Skip to main content
Log in

Selective dissolution to synthesize densely populated Pt single atom catalyst

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single atom catalysts (SACs) have become one of research focuses in heterogeneous catalysis for their effective utilization of active metal atoms and unique properties in various catalytic reactions. However, due to their high surface energy, noble metal single atoms like Pt tend to migrate and agglomerate to form larger clusters or nanoparticles, which makes it a challenge to fabricate noble metal SACs with high loading (> 5 wt.%). Furthermore, the decisive factors of loading maximum are still not clear. Here, we reported a manganese oxide supported Pt SAC with a high loading of 5.6 wt.% synthesized by selective dissolution strategy. The pre-stabilization of Pt by coordinated oxygen and the abundant surface defects of support are the determinants of high loading. The Pt SAC exhibited much better H2 spill-over and hydrocarbon oxidation abilities with lower adsorption and dissociation energies than the manganese oxide support because of its local electronic structure with less repulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  Google Scholar 

  2. Li, X. N.; Yang, X. F.; Huang, Y. Q.; Zhang, T.; Liu, B. Supported noble-metal single atoms for heterogeneous catalysis. Adv. Mater. 2019, 31, 1902031.

    Article  CAS  Google Scholar 

  3. Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

    Article  CAS  Google Scholar 

  4. Lou, Y.; Jiang, F.; Zhu, W.; Wang, L.; Yao, T. Y.; Wang, S. S.; Yang, B.; Yang, B.; Zhu, Y. F.; Liu, X. H. et al. CeO2 supported Pd dimers boosting CO2 hydrogenation to ethanol. Appl. Catal. B 2021, 291, 120122.

    Article  CAS  Google Scholar 

  5. Lou, Y.; Cai, Y. F.; Hu, W. D.; Wang, L.; Dai, Q. G.; Zhan, W. C.; Guo, Y. L.; Hu, P.; Cao, X. M.; Liu, J. Y. et al. Identification of active area as active center for CO oxidation over single Au atom catalyst. ACS Catal. 2020, 10, 6094–6101.

    Article  CAS  Google Scholar 

  6. Wu, J. B.; Xiong, L. K.; Zhao, B. T.; Liu, M. L.; Huang, L. Densely populated single atom catalysts. Small Methods 2020, 4, 1900540.

    Article  CAS  Google Scholar 

  7. Wang, J.; Li, Z. J.; Wu, Y. E.; Li, Y. D. Fabrication of single-atom catalysts with precise structure and high metal loading. Adv. Mater. 2018, 30, 1801649.

    Article  Google Scholar 

  8. Lou, Y.; Xu, J.; Zhang, Y.; Pan, C.; Dong, Y.; Zhu, Y. Metal-support interaction for heterogeneous catalysis: From nanoparticles to single atoms. Mater. Today Nano 2020, 12, 100093.

    Article  Google Scholar 

  9. Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; Delariva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423.

    Article  CAS  Google Scholar 

  10. Lin, J.; Qiao, B. T.; Li, N.; Li, L.; Sun, X. C.; Liu, J. Y.; Wang, X. D.; Zhang, T. Little do more: A highly effective Pt1/FeOx single-atom catalyst for the reduction of NO by H2. Chem. Commun. 2015, 51, 7911–7914.

    Article  CAS  Google Scholar 

  11. Jiang, Z. Y.; Feng, X. B.; Deng, J. L.; He, C.; Douthwaite, M.; Yu, Y. K.; Liu, J.; Hao, Z. P.; Zhao, Z. Atomic-scale insights into the low-temperature oxidation of methanol over a single-atom Pt1-Co3O4 catalyst. Adv. Funct. Mater. 2019, 29, 1902041.

    Article  Google Scholar 

  12. Yang, K.; Liu, Y. X.; Deng, J. G.; Zhao, X. T.; Yang, J.; Han, Z.; Hou, Z. Q.; Dai, H. X. Three-dimensionally ordered mesoporous iron oxide-supported single-atom platinum: Highly active catalysts for benzene combustion. Appl. Catal. B 2019, 244, 650–659.

    Article  CAS  Google Scholar 

  13. Hoang, S.; Guo, Y. B.; Binder, A. J.; Tang, W. X.; Wang, S. B.; Liu, J. Y.; Tran, H.; Lu, X. Y.; Wang, Y.; Ding, Y. et al. Activating low-temperature diesel oxidation by single-atom Pt on TiO2 nanowire array. Nat. Commun. 2020, 11, 1062.

    Article  CAS  Google Scholar 

  14. Jeong, H.; Kwon, O.; Kim, B. S.; Bae, J.; Shin, S.; Kim, H. E.; Kim, J.; Lee, H. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 2020, 3, 368–375.

    Article  CAS  Google Scholar 

  15. Zhang, Z. L.; Zhu, Y. H.; Asakura, H.; Zhang, B.; Zhang, J. G.; Zhou, M. X.; Han, Y.; Tanaka, T.; Wang, A. Q.; Zhang, T. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 2017, 8, 16100.

    Article  CAS  Google Scholar 

  16. Kim, J.; Roh, C. W.; Sahoo, S. K.; Yang, S.; Bae, J.; Han, J. W.; Lee, H. Highly durable platinum single-atom alloy catalyst for electrochemical reactions. Adv. Energy Mater. 2018, 8, 1701476.

    Article  Google Scholar 

  17. Chen, W. L.; Gao, W. P.; Tu, P.; Robert, T.; Ma, Y. L.; Shan, H.; Gu, X.; Shang, W.; Tao, P.; Song, C. Y. et al. Neighboring Pt atom sites in an ultrathin FePt nanosheet for the efficient and highly CO-tolerant oxygen reduction reaction. Nano Lett. 2018, 18, 5905–5912.

    Article  CAS  Google Scholar 

  18. Zhang, Z. Q.; Chen, Y. G.; Zhou, L. Q.; Chen, C.; Han, Z.; Zhang, B. S.; Wu, Q.; Yang, L. J.; Du, L. Y.; Bu, Y. F. et al. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. Nat. Commun. 2019, 10, 1657.

    Article  Google Scholar 

  19. Shen, R. A.; Chen, W. X.; Peng, Q.; Lu, S. Q.; Zheng, L. R.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J. T.; Zhuang, Z. B. et al. High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 2019, 5, 2099–2110.

    Article  CAS  Google Scholar 

  20. Li, H. L.; Wang, L. B.; Dai, Y. Z.; Pu, Z. T.; Lao, Z. H.; Chen, Y. W.; Wang, M. L.; Zheng, X. S.; Zhu, J. F.; Zhang, W. H. et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 2018, 13, 411–417.

    Article  CAS  Google Scholar 

  21. Jones, J.; Xiong, H. F.; Delariva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Herna’ndez, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

    Article  CAS  Google Scholar 

  22. Kunwar, D.; Zhou, S. L.; DeLaRiva, A.; Peterson, E. J.; Xiong, H. F.; Pereira-Hernandez, X. I.; Purdy, S. C.; Ter Veen, R.; Brongersma, H. H.; Miller, J. T. et al. Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support. ACS Catal. 2019, 9, 3978–3990.

    Article  CAS  Google Scholar 

  23. Liu, K. P.; Tang, Y.; Yu, Z. Y.; Ge, B. H.; Ren, G. Q.; Ren, Y. J.; Su, Y.; Zhang, J. C.; Sun, X. C.; Chen, Z. Q. et al. High-loading and thermally stable Pt1/MgAl1.2Fe0.8O4 single-atom catalysts for high-temperature applications. Sci. China Mater. 2020, 63, 949–958.

    Article  CAS  Google Scholar 

  24. Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453.

    Article  CAS  Google Scholar 

  25. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  CAS  Google Scholar 

  26. Si, W. Z.; Wang, Y.; Peng, Y.; Li, J. H. Selective dissolution of A-site cations in ABO3 perovskites: A new path to high-performance catalysts. Angew. Chem., Int. Ed. 2015, 127, 8065–8068.

    Article  Google Scholar 

  27. Yang, W. N.; Wang, S. M.; Li, K. Z.; Liu, S.; Gan, L. N.; Peng, Y.; Li, J. H. Highly selective α-Mn2O3 catalyst for cGPF soot oxidation: Surface activated oxygen enhancement via selective dissolution. Chem. Eng. J. 2019, 364, 448–451.

    Article  CAS  Google Scholar 

  28. Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541.

    Article  CAS  Google Scholar 

  29. Munoz, M.; Argoul, P.; Farges, F. Continuous Cauchy wavelet transform analyses of EXAFS spectra: A qualitative approach. Amer. Mineral. 2003, 88, 694–700.

    Article  CAS  Google Scholar 

  30. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251.

    Article  CAS  Google Scholar 

  31. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  32. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.

    Article  Google Scholar 

  33. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509.

    Article  CAS  Google Scholar 

  34. Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 2006, 73, 195107.

    Article  Google Scholar 

  35. Seriani, N.; Jin, Z.; Pompe, W.; Ciacchi, L. C. Density functional theory study of platinum oxides: From infinite crystals to nanoscopic particles. Phys. Rev. B 2007, 76, 155421.

    Article  Google Scholar 

  36. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

    Article  CAS  Google Scholar 

  37. Kästner, J.; Sherwood, P. Superlinearly converging dimer method for transition state search. J. Chem. Phys. 2008, 128, 014106.

    Article  Google Scholar 

  38. Galakhov, V. R.; Demeter, M.; Bartkowski, S.; Neumann, M.; Ovechkina, N. A.; Kurmaev, E. Z.; Lobachevskaya, N. I.; Mukovskii, Y. M.; Mitchell, J.; Ederer, D. L. Mn 3s exchange splitting in mixed-valence manganites. Phys. Rev. B 2002, 65, 113102.

    Article  Google Scholar 

  39. Midgley, P. A.; Weyland, M. 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 2003, 96, 413–431.

    Article  CAS  Google Scholar 

  40. Russell, A.; Epling, W. S. Diesel oxidation catalysts. Catal. Rev. 2011, 53, 337–423.

    Article  CAS  Google Scholar 

  41. Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

    Article  CAS  Google Scholar 

  42. Kuai, L.; Chen, Z.; Liu, S. J.; Kan, E. J.; Yu, N.; Ren, Y. M.; Fang, C. H.; Li, X. Y.; Li, Y. D.; Geng, B. Y. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.

    Article  Google Scholar 

  43. Prins, R. Hydrogen spillover. Facts and fiction. Chem. Rev. 2012, 112, 2714–2738.

    Article  CAS  Google Scholar 

  44. McCue, I.; Benn, E.; Gaskey, B.; Erlebacher, J. Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 2016, 46, 263–286.

    Article  CAS  Google Scholar 

  45. Gu, X. K.; Qiao, B. T.; Huang, C. Q.; Ding, W. C.; Sun, K. J.; Zhan, E. S.; Zhang, T.; Liu, J. Y.; Li, W. X. Supported single Pt1/Au1 atoms for methanol steam reforming. ACS Catal. 2014, 4, 3886–3890.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21936005), the Natural Science Foundation of Beijing (No. 8202028), and China Petrochemical Corporation Funding (Sinopec Group, No. 321094). We thank Prof. Zhiying Cheng, and Shengsheng Liu from National Center for Electron Microscopy in Beijing, for the collection and interpretation of the HAADF-STEM images. We also thank Dr. Xiyang Wang from University of Waterloo for the fitting and analysis of XAFS data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Peng or Junhua Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Zhao, X., Wang, Y. et al. Selective dissolution to synthesize densely populated Pt single atom catalyst. Nano Res. 16, 219–227 (2023). https://doi.org/10.1007/s12274-022-4690-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4690-y

Keywords

Navigation