Skip to main content
Log in

New materials and designs for 2D-based infrared photodetectors

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Infrared photodetectors have attracted much attention considering their wide civil and military applications. Two-dimensional (2D) materials offer new opportunities for the development of costless, high-level integration and high-performance infrared photodetectors. With the advent of a broad investigation of infrared photodetectors based on graphene and transition metal chalcogenides (TMDs) exhibiting unique properties in recent decades, research on the better performance of 2D-based infrared photodetectors has been extended to a larger scale, including explorations of new materials and artificial structure designs. In this review, after a brief background introduction, some major working mechanisms, including the photovoltaic effect, photoconductive effect, photogating effect, photothermoelectric effect and bolometric effect, are briefly offered. Then, the discussion mainly focuses on the recent progress of three categories of 2D materials beyond graphene and TMDs. Noble transition metal dichalcogenides, black phosphorus and arsenic black phosphorous and 2D ternary compounds are great examples of explorations of mid-wavelength or even long-wavelength 2D infrared photodetectors. Then, four types of rational structure designs, including type-II band alignments, photogating-enhanced designs, surface plasmon designs and ferroelectric-enhanced designs, are discussed to further enhance the performance via diverse mechanisms, which involve the narrower-bandgap-induced interlayer exciton transition, gate modulation by trapped carriers, surface plasmon polaritons and ferroelectric polarization in sequence. Furthermore, applications including imaging, flexible devices and on-chip integration for 2D-based infrared photodetectors are introduced. Finally, a summary of the state-of-the-art research status and personal discussion on the challenges are delivered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herschel, W. XIV. Experiments on the refrangibility of the invisible rays of the sun. Philos. Trans. 1800, 90, 284–292.

    Article  Google Scholar 

  2. Zhuge, F. W.; Zheng, Z.; Luo, P.; Lv, L.; Huang, Y.; Li, H. Q.; Zhai, T. Y. Nanostructured materials and architectures for advanced infrared photodetection. Adv. Mater. Technol. 2017, 2, 1700005.

    Article  Google Scholar 

  3. Liu, J. K.; Xiao, L.; Liu, Y.; Cao, L. F.; Shen, Z. K. Development of long-wavelength infrared detector and its space-based application requirements. Chin. Phys. B 2019, 28, 028504.

    Article  CAS  Google Scholar 

  4. Lawson, W. D.; Nielsen, S.; Putley, E. H.; Young, A. S. Preparation and properties of HgTe and mixed crystals of HgTe-CdTe. J. Phys. Chem. Solids 1959, 9, 325–329.

    Article  CAS  Google Scholar 

  5. Ye, Z. H.; Li, H. H.; Wang, J. D.; Chen, X.; Sun, C. H.; Liao, Q. J.; Huang, A. B.; Li, H.; Zhou, S. M.; Lin, J. M. et al. Recent hotspots and innovative trends of infrared photon detectors. J. Infrared Millim. Waves 2022, 41, 15–39.

    CAS  Google Scholar 

  6. Tan, B.; Cheng, S. F.; Liu, B.; Zhou, W. H.; Liu, Y. F.; Zhang, C. J.; Cao, S. S.; Ding, Y. Y.; Yang, Z. C.; Huang, L. Effective suppression of surface leakage currents in T2SL photodetectors with deep and vertical mesa sidewalls via TMA and H2 plasma combined pretreatment. Infrared Phys. Technol. 2021, 116, 103724.

    Article  CAS  Google Scholar 

  7. Wang, J.; Chen, X. S.; Hu, W. D.; Wang, L.; Lu, W.; Xu, F. Q.; Zhao, J.; Shi, Y. L.; Ji, R. B. Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200 K. Appl. Phys. Lett. 2011, 99, 113508.

    Article  Google Scholar 

  8. Tong, J. C.; Tobing, L. Y. M.; Luo, Y.; Zhang, D. W.; Zhang, D. H. Single plasmonic structure enhanced dual-band room temperature infrared photodetection. Sci. Rep. 2018, 8, 1548.

    Article  Google Scholar 

  9. Konstantatos, G. Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 2018, 9, 5266.

    Article  CAS  Google Scholar 

  10. Wang, H. Y.; Li, Z. X.; Li, D. Y.; Chen, P.; Pi, L. J.; Zhou, X.; Zhai, T. Y. Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors. Adv. Funct. Mater. 2021, 31, 2103106.

    Article  CAS  Google Scholar 

  11. Tan, C. L.; Mohseni, H. Emerging technologies for high performance infrared detectors. Nanophotonics 2018, 7, 169–197.

    Article  Google Scholar 

  12. Izhnin, I. I.; Mynbaev, K. D.; Voitsekhovsky, A. V.; Korotaev, A. G.; Syvorotka, I. I.; Fitsych, O. I.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Remesnik, V. G. et al. Arsenic-ion implantation-induced defects in HgCdTe films studied with Hall-effect measurements and mobility spectrum analysis. Infrared Phys. Technnol. 2019, 98, 230–235.

    Article  CAS  Google Scholar 

  13. Rogalski, A.; Martyniuk, P.; Kopytko, M.; Madejczyk, P.; Krishna, S. InAsSb-based infrared photodetectors: Thirty years later on. Sensors 2020, 20, 7047.

    Article  CAS  Google Scholar 

  14. Rogalski, A.; Martyniuk, P.; Kopytko, M.; Hu, W. D. Trends in performance limits of the HOT infrared photodetectors. Appl. Sci. 2021, 11, 501.

    Article  CAS  Google Scholar 

  15. Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C. et al. Recent progress on two-dimensional materials. Acta Phys. -Chim. Sin. 2021, 37, 2108017.

    Article  Google Scholar 

  16. Hu, X.; Wu, J. H.; Wu, M. Z.; Hu, J. Q. Recent developments of infrared photodetectors with low-dimensional inorganic nanostructures. Nano Res. 2022, 15, 805–817.

    Article  CAS  Google Scholar 

  17. Xiong, Y. F.; Chen, J. H.; Lu, Y. Q.; Xu, F. Broadband optical-fiber-compatible photodetector based on a graphene-MoS2-WS2 heterostructure with a synergetic photogenerating mechanism. Adv. Electron. Mater. 2019, 5, 1800562.

    Article  Google Scholar 

  18. Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622.

    Article  CAS  Google Scholar 

  19. Chen, J. H.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206–209.

    Article  CAS  Google Scholar 

  20. Yu, X. C.; Li, Y. Y.; Hu, X. N.; Zhang, D. L.; Tao, Y.; Liu, Z. X.; He, Y. M.; Haque, A.; Liu, Z.; Wu, T. et al. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Nat. Commun. 2018, 9, 4299.

    Article  Google Scholar 

  21. Rogalski, A.; Kopytko, M.; Martyniuk, P. Two-dimensional infrared and terahertz detectors: Outlook and status. Appl. Phys. Rev. 2019, 6, 021316.

    Article  Google Scholar 

  22. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  CAS  Google Scholar 

  23. Han, R. Y.; Feng, S.; Sun, D. M.; Cheng, H. M. Properties and photodetector applications of two-dimensional black arsenic phosphorus and black phosphorus. Sci. China Inf. Sci. 2021, 64, 140402.

    Article  Google Scholar 

  24. Wang, Y. H.; Pang, J. B.; Cheng, Q. L.; Han, L.; Li, Y. F.; Meng, X.; Ibarlucea, B.; Zhao, H. B.; Yang, F.; Liu, H. Y. et al. Applications of 2D-layered palladium diselenide and its van der Waals heterostructures in electronics and optoelectronics. Nano-Micro Lett. 2021, 13, 143.

    Article  Google Scholar 

  25. Tamalampudi, S. R.; Dushaq, G.; Villegas, J. E.; Rajput, N. S.; Paredes, B.; Elamurugu, E.; Rasras, M. S. Short-wavelength infrared (SWIR) photodetector based on multi-layer 2D GaGeTe. Opt. Express 2021, 29, 39395–39405.

    Article  CAS  Google Scholar 

  26. Wu, J. H.; Wei, M. L.; Mu, J. L.; Ma, H.; Zhong, C. Y.; Ye, Y. T.; Sun, C. L.; Tang, B.; Wang, L. C.; Li, J. Y. et al. High-performance waveguide-integrated Bi2O2Se photodetector for Si photonic integrated circuits. ACS Nano 2021, 15, 15982–15991.

    Article  CAS  Google Scholar 

  27. Wang, J.; Han, J.; Chen, X.; Wang, X. Design strategies for two-dimensional material photodetectors to enhance device performance. InfoMat 2019, 1, 33–53.

    Article  CAS  Google Scholar 

  28. Zhou, H. B.; Lai, H. J.; Sun, X.; Zhang, N.; Wang, Y. E.; Liu, P. Y.; Zhou, Y.; Xie, W. G. Van der Waals MoS2/two-dimensional perovskite heterostructure for sensitive and ultrafast sub-band-gap photodetection. ACS Appl. Mater. Interfaces 2022, 14, 3356–3362.

    Article  CAS  Google Scholar 

  29. Venuthurumilli, P. K.; Ye, P. D.; Xu, X. F. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano 2018, 12, 4861–4867.

    Article  CAS  Google Scholar 

  30. Lv, L.; Zhuge, F. W.; Xie, F. J.; Xiong, X. J.; Zhang, Q. F.; Zhang, N.; Huang, Y.; Zhai, T. Y. Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization. Nat. Commun. 2019, 10, 3331.

    Article  Google Scholar 

  31. Sun, Z. H.; Chang, H. X. Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano 2014, 8, 4133–4156.

    Article  CAS  Google Scholar 

  32. Wang, F. K.; Zhang, Y.; Gao, Y.; Luo, P.; Su, J. W.; Han, W.; Liu, K. L.; Li, H. Q.; Zhai, T. Y. 2D metal chalcogenides for IR photodetection. Small 2019, 15, 1901347.

    Article  Google Scholar 

  33. Li, P.; Yuan, K.; Lin, D. Y.; Wang, T. T.; Du, W. Y.; Wei, Z. M.; Watanabe, K.; Taniguchi, T.; Ye, Y.; Dai, L. p-MoS2/n-InSe van der Waals heterojunctions and their applications in all-2D optoelectronic devices. RSC Adv. 2019, 9, 35039–35044.

    Article  CAS  Google Scholar 

  34. Lin, P.; Yang, J. K. Tunable WSe2/WS2 van der Waals heterojunction for self-powered photodetector and photovoltaics. J. Alloys Compd. 2020, 842, 155890.

    Article  CAS  Google Scholar 

  35. Rao, G. F.; Wang, X. P.; Wang, Y.; Wangyang, P. H.; Yan, C. Y.; Chu, J. W.; Xue, L. X.; Gong, C. H.; Huang, J. W.; Xiong, J. et al. Two-dimensional heterostructure promoted infrared photodetection devices. InfoMat 2019, 1, 272–288.

    Article  CAS  Google Scholar 

  36. Miao, J. S.; Wang, C. Avalanche photodetectors based on two-dimensional layered materials. Nano Res. 2021, 14, 1878–1888.

    Article  Google Scholar 

  37. Gao, A. Y.; Lai, J. W.; Wang, Y. J.; Zhu, Z.; Zeng, J. W.; Yu, G. L.; Wang, N. Z.; Chen, W. C.; Cao, T. J.; Hu, W. D. et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 2019, 14, 217–222.

    Article  CAS  Google Scholar 

  38. Noumbé, U. N.; Gréboval, C.; Livache, C.; Chu, A.; Majjad, H.; López, L. E. P.; Mouafo, L. D. N.; Doudin, B.; Berciaud, S.; Chaste, J. et al. Reconfigurable 2D/0D p-n Graphene/HgTe nanocrystal heterostructure for infrared detection. ACS Nano 2020, 14, 4567–4576.

    Article  Google Scholar 

  39. Zolotavin, P.; Evans, C.; Natelson, D. Photothermoelectric effects and large photovoltages in plasmonic Au nanowires with nanogaps. J. Phys. Chem. Lett. 2017, 8, 1739–1744.

    Article  CAS  Google Scholar 

  40. Liu, H.; Liu, Y. J.; Dong, S. C.; Xu, H. Y.; Wu, Y. P.; Hao, L. Z.; Cao, B. L.; Li, M. J.; Wang, Z. G.; Han, Z. D. et al. Photothermoelectric SnTe photodetector with broad spectral response and high on/off ratio. ACS Appl. Mater. Interfaces 2020, 12, 49830–49839.

    Article  CAS  Google Scholar 

  41. Guo, W. L.; Dong, Z.; Xu, Y. J.; Liu, C. L.; Wei, D. C.; Zhang, L. B.; Shi, X. Y.; Guo, C.; Xu, H.; Chen, G. et al. Sensitive terahertz detection and imaging driven by the photothermoelectric effect in ultrashort-channel black phosphorus devices. Adv. Sci. 2020, 7, 1902699.

    Article  CAS  Google Scholar 

  42. Dai, M. J.; Wang, C. W.; Ye, M.; Zhu, S.; Han, S.; Sun, F. Y.; Chen, W. D.; Jin, Y. H.; Chua, Y.; Wang, Q. J. High-performance, polarization-sensitive, long-wave infrared photodetection via photothermoelectric effect with asymmetric van der waals contacts. ACS Nano 2022, 16, 295–305.

    Article  CAS  Google Scholar 

  43. Xu, H. Y.; Hao, L. Z.; Liu, H.; Dong, S. C.; Wu, Y. P.; Liu, Y. J.; Cao, B. L.; Wang, Z. G.; Ling, C. C.; Li, S. X. et al. Flexible SnSe photodetectors with ultrabroad spectral response up to 10.6 µm enabled by photobolometric effect. ACS Appl. Mater. Interfaces 2020, 12, 35250–35258.

    Article  CAS  Google Scholar 

  44. Tong, L.; Peng, M.; Wu, P. S.; Huang, X. Y.; Li, Z.; Peng, Z. R.; Lin, R. F.; Sun, Q. D.; Shen, Y. X.; Zhu, X. F. et al. Hole-dominated Fowler-Nordheim tunneling in 2D heterojunctions for infrared imaging. Sci. Bull. 2021, 66, 139–146.

    Article  CAS  Google Scholar 

  45. Liu, C. Y.; Guo, J. S.; Yu, L. W.; Li, J.; Zhang, M.; Li, H.; Shi, Y. C.; Dai, D. X. Silicon/2D-material photodetectors: From near-infrared to mid-infrared. Light:Sci. Appl. 2021, 10, 123.

    Article  CAS  Google Scholar 

  46. Wu, J. Y.; Chun, Y. T.; Li, S. P.; Zhang, T.; Wang, J. Z.; Shrestha, P. K.; Chu, D. P. Broadband MoS2 field-effect phototransistors: Ultrasensitive visible-light photoresponse and negative infrared photoresponse. Adv. Mater. 2018, 30, 1705880.

    Article  Google Scholar 

  47. Jiang, W.; Zheng, T.; Wu, B. M.; Jiao, H. X.; Wang, X. D.; Chen, Y.; Zhang, X. Y.; Peng, M.; Wang, H. L.; Lin, T. et al. A versatile photodetector assisted by photovoltaic and bolometric effects. Light: Sci. Appl. 2020, 9, 160.

    Article  CAS  Google Scholar 

  48. Pi, L. J.; Li, L.; Liu, K. L.; Zhang, Q. F.; Li, H. Q.; Zhai, T. Y. Recent progress on 2D noble-transition-metal dichalcogenides. Adv. Funct. Mater. 2019, 29, 1904932.

    Article  CAS  Google Scholar 

  49. Wang, Y. W.; Zhou, L.; Zhong, M. Z.; Liu, Y. P.; Xiao, S.; He, J. Two-dimensional noble transition-metal dichalcogenides for nanophotonics and optoelectronics: Status and prospects. Nano Res. 2022, 15, 3675–3694.

    Article  Google Scholar 

  50. Wang, Z.; Wang, P.; Wang, F.; Ye, J. F.; He, T.; Wu, F.; Peng, M.; Wu, P. S.; Chen, Y. F.; Zhong, F. et al. A noble metal dichalcogenide for high-performance field-effect transistors and broadband photodetectors. Adv. Funct. Mater. 2020, 30, 1907945.

    Article  CAS  Google Scholar 

  51. Zhao, Y. D.; Qiao, J. S.; Yu, P.; Hu, Z. X.; Lin, Z. Y.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016, 28, 2399–2407.

    Article  CAS  Google Scholar 

  52. Yu, X. C.; Yu, P.; Wu, D.; Singh, B.; Zeng, Q. S.; Lin, H.; Zhou, W.; Lin, J. H.; Suenaga, K.; Liu, Z. et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545.

    Article  Google Scholar 

  53. Zhang, G.; Amani, M.; Chaturvedi, A.; Tan, C. L.; Bullock, J.; Song, X. H.; Kim, H.; Lien, D. H.; Scott, M. C.; Zhang, H. et al. Optical and electrical properties of two-dimensional palladium diselenide. Appl. Phys. Lett. 2019, 114, 253102.

    Article  Google Scholar 

  54. Zeng, L. H.; Wu, D.; Lin, S. H.; Xie, C.; Yuan, H. Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L. B.; Li, Z. J. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 2019, 29, 1806878.

    Article  Google Scholar 

  55. Sefidmooye Azar, N.; Bullock, J.; Shrestha, V. R.; Balendhran, S.; Yan, W.; Kim, H.; Javey, A.; Crozier, K. B. Long-wave infrared photodetectors based on 2D platinum diselenide atop optical cavity substrates. ACS Nano 2021, 15, 6573–6581.

    Article  CAS  Google Scholar 

  56. Prechtl, M.; Parhizkar, S.; Hartwig, O.; Lee, K.; Biba, J.; Stimpel-Lindner, T.; Gity, F.; Schels, A.; Bolten, J.; Suckow, S. et al. Hybrid devices by selective and conformal deposition of PtSe2 at low temperatures. Adv. Funct. Mater. 2021, 31, 2103936.

    Article  CAS  Google Scholar 

  57. Dong, Z.; Yu, W. Z.; Zhang, L. B.; Mu, H. R.; Xie, L.; Li, J.; Zhang, Y.; Huang, L. Y.; He, X. Y.; Wang, L. et al. Highly efficient, ultrabroad PdSe2 phototransistors from visible to terahertz driven by mutiphysical mechanism. ACS Nano 2021, 15, 20403–20413.

    Article  CAS  Google Scholar 

  58. Xu, W. T.; Jiang, J. Y.; Ma, H. F.; Zhang, Z. W.; Li, J.; Zhao, B.; Wu, R. X.; Yang, X. D.; Zhang, H. M.; Li, B. L. et al. Vapor phase growth of two-dimensional PdSe2 nanosheets for high-photoresponsivity near-infrared photodetectors. Nano Res. 2020, 13, 2091–2097.

    Article  CAS  Google Scholar 

  59. Luo, L. B.; Wang, D.; Xie, C.; Hu, J. G.; Zhao, X. Y.; Liang, F. X. PdSe2 multilayer on germanium nanocones array with light trapping effect for sensitive infrared photodetector and image sensing application. Adv. Funct. Mater. 2019, 29, 1900849.

    Article  Google Scholar 

  60. Liang, F. X.; Zhao, X. Y.; Jiang, J. J.; Hu, J. G.; Xie, W. Q.; Lv, J.; Zhang, Z. X.; Wu, D.; Luo, L. B. Light confinement effect induced highly sensitive, self-driven near-infrared photodetector and image sensor based on multilayer PdSe2/pyramid Si heterojunction. Small 2019, 15, 1903831.

    Article  CAS  Google Scholar 

  61. Long, M. S.; Wang, Y.; Wang, P.; Zhou, X. H.; Xia, H.; Luo, C.; Huang, S. Y.; Zhang, G. W.; Yan, H. G.; Fan, Z. Y. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 2019, 13, 2511–2519.

    CAS  Google Scholar 

  62. Afzal, A. M.; Dastgeer, G.; Iqbal, M. Z.; Gautam, P.; Faisal, M. M. High-performance p-BP/n-PdSe2 near-infrared photodiodes with a fast and gate-tunable photoresponse. ACS Appl. Mater. Interfaces 2020, 12, 19625–19634.

    Article  CAS  Google Scholar 

  63. Wu, D.; Mo, Z. H.; Han, Y. B.; Lin, P.; Shi, Z. F.; Chen, X.; Tian, Y. T.; Li, X. J.; Yuan, H. Y.; Tsang, Y. H. Fabrication of 2D PdSe2/3D CdTe mixed-dimensional van der Waals heterojunction for broadband infrared detection. ACS Appl. Mater. Interfaces 2021, 13, 41791–41801.

    Article  CAS  Google Scholar 

  64. Wu, D.; Wang, Y. G.; Zeng, L. H.; Jia, C.; Wu, E. P.; Xu, T. T.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics 2018, 5, 3820–3827.

    Article  Google Scholar 

  65. Yuan, J.; Sun, T.; Hu, Z. X.; Yu, W. Z.; Ma, W. L.; Zhang, K.; Sun, B. Q.; Lau, S. P.; Bao, Q. L.; Lin, S. H. et al. Wafer-scale fabrication of two-dimensional PtS2/PtSe2 heterojunctions for efficient and broad band photodetection. ACS Appl. Mater. Interfaces 2018, 10, 40614–40622.

    Article  CAS  Google Scholar 

  66. Afzal, A. M.; Iqbal, M. Z.; Dastgeer, G.; ul. Ahmad, A.; Park, B. Highly sensitive, ultrafast, and broadband photo-detecting field-effect transistor with transition-metal dichalcogenide van der Waals heterostructures of MoTe2 and PdSe2. Adv. Sci. 2021, 8, 2003713.

    Article  CAS  Google Scholar 

  67. Ahmad, W.; Liu, J. D.; Jiang, J. Z.; Hao, Q. Y.; Wu, D.; Ke, Y. X.; Gan, H. B.; Laxmi, V.; Ouyang, Z. B.; Ouyang, F. P. et al. Strong interlayer transition in few-layer InSe/PdSe2 van der Waals heterostructure for near-infrared photodetection. Adv. Funct. Mater. 2021, 31, 2104143.

    Article  CAS  Google Scholar 

  68. Wu, D.; Jia, C.; Shi, F. H.; Zeng, L. H.; Lin, P.; Dong, L.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Jie, J. S. Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. J. Mater. Chem. A 2020, 8, 3632–3642.

    Article  CAS  Google Scholar 

  69. Liang, Q. J.; Wang, Q. X.; Zhang, Q.; Wei, J. X.; Lim, S. X.; Zhu, R.; Hu, J. X.; Wei, W.; Lee, C.; Sow, C. et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater. 2019, 31, 1807609.

    Article  Google Scholar 

  70. Zhong, J. H.; Yu, J.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Liu, Z. W.; Liu, Y. P. High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Res. 2020, 13, 1780–1786.

    Article  CAS  Google Scholar 

  71. Zeng, L. H.; Chen, Q. M.; Zhang, Z. X.; Wu, D.; Yuan, H. Y.; Li, Y. Y.; Qarony, W.; Lau, S. P.; Luo, L. B.; Tsang, Y. H. Multilayered PdSe2/perovskite schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci. 2019, 6, 1901134.

    Article  CAS  Google Scholar 

  72. Wu, D.; Guo, J. W.; Du, J.; Xia, C. X.; Zeng, L. H.; Tian, Y. Z.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 2019, 13, 9907–9917.

    Article  CAS  Google Scholar 

  73. Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.

    Article  Google Scholar 

  74. Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S. J.; Wang, H. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648–4655.

    Article  CAS  Google Scholar 

  75. Hu, G. H.; Albrow-Owen, T.; Jin, X. X.; Ali, A.; Hu, Y. W.; Howe, R. C. T.; Shehzad, K.; Yang, Z. Y.; Zhu, X. K.; Woodward, R. I. et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 2017, 8, 278.

    Article  Google Scholar 

  76. Phaneuf-L’Heureux, A. L.; Favron, A.; Germain, J. F.; Lavoie, P.; Desjardins, P.; Leonelli, R.; Martel, R.; Francoeur, S. Polarization-resolved raman study of bulk-like and davydov-induced vibrational modes of exfoliated black phosphorus. Nano Lett. 2016, 16, 7761–7767.

    Article  Google Scholar 

  77. Li, Y. Y.; Hu, Z. X.; Lin, S. H.; Lai, S. K.; Ji, W.; Lau, S. P. Giant anisotropic raman response of encapsulated ultrathin black phosphorus by uniaxial strain. Adv. Funct. Mater. 2017, 27, 1600986.

    Article  Google Scholar 

  78. Bullock, J.; Amani, M.; Cho, J.; Chen, Y. Z.; Ahn, G. H.; Adinolfi, V.; Shrestha, V. R.; Gao, Y.; Crozier, K. B.; Chueh, Y. L. et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 2018, 12, 601–607.

    Article  CAS  Google Scholar 

  79. Liu, T. T.; Jiang, X. Y.; Zhou, C. B.; Xiao, S. Y. Black phosphorus-based anisotropic absorption structure in the mid-infrared. Opt. Express 2019, 27, 27618–27627.

    Article  CAS  Google Scholar 

  80. Miao, J. S.; Song, B.; Xu, Z. H.; Cai, L.; Zhang, S. M.; Dong, L. X.; Wang, C. Single pixel black phosphorus photodetector for near-infrared imaging. Small 2018, 14, 1702082.

    Article  Google Scholar 

  81. Ma, Y. M.; Dong, B. W.; Wei, J. X.; Chang, Y. H.; Huang, L.; Ang, K. W.; Lee, C. High-responsivity mid-infrared black phosphorus slow light waveguide photodetector. Adv. Opt. Mater. 2020, 8, 2000337.

    Article  CAS  Google Scholar 

  82. Huang, L.; Dong, B.; Yu, Z. G.; Zhou, J.; Ma, Y.; Zhang, Y. W.; Lee, C.; Ang, K. W. Mid-infrared modulators integrating silicon and black phosphorus photonics. Mater. Today Adv. 2021, 12, 100170.

    Article  CAS  Google Scholar 

  83. Xu, Y. J.; Liu, C. L.; Guo, C.; Yu, Q.; Guo, W. L.; Lu, W.; Chen, X. S.; Wang, L.; Zhang, K. High performance near infrared photodetector based on in-plane black phosphorus p-n homojunction. Nano Energy 2020, 70, 104518.

    Article  CAS  Google Scholar 

  84. Yu, X. C.; Zhang, S. L.; Zeng, H. B.; Wang, Q. J. Lateral black phosphorene P-N junctions formed via chemical doping for high performance near-infrared photodetector. Nano Energy 2016, 25, 34–41.

    Article  CAS  Google Scholar 

  85. Ye, L.; Li, H.; Chen, Z. F.; Xu, J. B. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 2016, 3, 692–699.

    Article  CAS  Google Scholar 

  86. Ye, L.; Wang, P.; Luo, W. J.; Gong, F.; Liao, L.; Liu, T. D.; Tong, L.; Zang, J. F.; Xu, J. B.; Hu, W. D. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy 2017, 37, 53–60.

    Article  CAS  Google Scholar 

  87. Zhang, X. M.; Yan, C. L.; Hu, X.; Dong, Q. S.; Liu, Z. Y.; Lv, W. M.; Zeng, C. H.; Su, R. G.; Wang, Y. Q.; Sun, T. Y. et al. High performance mid-wave infrared photodetector based on graphene/black phosphorus heterojunction. Mater. Res. Express 2021, 8, 035602.

    Article  CAS  Google Scholar 

  88. Liang, J. C.; Hu, Y.; Zhang, K. Q.; Wang, Y. D.; Song, X. M.; Tao, A. Y.; Liu, Y. Z.; Jin, Z. 2D layered black arsenic-phosphorus materials: Synthesis, properties, and device applications. Nano Res. 2022, 15, 3737–3752.

    Article  CAS  Google Scholar 

  89. Long, M. S.; Gao, A. Y.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y. J.; Liu, E. F.; Chen, X. S.; Lu, W. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589.

    Article  Google Scholar 

  90. Liu, Y. J.; Wang, H. D.; Wang, S.; Wang, Y. J.; Wang, Y. Z.; Guo, Z. N.; Xiao, S. M.; Yao, Y.; Song, Q. H.; Zhang, H. et al. Highly efficient silicon photonic microheater based on black arsenic-phosphorus. Adv. Opt. Mater. 2020, 8, 1901526.

    Article  CAS  Google Scholar 

  91. Yu, L.; Zhu, Z.; Gao, A. Y.; Wang, J. Z.; Miao, F.; Shi, Y.; Wang, X. M. Electrically tunable optical properties of few-layer black arsenic phosphorus. Nanotechnology 2018, 29, 484001.

    Article  Google Scholar 

  92. Zhong, M. Z.; Meng, H. T.; Ren, Z. H.; Huang, L.; Yang, J. H.; Li, B.; Xia, Q. L.; Wang, X. T.; Wei, Z. M.; He, J. Gate-controlled ambipolar transport in b-AsP crystals and their VIS-NIF photodetection. Nanoscale 2021, 13, 10579–10586.

    Article  CAS  Google Scholar 

  93. Gong, F.; Wu, F.; Long, M. S.; Chen, F. S.; Su, M.; Yang, Z. Y.; Shi, J. Black phosphorus infrared photodetectors with fast response and high photoresponsivity. Phys. Status Solidi (RRL) — Rapid Res. Lett. 2018, 12, 1800310.

    Article  Google Scholar 

  94. Chen, X. L.; Lu, X. B.; Deng, B. C.; Sinai, O.; Shao, Y. C.; Li, C.; Yuan, S. F.; Tran, V.; Watanabe, K.; Taniguchi, T. et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 2017, 8, 1672.

    Article  Google Scholar 

  95. Yuan, S. F.; Shen, C. F.; Deng, B. C.; Chen, X. L.; Guo, Q. S.; Ma, Y. Q.; Abbas, A.; Liu, B. L.; Haiges, R.; Ott, C. et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures. Nano Lett. 2018, 18, 3172–3179.

    Article  CAS  Google Scholar 

  96. Wu, J. X.; Yuan, H. T.; Meng, M. M.; Chen, C.; Sun, Y.; Chen, Z. Y.; Dang, W. H.; Tan, C. W.; Liu, Y. J.; Yin, J. B. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530–534.

    Article  CAS  Google Scholar 

  97. Wei, Q. L.; Li, R. P.; Lin, C. Q.; Han, A. L.; Nie, A. M.; Li, Y. R.; Li, L. J.; Cheng, Y. C.; Huang, W. Quasi-two-dimensional Se-terminated bismuth oxychalcogenide (Bi2O2Se). ACS Nano 2019, 13, 13439–13444.

    Article  CAS  Google Scholar 

  98. Sun, Y.; Zhang, J.; Ye, S.; Song, J.; Qu, J. L. Progress report on property, preparation, and application of Bi2O2Se. Adv. Funct. Mater. 2020, 30, 2004480.

    Article  CAS  Google Scholar 

  99. Yin, J. B.; Tan, Z. J.; Hong, H.; Wu, J. X.; Yuan, H. T.; Liu, Y. J.; Chen, C.; Tan, C. W.; Yao, F. R.; Li, T. R. et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat. Commun. 2018, 9, 3311.

    Article  Google Scholar 

  100. Li, J.; Wang, Z.; Wen, Y.; Chu, J.; Yin, L.; Cheng, R.; Lei, L.; He, P.; Jiang, C.; Feng, L.; He, J. High-Performance Near-Infrared Photodetector Based on Ultrathin Bi2O2Se Nanosheets. Advanced Functional Materials 2018, 28.

  101. Ma, X. Y.; Chang, D. H.; Zhao, C. X.; Li, R.; Huang, X. Y.; Zeng, Z. P.; Huang, X. W.; Jia, Y. Geometric structures and electronic properties of the Bi2X2Y (X, Y = O, S, Se, and Te) ternary compound family: A systematic DFT study. J. Mater. Chem. C 2018, 6, 13241–13249.

    Article  CAS  Google Scholar 

  102. Chitara, B.; Limbu, T. B.; Orlando, J. D.; Tang, Y. G.; Yan, F. Ultrathin Bi2O2S nanosheet near-infrared photodetectors. Nanoscale 2020, 12, 16285–16291.

    Article  CAS  Google Scholar 

  103. Yang, X. X.; Qu, L. H.; Gao, F.; Hu, Y. X.; Yu, H.; Wang, Y. X.; Cui, M. Q.; Zhang, Y. X.; Fu, Z. D.; Huang, Y. W. et al. High-performance broadband photoelectrochemical photodetectors based on ultrathin Bi2O2S nanosheets. ACS Appl. Mater. Interfaces 2022, 14, 7175–7183.

    Article  CAS  Google Scholar 

  104. Tian, P.; Wu, H. B.; Tang, L. B.; Xiang, J. Z.; Ji, R. B.; Lau, S. P.; Teng, K. S.; Guo, W.; Yao, Y. G.; Li, L. J. Ultrasensitive broadband photodetectors based on two-dimensional Bi2O2Te films. J. Mater. Chem. C 2021, 9, 13713–13721.

    Article  CAS  Google Scholar 

  105. Wang, F. K.; Yang, S. J.; Wu, J.; Hu, X. Z.; Li, Y.; Li, H. Q.; Liu, X. T.; Luo, J. H.; Zhai, T. Y. Emerging two-dimensional bismuth oxychalcogenides for electronics and optoelectronics. InfoMat 2021, 3, 1251–1271.

    Article  CAS  Google Scholar 

  106. Ulaganathan, R. K.; Sankar, R.; Lin, C. Y.; Murugesan, R. C.; Tang, K. C.; Chou, F. C. High-performance flexible broadband photodetectors based on 2D hafnium selenosulfide nanosheets. Adv. Electron. Mater. 2020, 6, 1900794.

    Article  CAS  Google Scholar 

  107. Du, L. N.; Wang, C.; Fang, J. Z.; Wei, B.; Xiong, W. Q.; Wang, X. T.; Ma, L. J.; Wang, X. F.; Wei, Z. M.; Xia, C. X. et al. A ternary SnS1.26Se0.76 alloy for flexible broadband photodetectors. RSC Adv. 2019, 9, 14352–14359.

    Article  CAS  Google Scholar 

  108. Xu, T. F.; Luo, M.; Shen, N. M.; Yu, Y. Y.; Wang, Z.; Cui, Z. Z.; Qin, J. Y.; Liang, F.; Chen, Y. F.; Zhou, Y. et al. Ternary 2D layered material FePSe3 and near-infrared photodetector. Adv. Electron. Mater. 2021, 7, 2100207.

    Article  CAS  Google Scholar 

  109. Kang, P. P.; Nan, H. Y.; Zhang, X. M.; Mo, H. X.; Ni, Z. H.; Gu, X. F.; Ostrikov, K.; Xiao, S. Q. Controllable synthesis of crystalline ReS2(1−x)Se2x monolayers on amorphous SiO2/Si substrates with fast photoresponse. Adv. Opt. Mater. 2020, 8, 1901415.

    Article  CAS  Google Scholar 

  110. Luo, P.; Pei, K.; Wang, F. K.; Feng, X.; Li, H. Q.; Liu, X. T.; Luo, J. H.; Zhai, T. Y. Ultrathin 2D ternary Bi2Te2Se flakes for fast-response photodetectors with gate-tunable responsivity. Sci. China Mater. 2021, 64, 3017–3026.

    Article  CAS  Google Scholar 

  111. Chen, J. W.; Li, L.; Gong, P. L.; Zhang, H. L.; Yin, S. Q.; Li, M.; Wu, L. F.; Gao, W. S.; Long, M. S.; Shan, L. et al. A submicrosecond-response ultraviolet-visible-near-infrared broadband photodetector based on 2D tellurosilicate InSiTe3. ACS Nano 2022, 16, 7745–7754.

    Article  CAS  Google Scholar 

  112. Qiao, J.; Feng, F.; Song, S.; Wang, T.; Shen, M. Y.; Zhang, G. P.; Yuan, X. C.; Somekh, M. G. Perovskite quantum dot-Ta2NiSe5 mixed-dimensional van der waals heterostructures for high-performance near-infrared photodetection. Adv. Funct. Mater. 2022, 32, 2110706.

    Article  CAS  Google Scholar 

  113. Xu, G. L.; Liu, D. M.; Li, S. Y.; Wu, Y.; Zhang, Z. L.; Wang, S. B.; Huang, Z. K.; Zhang, Y. Z. Binary-ternary transition metal chalcogenides interlayer coupling in van der Waals type-II heterostructure for visible-infrared photodetector with efficient suppression dark currents. Nano Res. 2022, 15, 2689–2696.

    Article  CAS  Google Scholar 

  114. Yang, T.; Li, X.; Wang, L. M.; Liu, Y. M.; Chen, K. J.; Yang, X.; Liao, L.; Dong, L.; Shan, C. X. Broadband photodetection of 2D Bi2O2Se-MoSe2 heterostructure. J. Mater. Sci. 2019, 54, 14742–14751.

    Article  CAS  Google Scholar 

  115. Yang, S. J.; Luo, P.; Wang, F. K.; Liu, T.; Zhao, Y. H.; Ma, Y.; Li, H. Q.; Zhai, T. Y. Van der Waals epitaxy of Bi2Te2Se/Bi2O2Se vertical heterojunction for high performance photodetector. Small 2022, 18, 2105211.

    Article  CAS  Google Scholar 

  116. Arora, H.; Dong, R. H.; Venanzi, T.; Zscharschuch, J.; Schneider, H.; Helm, M.; Feng, X. L.; Cánovas, E.; Erbe, A. Demonstration of a broadband photodetector based on a two-dimensional metal-organic framework. Adv. Mater. 2020, 32, 1907063.

    Article  CAS  Google Scholar 

  117. Chung, Y. K.; Lee, J.; Lee, W. G.; Sung, D.; Chae, S.; Oh, S.; Choi, K. H.; Kim, B. J.; Choi, J. Y.; Huh, J. Theoretical study of anisotropic carrier mobility for two-dimensional Nb2Se9 material. ACS Omega 2021, 6, 26782–26790.

    Article  CAS  Google Scholar 

  118. Kecik, D.; Özçelik, V. O.; Durgun, E.; Ciraci, S. Structure dependent optoelectronic properties of monolayer antimonene, bismuthene and their binary compound. Phys. Chem. Chem. Phys. 2019, 21, 7907–7917.

    Article  CAS  Google Scholar 

  119. Xu, H.; Ren, A. B.; Wu, J.; Wang, Z. M. Recent advances in 2D MXenes for photodetection. Adv. Funct. Mater. 2020, 30, 2000907.

    Article  CAS  Google Scholar 

  120. Wang, B.; Zhong, S. P.; Xu, P.; Zhang, H. Booming development and present advances of two dimensional MXenes for photodetectors. Chem. Eng. J. 2021, 403, 126336.

    Article  CAS  Google Scholar 

  121. Hu, C. Q.; Li, L.; Shen, G. Z. Flexible transparent near-infrared photodetector based on 2D Ti3C2 MXene-Te van der Waals heterostructures. Chin. J. Chem. 2021, 39, 2141–2146.

    Article  CAS  Google Scholar 

  122. Ren, A. B.; Zou, J. H.; Lai, H. G.; Huang, Y. X.; Yuan, L. M.; Xu, H.; Shen, K.; Wang, H.; Wei, S. Y.; Wang, Y. F. et al. Direct laser-patterned MXene-perovskite image sensor arrays for visible-near infrared photodetection. Mater. Horiz. 2020, 7, 1901–1911.

    Article  CAS  Google Scholar 

  123. Yang, C. M.; Qin, S. Y.; Zuo, Y.; Shi, Y.; Bie, T.; Shao, M.; Yu, Y. Waveguide schottky photodetector with tunable barrier based on Ti3C2Tx/p-Si van der Waals heterojunction. Nanophotonics 2021, 10, 4133–4139.

    Article  CAS  Google Scholar 

  124. Zhang, X. W.; Shao, J. H.; Yan, C. X.; Wang, X. M.; Wang, Y. F.; Lu, Z. H.; Qin, R. J.; Huang, X. W.; Tian, J. L.; Zeng, L. H. High performance broadband self-driven photodetector based on MXene (Ti3C2Tx)/GaAs Schottky junction. Mater. Des. 2021, 207, 109850.

    Article  CAS  Google Scholar 

  125. Shi, Z.; Cao, R.; Khan, K.; Tareen, A. K.; Liu, X. S.; Liang, W. Y.; Zhang, Y.; Ma, C. Y.; Guo, Z. N.; Luo, X. L. et al. Two-dimensional tellurium: Progress, challenges, and prospects. Nano-Micro Lett. 2020, 12, 99.

    Article  CAS  Google Scholar 

  126. Gao, S. Y.; Sun, C. Q.; Zhang, X. Ultra-strong anisotropic photo-responsivity of bilayer tellurene: A quantum transport and timedomain first principle study. Nanophotonics 2020, 9, 1931–1940.

    Article  CAS  Google Scholar 

  127. Amani, M.; Tan, C. L.; Zhang, G.; Zhao, C. S.; Bullock, J.; Song, X. H.; Kim, H.; Shrestha, V. R.; Gao, Y.; Crozier, K. B. et al. Solution-synthesized high-mobility tellurium nanoflakes for shortwave infrared photodetectors. ACS Nano 2018, 12, 7253–7263.

    Article  CAS  Google Scholar 

  128. Peng, M.; Xie, R. Z.; Wang, Z.; Wang, P.; Wang, F.; Ge, H. N.; Wang, Y.; Zhong, F.; Wu, P. S.; Ye, J. F. et al. Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Sci. Adv. 2021, 7, eabf7358.

    Article  CAS  Google Scholar 

  129. Wang, X. T.; Li, Y. T.; Huang, L.; Jiang, X. W.; Jiang, L.; Dong, H. L.; Wei, Z. M.; Li, J. B.; Hu, W. P. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J. Am. Chem. Soc. 2017, 139, 14976–14982.

    Article  CAS  Google Scholar 

  130. Wang, X. T.; Zhong, F.; Kang, J.; Liu, C.; Lei, M.; Pan, L. F.; Wang, H. L.; Wang, F.; Zhou, Z. Q.; Cui, Y. et al. Polarizer-free polarimetric image sensor through anisotropic two-dimensional GeSe. Sci. China Mater. 2021, 64, 1230–1237.

    Article  CAS  Google Scholar 

  131. Chen, Y.; Wang, X. D.; Wu, G. J.; Wang, Z.; Fang, H. H.; Lin, T.; Sun, S.; Shen, H.; Hu, W. D.; Wang, J. L. et al. High-performance photovoltaic detector based on MoTe2/MoS2 Van der Waals heterostructure. Small 2018, 14, 1703293.

    Article  Google Scholar 

  132. Wu, H. L.; Kang, Z.; Zhang, Z. H.; Zhang, Z.; Si, H. N.; Liao, Q. L.; Zhang, S. C.; Wu, J.; Zhang, X. K.; Zhang, Y. Interfacial charge behavior modulation in perovskite quantum dot-monolayer MoS2 0D-2D mixed-dimensional van der Waals heterostructures. Adv. Funct. Mater. 2018, 28, 1802015.

    Article  Google Scholar 

  133. Tan, C. Y.; Yin, S. Q.; Chen, J. W.; Lu, Y.; Wei, W. S.; Du, H. F.; Liu, K. L.; Wang, F. K.; Zhai, T. Y.; Li, L. Broken-gap PtS2/WSe2 van der Waals heterojunction with ultrahigh reverse rectification and fast photoresponse. ACS Nano 2021, 15, 8328–8337.

    Article  CAS  Google Scholar 

  134. Du, Y. X.; Liu, H.; Hu, J. X.; Deng, L. E.; Bai, Y.; Bai, M. Y.; Xie, F. First-principles study of the electronic and optical properties of Bi2Se3/MoSe2 heterojunction. Phys. Status Solidi (B) 2021, 258, 2100403.

    Article  CAS  Google Scholar 

  135. Yan, X.; Liu, C. S.; Li, C.; Bao, W. Z.; Ding, S. J.; Zhang, D. W.; Zhou, P. Tunable SnSe2/WSe2 heterostructure tunneling field effect transistor. Small 2017, 13, 1701478.

    Article  Google Scholar 

  136. Wu, Z. T.; Zhu, N. C.; Jiang, J.; Zafar, A.; Hong, J. T.; Zhang, Y. Tuning interlayer coupling by laser irradiation and broadband photodetection in vertical MoTe2/WS2 vdW heterostructure. APL Mater. 2019, 7, 041108.

    Article  Google Scholar 

  137. Mukherjee, S.; Jana, S.; Sinha, T. K.; Das, S.; Ray, S. K. Infrared tunable, two colour-band photodetectors on flexible platforms using 0D/2D PbS-MoS2 hybrids. Nanoscale Adv. 2019, 1, 3279–3287.

    Article  CAS  Google Scholar 

  138. Kim, H. S.; Patel, M.; Kim, J.; Jeong, M. S. Growth of wafer-scale standing layers of WS2 for self-biased high-speed UV-visible-NIR optoelectronic devices. ACS Appl. Mater. Interfaces 2018, 10, 3964–3974.

    Article  CAS  Google Scholar 

  139. Zhang, Y. N.; Yun, J. N.; Zhang, S. Y.; Zeng, L. R.; Bi, Z. S.; Huang, N. N.; Kang, P.; Yan, J. F.; Zhao, W.; Zhang, Z. Y. et al. Self-powered near-infrared photodetector based on graphyne/hexagonal boron phosphide heterostructure with high responsivity and robustness: A theoretical study. Appl. Surf. Sci. 2021, 569, 151035.

    Article  CAS  Google Scholar 

  140. Wang, Y. G.; Huang, X. W.; Wu, D.; Zhuo, R. R.; Wu, E. P.; Jia, C.; Shi, Z. F.; Xu, T. T.; Tian, Y. T.; Li, X. J. A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1,700 nm. J. Mater. Chem. C 2018, 6, 4861–4865.

    Article  CAS  Google Scholar 

  141. Sun, Y.; Hu, R. X.; An, C. H.; Ma, X. L.; Zhang, J.; Liu, J. Visible to near-infrared photodetector based on SnSe2/WSe2 heterojunction with potential application in artificial visual neuron. Nanotechnology 2021, 32, 475206.

    Article  CAS  Google Scholar 

  142. Luo, P.; Zhuge, F. W.; Wang, F. K.; Lian, L. Y.; Liu, K. L.; Zhang, J. B.; Zhai, T. Y. PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 um. ACS Nano 2019, 13, 9028–9037.

    Article  CAS  Google Scholar 

  143. Wang, Z. Y.; Zhang, X. W.; Wu, D.; Guo, J. W.; Zhao, Z. H.; Shi, Z. F.; Tian, Y. T.; Huang, X. W.; Li, X. J. Construction of mixed-dimensional WS2/Si heterojunctions for high-performance infrared photodetection and imaging applications. J. Mater. Chem. C 2020, 8, 6877–6882.

    Article  Google Scholar 

  144. Ross, J. S.; Rivera, P.; Schaibley, J.; Lee-Wong, E.; Yu, H. Y.; Taniguchi, T.; Watanabe, K.; Yan, J. Q.; Mandrus, D.; Cobden, D. et al. Interlayer exciton optoelectronics in a 2D heterostructure p-n junction. Nano Lett. 2017, 17, 638–643.

    Article  CAS  Google Scholar 

  145. Mueller, T.; Malic, E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl. 2018, 2, 29.

    Article  Google Scholar 

  146. Qi, T. L.; Gong, Y. P.; Li, A. L.; Ma, X. M.; Wang, P. P.; Huang, R.; Liu, C.; Sakidja, R.; Wu, J. Z.; Chen, R. et al. Interlayer transition in a vdW heterostructure toward ultrahigh detectivity shortwave infrared photodetectors. Adv. Funct. Mater. 2020, 30, 1905687.

    Article  CAS  Google Scholar 

  147. Lukman, S.; Ding, L.; Xu, L.; Tao, Y.; Riis-Jensen, A. C.; Zhang, G.; Wu, Q. Y. S.; Yang, M.; Luo, S.; Hsu, C. et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol. 2020, 15, 675–682.

    Article  CAS  Google Scholar 

  148. Inbaraj, C. R. P.; Mathew, R. J.; Ulaganathan, R. K.; Sankar, R.; Kataria, M.; Lin, H. Y.; Cheng, H. Y.; Lin, K. H.; Lin, H. I.; Liao, Y. M. et al. Modulating charge separation with hexagonal boron nitride mediation in vertical van der Waals heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 26213–26221.

    Article  Google Scholar 

  149. Shen, N. F.; Yang, X. D.; Wang, X. X.; Wang, G. H.; Wan, J. G. Two-dimensional van der Waals heterostructure of indium selenide/hexagonal boron nitride with strong interlayer coupling. Chem. Phys. Lett. 2020, 749, 137430.

    Article  CAS  Google Scholar 

  150. Fang, H. H.; Wu, P. S.; Wang, P.; Zheng, Z.; Tang, Y. C.; Ho, J. C.; Chen, G.; Wang, Y. M.; Shan, C. X.; Cheng, X. B. et al. Global photocurrent generation in phototransistors based on single-walled carbon nanotubes toward highly sensitive infrared detection. Adv. Opt. Mater. 2019, 7, 1900597.

    Article  CAS  Google Scholar 

  151. Ogawa, S.; Fukushima, S.; Okuda, S.; Shimatani, M. Graphene nanoribbon photogating for graphene-based infrared photodetectors. In Proceedings of SPIE 11741, Infrared Technology and Applications XLVII, 2021, pp 117411H.

  152. Wen, H.; Xiong, L.; Tan, C. B.; Zhu, K. M.; Tang, Y.; Wang, J. B.; Zhong, X. L. Localized electric-field-enhanced low-light detection by a 2D SnS visible-light photodetector. Chin. Phys. B 2021, 30, 057803.

    Article  CAS  Google Scholar 

  153. Wang, X. Z.; Pan, D.; Sun, M.; Lyu, F. J.; Zhao, J. H.; Chen, Q. High-performance room-temperature UV-IR photodetector based on the InAs nanosheet and its wavelength-and intensity-dependent negative photoconductivity. ACS Appl. Mater. Interfaces 2021, 13, 26187–26195.

    Article  CAS  Google Scholar 

  154. Huang, H.; Wang, J. L.; Hu, W. D.; Liao, L.; Wang, P.; Wang, X. D.; Gong, F.; Chen, Y.; Wu, G. J.; Luo, W. J. et al. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology 2016, 27, 445201.

    Article  Google Scholar 

  155. Hao, L. Z.; Du, Y. J.; Wang, Z. G.; Wu, Y. P.; Xu, H. Y.; Dong, S. C.; Liu, H.; Liu, Y. J.; Xue, Q. Z.; Han, Z. D. et al. Wafer-size growth of 2D layered SnSe films for UV-visible-NIR photodetector arrays with high responsitivity. Nanoscale 2020, 12, 7358–7365.

    Article  CAS  Google Scholar 

  156. Shen, C. F.; Liu, Y. H.; Wu, J. B.; Xu, C.; Cui, D. Z.; Li, Z.; Liu, Q. Z.; Li, Y. R.; Wang, Y. X.; Cao, X. et al. Tellurene photodetector with high gain and wide bandwidth. ACS Nano 2020, 14, 303–310.

    Article  CAS  Google Scholar 

  157. Wang, F. K.; Wu, J.; Zhang, Y.; Yang, S. J.; Zhang, N.; Li, H. Q.; Zhai, T. Y. High-sensitivity shortwave infrared photodetectors of metal-organic frameworks integrated on 2D layered materials. Sci. China Mater. 2022, 65, 451–459.

    Article  CAS  Google Scholar 

  158. Shen, T.; Li, F.; Zhang, Z. Y.; Xu, L.; Qi, J. J. High-performance broadband photodetector based on monolayer MoS2 hybridized with environment-friendly CuInSe2 quantum dots. ACS Appl. Mater. Interfaces 2020, 12, 54927–54935.

    Article  CAS  Google Scholar 

  159. Ilyas, N.; Li, D. Y.; Song, Y. H.; Zhong, H.; Jiang, Y. D.; Li, W. Low-dimensional materials and state-of-the-art architectures for infrared photodetection. Sensors 2018, 18, 4163.

    Article  Google Scholar 

  160. Zha, J. J.; Luo, M. C.; Ye, M.; Ahmed, T.; Yu, X. C.; Lien, D. H.; He, Q. Y.; Lei, D. Y.; Ho, J. C.; Bullock, J. et al. Infrared photodetectors based on 2D materials and nanophotonics. Adv. Funct. Mater. 2022, 32, 2111970.

    Article  CAS  Google Scholar 

  161. Liu, T. D.; Tong, L.; Huang, X. Y.; Ye, L. Room-temperature infrared photodetectors with hybrid structure based on two-dimensional materials. Chin. Phys. B 2019, 28, 017302.

    Article  CAS  Google Scholar 

  162. Wang, W. Y.; Klots, A.; Prasai, D.; Yang, Y. M.; Bolotin, K. I.; Valentine, J. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett. 2015, 15, 7440–7444.

    Article  CAS  Google Scholar 

  163. Jeon, J.; Choi, H.; Choi, S.; Park, J. H.; Lee, B. H.; Hwang, E.; Lee, S. Transition-metal-carbide (Mo2C) multiperiod gratings for realization of high-sensitivity and broad-spectrum photodetection. Adv. Funct. Mater. 2019, 29, 1905384.

    Article  CAS  Google Scholar 

  164. Dai, M. J.; Chen, H. Y.; Feng, R.; Feng, W.; Hu, Y. X.; Yang, H. H.; Liu, G. B.; Chen, X. S.; Zhang, J.; Xu, C. Y. et al. A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric schottky junction. ACS Nano 2018, 12, 8739–8747.

    Article  CAS  Google Scholar 

  165. Nakazawa, T.; Kim, D.; Kato, S.; Park, J.; Nam, J.; Kim, H. Photocurrent enhancement of PtSe2 photodetectors by using au nanorods. Photonics 2021, 8, 505.

    Article  CAS  Google Scholar 

  166. Guo, J. X.; Li, S. D.; He, Z. B.; Li, Y. Y.; Lei, Z. C.; Liu, Y.; Huang, W.; Gong, T. X.; Ai, Q. Q.; Mao, L. N. et al. Near-infrared photodetector based on few-layer MoS2 with sensitivity enhanced by localized surface plasmon resonance. Appl. Surf. Sci. 2019, 483, 1037–1043.

    Article  CAS  Google Scholar 

  167. Zhang, D. H.; Zhou, J.; Liu, C. L.; Guo, S. K.; Deng, J. N.; Cai, Q. Y.; Li, Z. F.; Zhang, Y. F.; Zhang, W. Q.; Chen, X. S. Enhanced polarization sensitivity by plasmonic-cavity in graphene phototransistors. J. Appl. Phys. 2019, 126, 074301.

    Article  Google Scholar 

  168. Yakimov, A. I.; Bloshkin, A. A.; Dvurechenskii, A. V. Plasmonic field enhancement by metallic subwave lattices on silicon in the near-infrared range. Jetp Letters 2019, 110, 411–416.

    Article  CAS  Google Scholar 

  169. Yakimov, A. I.; Bloshkin, A. A.; Dvurechenskii, A. V. Tailoring the optical field enhancement in Si-based structures covered by nanohole arrays in gold films for near-infrared photodetection. Photon. Nanostruct. -Fundam. Appl. 2020, 40, 100790.

    Article  Google Scholar 

  170. Azar, N. S.; Shrestha, V. R.; Crozier, K. B. Bull’s eye grating integrated with optical nanoantennas for plasmonic enhancement of graphene long-wave infrared photodetectors. Appl. Phys. Lett. 2019, 114, 091108.

    Article  Google Scholar 

  171. Huang, Y.; Liu, Y.; Fang, C. Z.; Shao, Y.; Han, G. Q.; Zhang, J. C.; Hao, Y. Active tuning of the hybridization effects of mid-infrared surface plasmon resonance in a black phosphorus sheet array and a metal grating slit. Opt. Mater. Express 2020, 10, 14–28.

    Article  Google Scholar 

  172. Lee, I. H.; Martin-Moreno, L.; Mohr, D. A.; Khaliji, K.; Low, T.; Oh, S. H. Anisotropic acoustic plasmons in black phosphorus. ACS Photonics 2018, 5, 2208–2216.

    Article  CAS  Google Scholar 

  173. Huang, L.; Jia, Z. P.; Tang, B. Tunable anisotropic plasmon-induced transparency in black phosphorus-based metamaterials. J. Opt. 2022, 24, 014001.

    Article  CAS  Google Scholar 

  174. Huang, Y.; Liu, X. Y.; Liu, Y.; Shao, Y.; Zhang, S. Q.; Fang, C. Z.; Han, G. Q.; Zhang, J. C.; Hao, Y. Nanostructured multiple-layer black phosphorus photodetector based on localized surface plasmon resonance. Opt. Mater. Express 2019, 9, 739–750.

    Article  CAS  Google Scholar 

  175. Nguyen-Huu, N.; Pistora, J.; Cada, M.; Nguyen-Thoi, T.; Ma, Y. Q.; Yasumoto, K.; Rahman, B. M. A.; Wu, Q.; Ma, Y.; Ngo, Q. H. et al. Ultra-wide spectral bandwidth and enhanced absorption in a metallic compound grating covered by graphene monolayer. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 8500108.

    Article  Google Scholar 

  176. Min, B. K.; Nguyen, V. T.; Kim, S. J.; Yi, Y.; Choi, C. G. Surface plasmon resonance-enhanced near-infrared absorption in single-layer MoS2 with vertically aligned nanoflakes. ACS Appl. Mater. Interfaces 2020, 12, 14476–14483.

    Article  CAS  Google Scholar 

  177. Podder, S.; Pal, A. R. Hot carrier devices using visible and NIR responsive titanium nitride nanostructures with stoichiometry variation. Opt. Mater. 2019, 97, 109379.

    Article  CAS  Google Scholar 

  178. Hassan, S.; Bera, S.; Gupta, D.; Ray, S. K.; Sapra, S. MoSe2-Cu2S vertical p-n nanoheterostructures for high-performance photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 4074–4083.

    Article  CAS  Google Scholar 

  179. Sarkar, S. S.; Bera, S.; Hassan, S.; Sapra, S.; Khatri, R. K.; Ray, S. K. MoSe2-Cu2−xS/GaAs heterostructure-based self-biased two color-band photodetectors with high detectivity. J. Phys. Chem. C 2021, 125, 10768–10776.

    Article  CAS  Google Scholar 

  180. Wu, J. Z. Exploration of uncooled quantum infrared detectors based on quantum dots/graphene heterostructures. In Proceedings of SPIE 11407, Infrared Technoloy and Applications XLVI, 2020, pp 1140706.

  181. Xu, J.; Cheng, X. L.; Liu, T.; Yu, Y. Q.; Song, L. L.; You, Y.; Wang, T.; Zhang, J. J. Oxygen-incorporated and layer-by-layer stacked WS2 nanosheets for broadband, self-driven and fast-response photodetection. Nanoscale 2019, 11, 6810–6816.

    Article  CAS  Google Scholar 

  182. Guo, J. X.; Liu, Y.; Lin, Y.; Tian, Y.; Zhang, J. X.; Gong, T. X.; Cheng, T. D.; Huang, W.; Zhang, X. S. Simulation of tuning graphene plasmonic behaviors by ferroelectric domains for self-driven infrared photodetector applications. Nanoscale 2019, 11, 20868–20875.

    Article  CAS  Google Scholar 

  183. Guo, Q. S.; Yu, R. W.; Li, C.; Yuan, S. F.; Deng, B. C.; de Abajo, F. J. G.; Xia, F. N. Efficient electrical detection of mid-infrared graphene plasmons at room temperature. Nat. Mater. 2018, 17, 986–992.

    Article  CAS  Google Scholar 

  184. Sun, T.; Ma, W. L.; Liu, D. H.; Bao, X. Z.; Shabbir, B.; Yuan, J.; Li, S. J.; Wei, D. C.; Bai, Q. L. Graphene plasmonic nanoresonators/graphene heterostructures for efficient room-temperature infrared photodetection. J. Semicond. 2020, 41, 072907.

    Article  CAS  Google Scholar 

  185. Sun, Y. X.; Niu, G.; Ren, W.; Meng, X. J.; Zhao, J. Y.; Luo, W. B.; Ye, Z. G.; Xie, Y. H. Hybrid system combining two-dimensional materials and ferroelectrics and its application in photodetection. ACS Nano 2021, 15, 10982–11013.

    Article  CAS  Google Scholar 

  186. Huang, H.; Wang, X. D.; Wang, P.; Wu, G. J.; Chen, Y.; Meng, C. M.; Liao, L.; Wang, J. L.; Hu, W. D.; Shen, H. et al. Ferroelectric polymer tuned two dimensional layered MoTe2 photodetector. RSC Adv. 2016, 6, 87416–87421.

    Article  CAS  Google Scholar 

  187. Wu, G. J.; Wang, X. D.; Wang, P.; Huang, H.; Chen, Y.; Sun, S.; Shen, H.; Lin, T.; Wang, J. L.; Zhang, S. T. et al. Visible to short wavelength infrared In2Se3-nanoflake photodetector gated by a ferroelectric polymer. Nanotechnology 2016, 27, 364002.

    Article  Google Scholar 

  188. Zheng, D. Y.; Dong, X. Y.; Lu, J.; Niu, Y. R.; Wang, H. High-sensitivity infrared photoelectric detection based on WS2/Si structure tuned by ferroelectrics. Small 2022, 18, 2105188.

    Article  CAS  Google Scholar 

  189. Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 2015, 27, 6575–6581.

    Article  CAS  Google Scholar 

  190. Liu, L.; Wu, L. M.; Wang, A. W.; Liu, H. T.; Ma, R. S.; Wu, K.; Chen, J. C.; Zhou, Z.; Tian, Y.; Yang, H. T. et al. Ferroelectricgated InSe photodetectors with high on/off ratios and photoresponsivity. Nano Lett. 2020, 20, 6666–6673.

    Article  CAS  Google Scholar 

  191. Jin, H. J.; Park, C.; Lee, K. J.; Shin, G. H.; Choi, S. Y. Ultrasensitive WSe2/α-In2Se3 NIR photodetector based on ferroelectric gating effect. Adv. Mater. Technol. 2021, 6, 2100494.

    Article  CAS  Google Scholar 

  192. Zhu, C. C.; Wang, Y. R.; Wang, F.; Yang, J.; Zhan, X. Y.; Fang, L.; Wang, Z. X.; He, J. Nonvolatile reconfigurable broadband photodiodes based on BP/α-In2Se3 ferroelectric p-n junctions. Appl. Phys. Lett. 2022, 120, 083101.

    Article  CAS  Google Scholar 

  193. Guan, H. Y.; Hong, J. Y.; Wang, X. L.; Ming, J. Y.; Zhang, Z. L.; Liang, A. J.; Han, X. Y.; Dong, J. L.; Qiu, W. T.; Chen, Z. et al. Broadband, high-sensitivity graphene photodetector based on ferroelectric polarization of lithium niobate. Adv. Opt. Mater. 2021, 9, 2100245.

    Article  CAS  Google Scholar 

  194. Sun, Y. L.; Xie, D.; Zhang, X. W.; Xu, J. L.; Li, X. M.; Li, X.; Dai, R. X.; Li, X.; Li, P. L.; Gao, X. S. et al. Temperature-dependent transport and hysteretic behaviors induced by interfacial states in MoS2 field-effect transistors with lead-zirconate-titanate ferroelectric gating. Nanotechnology 2017, 28, 045204.

    Article  Google Scholar 

  195. Tai, X. C.; Chen, Y.; Wu, S. Q.; Jiao, H. X.; Cui, Z. Z.; Zhao, D. Y.; Huang, X. N.; Zhao, Q. R.; Wang, X. D.; Lin, T. et al. High-performance ReS2 photodetectors enhanced by a ferroelectric field and strain field. RSC Adv. 2022, 12, 4939–4945.

    Article  CAS  Google Scholar 

  196. Baeumer, C.; Saldana-Greco, D.; Martirez, J. M. P.; Rappe, A. M.; Shim, M.; Martin, L. W. Ferroelectrically driven spatial carrier density modulation in graphene. Nat. Commun. 2015, 6, 6136.

    Article  CAS  Google Scholar 

  197. Wu, G. J.; Wang, X. D.; Chen, Y.; Wu, S. Q.; Wu, B. M.; Jiang, Y. Y.; Shen, H.; Lin, T.; Liu, Q.; Wang, X. R. et al. MoTe2 p-n homojunctions defined by ferroelectric polarization. Adv. Mater. 2020, 32, 1907937.

    Article  CAS  Google Scholar 

  198. Chen, Y.; Wang, X. D.; Huang, L.; Wang, X. T.; Jiang, W.; Wang, Z.; Wang, P.; Wu, B. M.; Lin, T.; Shen, H. et al. Ferroelectric-tuned van der Waals heterojunction with band alignment evolution. Nat. Commun. 2021, 12, 4030.

    Article  CAS  Google Scholar 

  199. Wang, X. D.; Shen, H.; Chen, Y.; Wu, G. J.; Wang, P.; Xia, H.; Lin, T.; Zhou, P.; Hu, W. D.; Meng, X. J. et al. Multimechanism synergistic photodetectors with ultrabroad spectrum response from 375 nm to 10 µm. Adv. Sci. 2019, 6, 1901050.

    Article  Google Scholar 

  200. Wang, P.; Wang, Y.; Ye, L.; Wu, M. Z.; Xie, R. Z.; Wang, X. D.; Chen, X. S.; Fan, Z. Y.; Wang, J. L.; Hu, W. D. Ferroelectric localized field-enhanced ZnO nanosheet ultraviolet photodetector with high sensitivity and low dark current. Small 2018, 14, 1800492.

    Article  Google Scholar 

  201. Zhang, S. K.; Jiao, H. X.; Wang, X. D.; Chen, Y.; Wang, H. L.; Zhu, L. Q.; Jiang, W.; Liu, J. J.; Sun, L. X.; Lin, T. et al. Highly sensitive InSb nanosheets infrared photodetector passivated by ferroelectric polymer. Adv. Funct. Mater. 2020, 30, 2006156.

    Article  CAS  Google Scholar 

  202. Tao, L.; Chen, Z. F.; Li, Z. Y.; Wang, J. Q.; Xu, X.; Xu, J. B. Enhancing light-matter interaction in 2D materials by optical micro/nano architectures for high-performance optoelectronic devices. InfoMat 2021, 3, 36–60.

    Article  CAS  Google Scholar 

  203. Zheng, Z. Q.; Chen, P. F.; Lu, J. T.; Yao, J. D.; Zhao, Y.; Zhang, M. L.; Hao, M. M.; Li, J. B. Self-assembly In2Se3/SnSe2 heterostructure array with suppressed dark current and enhanced photosensitivity for weak signal. Sci. China Mater. 2020, 63, 1560–1569.

    Article  CAS  Google Scholar 

  204. Qiao, S.; Cong, R. D.; Liu, J. H.; Liang, B. L.; Fu, G. S.; Yu, W.; Ren, K. L.; Wang, S. F.; Pan, C. F. A vertically layered MoS2/Si heterojunction for an ultrahigh and ultrafast photoresponse photodetector. J. Mater. Chem. C 2018, 6, 3233–3239.

    Article  CAS  Google Scholar 

  205. Yao, J. D.; Zheng, Z. Q.; Yang, G. W. Ultrasensitive 2D/3D heterojunction multicolor photodetectors: A synergy of laterally and vertically aligned 2D layered materials. ACS Appl. Mater. Interfaces 2018, 10, 38166–38172.

    Article  CAS  Google Scholar 

  206. Wu, P. S.; Ye, L.; Tong, L.; Wang, P.; Wang, Y.; Wang, H. L.; Ge, H. N.; Wang, Z.; Gu, Y.; Zhang, K. et al. Van der Waals two-color infrared photodetector. Light: Sci. Appl. 2022, 11, 6.

    Article  CAS  Google Scholar 

  207. Lee, H. S.; Lim, J. Y.; Yu, S.; Jeong, Y.; Park, S.; Oh, K.; Hong, S.; Yang, S.; Lee, C. H.; Im, S. Seamless MoTe2 homojunction PIN diode toward 1, 300 nm short-wave infrared detection. Adv. Opt. Mater. 2019, 7, 1900768.

    Article  CAS  Google Scholar 

  208. Jackson, E. M.; Nolde, J. A.; Kim, M.; Kim, C. S.; Cleveland, E. R.; Affouda, C. A.; Canedy, C. L.; Vurgaftman, I.; Meyer, J. R.; Aifer, E. H. et al. Two-dimensional plasmonic grating for increased quantum efficiency in midwave infrared nBn detectors with thin absorbers. Opt. Express 2018, 26, 13850–13864.

    Article  CAS  Google Scholar 

  209. Chen, Y. F.; Wang, Y.; Wang, Z.; Gu, Y.; Ye, Y.; Chai, X. L.; Ye, J. F.; Chen, Y.; Xie, R. Z.; Zhou, Y. et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat. Electron. 2021, 4, 357–363.

    Article  CAS  Google Scholar 

  210. Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 2020, 32, 2004412.

    Article  Google Scholar 

  211. Tong, L.; Huang, X. Y.; Wang, P.; Ye, L.; Peng, M.; An, L. C.; Sun, Q. D.; Zhang, Y.; Yang, G. M.; Li, Z. et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat. Commun. 2020, 11, 2308.

    Article  CAS  Google Scholar 

  212. Ahn, J.; Ko, K.; Kyhm, J. H.; Ra, H. S.; Bae, H.; Hong, S.; Kim, D. Y.; Jang, J.; Kim, T. W.; Choi, S. et al. Near-infrared self-powered linearly polarized photodetection and digital incoherent holography using WSe2/ReSe2 van der Waals heterostructure. ACS Nano 2021, 15, 17917–17925.

    Article  CAS  Google Scholar 

  213. Liu, N.; Tian, H.; Schwartz, G.; Tok, J. B. H.; Ren, T. L.; Bao, Z. N. Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene. Nano Lett. 2014, 14, 3702–3708.

    Article  CAS  Google Scholar 

  214. Zhang, T.; Ling, C. C.; Wang, X. M.; Feng, B. X.; Cao, M.; Xue, X.; Xue, Q. Z.; Zhang, J. Q.; Zhu, L.; Wang, C. K. et al. Six-arm stellat dendritic-PbS flexible infrared photodetector for intelligent healthcare monitoring. Adv. Mater. Technol. 2022, 7, 2200250.

    Article  CAS  Google Scholar 

  215. Fang, J. Z.; Zhou, Z. Q.; Xiao, M. Q.; Lou, Z.; Wei, Z. M.; Shen, G. Z. Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. InfoMat 2020, 2, 291–317.

    Article  CAS  Google Scholar 

  216. Yao, J. D.; Yang, G. W. Flexible and high-performance all-2D photodetector for wearable devices. Small 2018, 14, 1704524.

    Article  Google Scholar 

  217. Li, J. Y.; Han, J. F.; Li, H. X.; Fan, X. Y.; Huang, K. Large-area, flexible broadband photodetector based on WS2 nanosheets films. Mater. Sci. Semicond. Proc. 2020, 107, 104804.

    Article  CAS  Google Scholar 

  218. Choi, J. M.; Jang, H. Y.; Kim, A. R.; Kwon, J. D.; Cho, B.; Park, M. H.; Kim, Y. Ultra-flexible and rollable 2D-MoS2/Si heterojunction-based near-infrared photodetector via direct synthesis. Nanoscale 2021, 13, 672–680.

    Article  CAS  Google Scholar 

  219. Thai, K. Y.; Park, I.; Kim, B. J.; Hoang, A. T.; Na, Y.; Park, C. U.; Chae, Y.; Ahn, J. H. MoS2/graphene photodetector array with strain-modulated photoresponse up to the near-infrared regime. ACS Nano 2021, 15, 12836–12846.

    Article  CAS  Google Scholar 

  220. Cordeiro, N. J. A.; Gaspar, C.; de Oliveira, M. J.; Nunes, D.; Barquinha, P.; Pereira, L.; Fortunato, E.; Martins, R.; Laureto, E.; Lourenço, S. A. Fast and low-cost synthesis of MoS2 nanostructures on paper substrates for near-infrared photodetectors. Appl. Sci. 2021, 11, 1234.

    Article  CAS  Google Scholar 

  221. Mazaheri, A.; Lee, M.; van der Zant, H. S. J.; Frisenda, R.; Castellanos-Gomez, A. MoS2-on-paper optoelectronics: Drawing photodetectors with van der Waals semiconductors beyond graphite. Nanoscale 2020, 12, 19068–19074.

    Article  CAS  Google Scholar 

  222. Bie, Y. Q.; Grosso, G.; Heuck, M.; Furchi, M. M.; Cao, Y.; Zheng, J. B.; Bunandar, D.; Navarro-Moratalla, E.; Zhou, L.; Efetov, D. K. et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 2017, 12, 1124–1129.

    Article  CAS  Google Scholar 

  223. Liu, C. Y.; Guo, J. S.; Yu, L. W.; Xiang, Y. L.; Xiang, H. T.; Li, J.; Dai, D. X. High-speed and high-responsivity silicon/black-phosphorus hybrid plasmonic waveguide avalanche photodetector. ACS Photonics 2022, 9, 1764–1774.

    Article  CAS  Google Scholar 

  224. Lin, H. T.; Song, Y.; Huang, Y. Z.; Kita, D.; Deckoff-Jones, S.; Wang, K. Q.; Li, L.; Li, J. Y.; Zheng, H. Y.; Luo, Z. Q. et al. Chalcogenide glass-on-graphene photonics. Nat. Photonics 2017, 11, 798–805.

    Article  CAS  Google Scholar 

  225. Yuan, S. F.; Naveh, D.; Watanabe, K.; Taniguchi, T.; Xia, F. N. A wavelength-scale black phosphorus spectrometer. Nat. Photonics 2021, 15, 601–607.

    Article  CAS  Google Scholar 

  226. Zhang, Z. H.; Yang, X. N.; Liu, K. H.; Wang, R. M. Epitaxy of 2D materials toward single crystals. Adv. Sci. 2022, 9, 2105201.

    Article  CAS  Google Scholar 

  227. Li, T. T.; Guo, W.; Ma, L.; Li, W. S.; Yu, Z. H.; Han, Z.; Gao, S.; Liu, L.; Fan, D. X.; Wang, Z. X. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 2021, 16, 1201–1207.

    Article  CAS  Google Scholar 

  228. Lei, Y.; Yang, X. Z.; Feng, W. L. Synthesis of vertically-aligned large-area MoS2 nanofilm and its application in MoS2/Si heterostructure photodetector. Nanotechnology 2022, 33, 105709.

    Article  CAS  Google Scholar 

  229. Yang, H. W.; Xiao, Y. H.; Zhang, K. M.; Chen, Z. F.; Pan, J. T.; Zhuo, L. Q.; Zhong, Y. C.; Zheng, H. D.; Zhu, W. G.; Yu, J. H. et al. Self-powered and high-performance all-fiber integrated photodetector based on graphene/palladium diselenide heterostructures. Opt. Express 2021, 29, 15631–15640.

    Article  CAS  Google Scholar 

  230. Guo, J. X.; Lin, L.; Li, S. D.; Chen, J. B.; Wang, S. C.; Wu, W. J.; Cai, J.; Zhou, T. C.; Liu, Y.; Huang, W. Ferroelectric superdomain controlled graphene plasmon for tunable mid-infrared photodetector with dual-band spectral selectivity. Carbon 2022, 189, 596–603.

    Article  CAS  Google Scholar 

  231. Kim, Y. R.; Phan, T. L.; Cho, K. W.; Kang, W. T.; Kim, K.; Lee, Y. H.; Yu, W. J. Infrared proximity sensors based on photo-induced tunneling in van der Waals integration. Adv. Funct. Mater. 2021, 31, 2100966.

    Article  CAS  Google Scholar 

  232. Rogalski, A.; Kopytko, M.; Martyniuk, P.; Hu, W. Comparison of performance limits of HOT HgCdTe photodiodes with 2D material infrared photodetectors. Opto-Electron. Rev. 2020, 28, 82–92.

    Google Scholar 

  233. You, C. Y.; Deng, W. J.; Liu, M.; Zhou, P.; An, B. X.; Wang, B.; Yu, S. L.; Zhang, Y. Z. Design and performance study of hybrid graphene/HgCdTe mid-infrared photodetector. IEEE Sens. J. 2021, 21, 26708–26715.

    Article  CAS  Google Scholar 

  234. Hassan, A.; Guo, Y. G.; Wang, Q. Performance of the pentagonal PdSe2 sheet as a channel material in contact with metal surfaces and graphene. ACS Appl. Electron. Mater. 2020, 2, 2535–2542.

    Article  CAS  Google Scholar 

  235. Cartamil-Bueno, S. J.; Cavalieri, M.; Wang, R. Z.; Houri, S.; Hofmann, S.; van der Zant, H. S. J. Mechanical characterization and cleaning of CVD single-layer h-BN resonators. npj 2D Mater. Appl. 2017, 1, 16.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the National Natural Science Foundation of China (No. 52072308), the Open Project of Basic Research of Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing (No. AMGM2022F02), and the Fundamental Research Funds for the Central Universities (Nos. 3102021MS0404 and 3102019JC001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Qi, W. New materials and designs for 2D-based infrared photodetectors. Nano Res. 16, 3074–3103 (2023). https://doi.org/10.1007/s12274-022-4971-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4971-5

Keywords

Navigation