Skip to main content
Log in

Polarizer-free polarimetric image sensor through anisotropic two-dimensional GeSe

基于各向异性二维GeSe的无偏振器偏振图像传感器

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Light polarization could provide critical visual information (e.g., surface roughness, geometry, or orientation) of the imaged objects beyond prevailing signals of intensity and wavelength. The polarization imaging technology thus has a large potential in broad fields such as object detection. However, intricate polarization coding is often required in these fields, and the existing complicated lensed system and polarizers have limited the miniaturization capabilities of the integrated imaging sensor. In this study, we demonstrate the utilization of two-dimensional (2D) in-plane anisotropic α-GeSe semiconductor to realize the polarizer-free polarization-sensitive visible/near-infrared (VIS-NIR) photodetector/imager. As the key part of the sensor system, this prototype Au/GeSe/Au photodetector exhibits impressive performances in terms of high sensitivity, broad spectral response, and fast-speed operation (∼103 AW−1 400–1050 nm, and 22.7/49.5 µs). Further, this device demonstrates unique polarization sensitivity in the spectral range of 690–1050 nm and broadband absorption of light polarized preferentially in the γ-direction, as predicted by the analysis of optical transition behavior in α-GeSe. Then we have successfully incorporated the 2D GeSe device into an imaging system for the polarization imaging and captured the polarization information of the radiant target with a high contrast ratio of 3.45 at 808 nm (NIR band). This proposed imager reveals the ability to sense dual-band polarization signals in the scene without polarizers and paves the way for polarimetric imaging sensor arrays for advanced applications.

摘要

偏振是光的一个重要信息, 偏振探测可以把信息量从三维 (光强、光谱和空间)扩充到七维(光强、光谱、空间、偏振度、光 偏振等), 为成像物体提供关键的视觉信息(如表面粗糙度、几何形 状或方向), 因此偏振成像技术在目标检测等领域有着巨大的潜力. 然而这些领域往往需要复杂的偏振编码, 现有的复杂透镜系统和 偏振器限制了集成成像传感器的小型化能力. 本文通过二维各向 异性α-GeSe半导体, 成功实现了无偏振器的偏振敏感可见-近红外 光电探测器/成像仪. 作为传感器系统的关键部件, 该原型Au/GeSe/Au光电探测器具有灵敏度高、光谱响应宽、响应速度快 (~103 A W−1, 400–1050 nm, 22.7/49.5 μs)等优点. 此外, 该器件在 690–1050 nm光谱范围内表现出独特的偏振灵敏度, 并且对沿y方 向的偏振光吸收最强, 这一点通过分析α-GeSe的光跃迁行为也得 到了证实. 最后, 将2D-GeSe器件应用到成像系统中进行偏振成像, 在808 nm近红外波段处, 在不同的偏振方向上, 辐射目标的对比度 为3.45. 这种成像仪在没有偏振器的情况下, 能够在场景中感知双 频偏振信号, 为偏振成像传感器阵列的广泛应用奠定了基础.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubin NA, D’Aversa G, Chevalier P, et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science, 2019, 365: eaax1839

    Article  CAS  Google Scholar 

  2. Empedocles SA, Neuhauser R, Bawendi MG. Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy. Nature, 1999, 399: 126–130

    Article  CAS  Google Scholar 

  3. Li Q, Li ZF, Li N, et al. High-polarization-discriminating infrared detection using a single quantum well sandwiched in plasmonic micro-cavity. Sci Rep, 2014, 4: 6332

    Article  CAS  Google Scholar 

  4. Niu S, Joe G, Zhao H, et al. Giant optical anisotropy in a quasione-dimensional crystal. Nat Photon, 2018, 12: 392–396

    Article  CAS  Google Scholar 

  5. Zheng F, Tao X, Yang M, et al. Design of efficient superconducting nanowire single photon detectors with high polarization sensitivity for polarimetric imaging. J Opt Soc Am B, 2016, 33: 2256–2264

    Article  CAS  Google Scholar 

  6. Abrahamsson S, McQuilken M, Mehta SB, et al. Multifocus polarization microscope (MF-PolScope) for 3D polarization imaging of up to 25 focal planes simultaneously. Opt Express, 2015, 23: 7734–7754

    Article  CAS  Google Scholar 

  7. Zhao Y, Peng Q, Yi C, et al. Multiband polarization imaging. J Sens, 2016, 2016: 5985673

    Google Scholar 

  8. Tyo JS, Goldstein DL, Chenault DB, et al. Review of passive imaging polarimetry for remote sensing applications. Appl Opt, 2006, 45: 5453–5469

    Article  Google Scholar 

  9. Laux E, Genet C, Skauli T, et al. Plasmonic photon sorters for spectral and polarimetric imaging. Nat Photon, 2008, 2: 161–164

    Article  CAS  Google Scholar 

  10. Nayar SK, Fang XS, Boult T. Separation of reflection components using color and polarization. Int J Comput Vision, 1997, 21: 163–186

    Article  Google Scholar 

  11. Mohammadi E, Behdad N. A wide dynamic range polarization sensing long wave infrared detector. Sci Rep, 2017, 7: 17475

    Article  CAS  Google Scholar 

  12. Kippelen B, Marder SR, Hendrickx E, et al. Infrared photorefractive polymers and their applications for imaging. Science, 1998, 279: 54–57

    Article  CAS  Google Scholar 

  13. Kulkarni M, Gruev V. Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters. Opt Express, 2012, 20: 22997–23012

    Article  CAS  Google Scholar 

  14. Nanot S, Cummings AW, Pint CL, et al. Broadband, polarization-sensitive photodetector based on optically-thick films of macroscopically long, dense and aligned carbon nanotubes. Sci Rep, 2013, 3: 1335

    Article  CAS  Google Scholar 

  15. Goossens S, Navickaite G, Monasterio C, et al. Broadband image sensor array based on grapheme-CMOS integration. Nat Photon, 2017, 11: 366–371

    Article  CAS  Google Scholar 

  16. Guo N, Hu W, Jiang T, et al. High-quality infrared imaging with graphene photodetectors at room temperature. Nanoscale, 2016, 8: 16065–16072

    Article  CAS  Google Scholar 

  17. Lee YT, Jeon PJ, Han JH, et al. Mixed-dimensional 1D ZnO-2D WSe2 van der Waals heterojunction device for photosensors. Adv Funct Mater, 2017, 27: 1703822

    Article  CAS  Google Scholar 

  18. Engel M, Steiner M, Avouris P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett, 2014, 14: 6414–6417

    Article  CAS  Google Scholar 

  19. Yin J, Tan Z, Hong H, et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat Commun, 2018, 9: 3311

    Article  CAS  Google Scholar 

  20. Mennel L, Symonowicz J, Wachter S, et al. Ultrafast machine vision with 2D material neural network image sensors. Nature, 2020, 579: 62–66

    Article  CAS  Google Scholar 

  21. Yuan H, Liu X, Afshinmanesh F, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat Nanotech, 2015, 10: 707–713

    Article  CAS  Google Scholar 

  22. Bullock J, Amani M, Cho J, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat Photon, 2018, 12: 601–607

    Article  CAS  Google Scholar 

  23. Yang Y, Liu SC, Yang W, et al. Air-stable in-plane anisotropic GeSe2 for highly polarization-sensitive photodetection in short wave region. J Am Chem Soc, 2018, 140: 4150–4156

    Article  CAS  Google Scholar 

  24. Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun, 2014, 5: 4458

    Article  CAS  Google Scholar 

  25. Mukherjee B, Cai Y, Tan HR, et al. NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet. ACS Appl Mater Interfaces, 2013, 5: 9594–9604

    Article  CAS  Google Scholar 

  26. Zhou X, Hu X, Jin B, et al. Highly anisotropic GeSe nanosheets for phototransistors with ultrahigh photoresponsivity. Adv Sci, 2018, 5: 1800478

    Article  CAS  Google Scholar 

  27. von Rohr FO, Ji H, Cevallos FA, et al. High-pressure synthesis and characterization of β-GeSe: A six-membered-ring semiconductor in an uncommon boat conformation. J Am Chem Soc, 2017, 139: 2771–2777

    Article  CAS  Google Scholar 

  28. Xue DJ, Liu SC, Dai CM, et al. GeSe thin-film solar cells fabricated by self-regulated rapid thermal sublimation. J Am Chem Soc, 2017, 139: 958–965

    Article  CAS  Google Scholar 

  29. Ye Y, Guo Q, Liu X, et al. Two-dimensional GeSe as an isostructural and isoelectronic analogue of phosphorene: Sonication-assisted synthesis, chemical stability, and optical properties. Chem Mater, 2017, 29: 8361–8368

    Article  CAS  Google Scholar 

  30. Guo Q, Pospischil A, Bhuiyan M, et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett, 2016, 16: 4648–4655

    Article  CAS  Google Scholar 

  31. Wu D, Ma Y, Niu Y, et al. Ultrabroadband photosensitivity from visible to terahertz at room temperature. Sci Adv, 2018, 4: eaao3057

    Article  CAS  Google Scholar 

  32. Cheng R, Wang F, Yin L, et al. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat Electron, 2018, 1: 356–361

    Article  CAS  Google Scholar 

  33. Wang P, Liu S, Luo W, et al. Arrayed van der Waals broadband detectors for dual-band detection. Adv Mater, 2017, 29: 1604439

    Article  CAS  Google Scholar 

  34. Yuan X, Tang L, Liu S, et al. Arrayed van der Waals vertical heterostructures based on 2D GaSe grown by molecular beam epitaxy. Nano Lett, 2015, 15: 3571–3577

    Article  CAS  Google Scholar 

  35. Hwang DK, Lee YT, Lee HS, et al. Ultrasensitive PbS quantum-dot-sensitized InGaZnO hybrid photoinverter for near-infrared detection and imaging with high photogain. NPG Asia Mater, 2016, 8: e233

    Article  CAS  Google Scholar 

  36. Wang X, Li Y, Huang L, et al. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J Am Chem Soc, 2017, 139: 14976–14982

    Article  CAS  Google Scholar 

  37. Zhang E, Wang P, Li Z, et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nano-sheets. ACS Nano, 2016, 10: 8067–8077

    Article  CAS  Google Scholar 

  38. Buscema M, Island JO, Groenendijk DJ, et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem Soc Rev, 2015, 44: 3691–3718

    Article  CAS  Google Scholar 

  39. Long M, Wang P, Fang H, et al. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Mater, 2019, 29: 1803807

    Article  CAS  Google Scholar 

  40. Léonard F, Talin AA. Electrical contacts to one- and two-dimensional nanomaterials. Nat Nanotech, 2011, 6: 773–783

    Article  CAS  Google Scholar 

  41. Allain A, Kang J, Banerjee K, et al. Electrical contacts to two-dimensional semiconductors. Nat Mater, 2015, 14: 1195–1205

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61622406, 61904015, 11674310, 61725505 and 11734016), the National Key Research and Development Program of China (2017YFA0207500), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB30000000), the “The Pearl River Talent Recruitment Program” (2019ZT08X639), and Beijing National Laboratory for Molecular Sciences (BNLMS201908).

Author information

Authors and Affiliations

Authors

Contributions

Wei Z and Hu W supervised this project and designed the experiments; Wang X and Zhong F performed sample fabrication and optical measurements; Kang J and Pan L carried out the theoretical part; Wang X, Liu C, Lei M, Wang F, Zhou Z, Cui Y, Liu K, Wang J, Shen G, Shan C and Li J performed the data analysis and interpretation; Wei Z and Wang X wrote the paper, with input from all authors. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Weida Hu  (胡伟达) or Zhongming Wei  (魏钟鸣).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

These two authors contributed equally to this work.

Xiaoting Wang received her PhD degree in 2018 from the Institute of Semiconductors, Chinese Academy of Sciences. Then she joined Beijing University of Posts and Telecommunications and has been working as a postdoctoral fellow. Her research group focuses on the syntheses of 2D layered materials and their related electronic and photoelectric properties.

Zhongming Wei received his PhD degree in 2010 from the Institute of Chemistry, Chinese Academy of Sciences under the supervision of Prof. Daoben Zhu and Prof. Wei Xu. From 2010 to 2015, he worked as a postdoctoral fellow and then as assistant professor in Prof. Thomas Bjørnholm's group at the University of Copenhagen, Denmark. Currently, he is working as a professor at the Institute of Semiconductors, Chinese Academy of Sciences. His research interests include low-dimensional nanostructured materials and their (opto)electronic devices.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhong, F., Kang, J. et al. Polarizer-free polarimetric image sensor through anisotropic two-dimensional GeSe. Sci. China Mater. 64, 1230–1237 (2021). https://doi.org/10.1007/s40843-020-1535-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1535-9

Keywords

Navigation