.; Olivier, C.; Barillot, T. R.; Ilchen, M.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Achner, A.; Agåker, M. et al. Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning. Nat. Commun. 2017, 8, 15461.

    CAS  Google Scholar 

  42. Oviedo, F.; Ren, Z. K.; Sun, S. J.; Settens, C.; Liu, Z.; Hartono, N. T. P.; Ramasamy, S.; DeCost, B. L.; Tian, S. I. P.; Romano, G. et al. Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks. npj Comput. Mater. 2019, 5, 60.

    Google Scholar 

  43. Alldritt, B.; Hapala, P.; Oinonen, N.; Urtev, F.; Krejci, O.; Federici Canova, F.; Kannala, J.; Schulz, F.; Liljeroth, P.; Foster, A. S. Automated structure discovery in atomic force microscopy. Sci. Adv. 2020, 6, eaay6913.

    CAS  Google Scholar 

  44. Ziatdinov, M.; Maksov, A.; Kalinin, S. V. Learning surface molecular structures via machine vision. npj Comput. Mater. 2017, 3, 31.

    Google Scholar 

  45. Li, J. L.; Telychko, M.; Yin, J.; Zhu, Y. X.; Li, G. W.; Song, S. T.; Yang, H. T.; Li, J.; Wu, J. S.; Lu, J. et al. Machine vision automated chiral molecule detection and classification in molecular imaging. J. Am. Chem. Soc. 2021, 143, 10177–10188.

    CAS  Google Scholar 

  46. Chen, T. K.; Fung, V.; Yao, Q. F.; Luo, Z. T.; Jiang, D. E.; Xie, J. P. Synthesis of water-soluble [Au25(SR)18] using a stoichiometric amount of NaBH4. J. Am. Chem. Soc. 2018, 140, 11370–11377.

    CAS  Google Scholar 

  47. Chen, T. K.; Yao, Q. F.; Cao, Y. T.; Xie, J. P. Studying the growth of gold nanoclusters by sub-stoichiometric reduction. Cell Rep. Phy. Sci. 2020, 1, 100206.

    Google Scholar 

  48. Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 2007, 318, 430–433.

    CAS  Google Scholar 

  49. Tero, T. R.; Malola, S.; Koncz, B.; Pohjolainen, E.; Lautala, S.; Mustalahti, S.; Permi, P.; Groenhof, G.; Pettersson, M.; Häkkinen, H. Dynamic stabilization of the ligand-metal interface in atomically precise gold nanoclusters Au68 and Au144 protected by metta-mercaptobenzoic acid. ACS Nano 2017, 11, 11872–11879.

    CAS  Google Scholar 

  50. Desireddy, A.; Conn, B. E.; Guo, J. S.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U. et al. Ultrastable silver nanoparticles. Nature 2013, 501, 399–402.

    CAS  Google Scholar 

  51. Chen, T. K.; Yao, Q. F.; Nasaruddin, R. R.; Xie, J. P. Electrospray ionization mass spectrometry: A powerful platform for noble-metal nanocluster analysis. Angew. Chem., Int. Ed. 2019, 58, 11967–11977.

    CAS  Google Scholar 

  52. Kang, X.; Chong, H. B.; Zhu, M. Z. Au25(SR)18: The captain of the great nanocluster ship. Nanoscale 2018, 10, 10758–10834.

    CAS  Google Scholar 

  53. Devadas, M. S.; Bairu, S.; Qian, H. F.; Sinn, E.; Jin, R. C.; Ramakrishna, G. Temperature-dependent optical absorption properties of monolayer-protected Au25 and Au38 clusters. J. Phys. Chem. Lett. 2011, 2, 2752–2758.

    CAS  Google Scholar 

  54. Takahashi, R.; Matsubara, T.; Uehara, K. RICAP: Random image cropping and patching data augmentation for deep CNNs. In Proceedings of the 10th Asian Conference on Machine Learning, Beijing, China, 2018, pp 786–798.

  55. Iwana, B. K.; Uchida, S. An empirical survey of data augmentation for time series classification with neural networks. PLoS One 2021, 16, e0254841.

    CAS  Google Scholar 

  56. Li, J. J.; Guan, Z. J.; Lei, Z.; Hu, F.; Wang, Q. M. Same magic number but different arrangement: Alkynyl-protected Au25 with D 3 symmetry. Angew. Chem., Int. Ed. 2019, 58, 1083–1087.

    CAS  Google Scholar 

  57. Narouz, M. R.; Osten, K. M.; Unsworth, P. J.; Man, R. W. Y.; Salorinne, K.; Takano, S.; Tomihara, R.; Kaappa, S.; Malola, S.; Dinh, C. T. et al. N-heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem. 2019, 11, 419–425.

    CAS  Google Scholar 

  58. Yao, Q. F.; Yuan, X.; Fung, V.; Yu, Y.; Leong, D. T.; Jiang, D. E.; Xie, J. P. Understanding seed-mediated growth of gold nanoclusters at molecular level. Nat. Commun. 2017, 8, 927.

    Google Scholar 

  59. Liao, L. W.; Zhuang, S. L.; Yao, C. H.; Yan, N.; Chen, J. S.; Wang, C. M.; Xia, N.; Liu, X.; Li, M. B.; Li, M. B. et al. Structure of chiral Au44(2,4-DMBT)26 nanocluster with an 18-electron shell closure. J. Am. Chem. Soc. 2016, 138, 10425–10428.

    CAS  Google Scholar 

  60. Das, A.; Li, T.; Nobusada, K.; Zeng, C. J.; Rosi, N. L.; Jin, R. C. Nonsuperatomic [Au23(SC6H11)16] nanocluster featuring bipyramidal Au15 kernel and trimeric Au3(SR)4 motif. J. Am. Chem. Soc. 2013, 135, 18264–18267.

    CAS  Google Scholar 

  61. Yao, Q. F.; Fung, V.; Sun, C.; Huang, S. D.; Chen, T. K.; Jiang, D. E.; Lee, J. Y.; Xie, J. P. Revealing isoelectronic size conversion dynamics of metal nanoclusters by a noncrystallization approach. Nat. Commun. 2011, 9, 1979.

    Google Scholar 

  62. Aikens, C. M. Origin of discrete optical absorption spectra of M25(SH)18 nanoparticles (M = Au, Ag). J. Phys. Chem. C 2008, 112, 19797–19800.

    CAS  Google Scholar 

  63. Kumara, C.; Aikens, C. M.; Dass, A. X-ray crystal structure and theoretical analysis of Au25−;xAgx(SCH2CH2Ph)18 alloy. J. Phys. Chem. Lett. 2014, 5, 461–466.

    CAS  Google Scholar 

  64. Tian, S. B.; Liao, L. W.; Yuan, J. Y.; Yao, C. H.; Chen, J. S.; Yang, J. L.; Wu, Z. K. Structures and magnetism of mono-palladium and mono-platinum doped Au25(PET)18 nanodusters. Chem. Commun. 2016, 52, 9873–9876.

    CAS  Google Scholar 

  65. Jiang, D. E.; Dai, S. From superatomic Au25(SR)18 to superatomic M@Au24(SR)18 q; oore-shell clusters. Inorg. Chem. 2009, 48, 2720–2722.

    CAS  Google Scholar 

  66. Li, G.; Abroshan, H.; Liu, C.; Zhuo, S.; Li, Z. M.; Xie, Y.; Kim, H. J.; Rosi, N. L.; Jin, R. C. Tailoring the electronic and catalytic properties of Au25 nanoclusters via ligand engineering. ACS Nano 2016, 10, 7998–8005.

    CAS  Google Scholar 

  67. Yang, H. Y.; Yan, J. Z.; Wang, Y.; Deng, G. C.; Su, H. F.; Zhao, X. J.; Xu, C. F.; Teo, B. K.; Zheng, N. F. From racemic metal nanoparticles to optically pure enantiomers in one pot. J. Am. Chem. Soc. 2017, 139, 16113–16116.

    CAS  Google Scholar 

  68. Negishi, Y.; Kurashige, W.; Kamimura, U. Isolation and structural characterization of an octaneselenolate-protected Au25 cluster. Langmuir 2011, 27, 12289–12292.

    CAS  Google Scholar 

  69. Lei, Z.; Wan, X. K.; Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 2018, 51, 2465–2474.

    CAS  Google Scholar 

  70. Konishi, K.; Iwasaki, M.; Shichibu, Y. Phosphine-ligated gold clusters with core+exo geometries: Unique properties and interactions at the ligand-cluster interface. Acc. Chem. Res. 2018, 51, 3125–3133.

    CAS  Google Scholar 

  71. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 1994, 7, 801–802.

    Google Scholar 

Download references

Acknowledgement

We acknowledge the Singapore RIE2020 Advanced Manufacturing and Engineering Programmatic grant “Accelerated Materials Development for Manufacturing” by the Agency for Science, Technology and Research under No. A1898b0043.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Xie or Xiaonan Wang.

Electronic Supplementary Material

12274_2022_5095_MOESM1_ESM.pdf

Identification of chemical compositions from “featureless” optical absorption spectra: Machine learning predictions and experimental validations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Li, J., Cai, P. et al. Identification of chemical compositions from “featureless” optical absorption spectra: Machine learning predictions and experimental validations. Nano Res. 16, 4188–4196 (2023). https://doi.org/10.1007/s12274-022-5095-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5095-7

Keywords

Navigation