Skip to main content
Log in

Spatial confinement of copper single atoms into covalent triazine-based frameworks for highly efficient and selective photocatalytic CO2 reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Converting CO2 into carbonaceous fuels via photocatalysis represents an appealing strategy to simultaneously alleviate the energy crisis and associated environmental problems, yet designing with high photoreduction activity catalysts remains a compelling challenge. Here, combining the merits of highly porous structure and maximum atomic efficiency, we rationally constructed covalent triazine-based frameworks (CTFs) anchoring copper single atoms (Cu−SA/CTF) photocatalysts for efficient CO2 conversion. The Cu single atoms were visualized by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images and coordination structure of Cu−N−C2 sites was revealed by extended X-ray absorption fine structure (EXAFS) analyses. The as-prepared Cu−SA/CTF photocatalysts exhibited superior photocatalytic CO2 conversion to CH4 performance associated with a high selectivity of 98.31%. Significantly, the introduction of Cu single atoms endowed the Cu−SA/CTF catalysts with increased CO2 adsorption capacity, strengthened visible light responsive ability, and improved the photogenerated carriers separation efficiency, thus enhancing the photocatalytic activity. This work provides useful guidelines for designing robust visible light responsive photoreduction CO2 catalysts on the atomic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kou, J. H.; Lu, C. H.; Wang, J.; Chen, Y. K.; Xu, Z. Z.; Varma, R. S. Selectivity enhancement in heterogeneous photocatalytic transformations. Chem. Rev. 2017, 117, 1445–1514.

    Article  CAS  Google Scholar 

  2. Li, Q.; Wang, S. C.; Sun, Z. X.; Tang, Q. J.; Liu, Y. Q.; Wang, L. Z.; Wang, H. Q.; Wu, Z. B. Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 2019, 12, 2749–2759.

    Article  CAS  Google Scholar 

  3. Cheng, J. L.; Mu, Y. F.; Wu, L. Y.; Liu, Z. L.; Su, K.; Dong, G. X.; Zhang, M.; Lu, T. B. Acetate-assistant efficient cation-exchange of halide perovskite nanocrystals to boost the photocatalytic CO2 reduction. Nano Res. 2022, 15, 1845–1852.

    Article  CAS  Google Scholar 

  4. Sun, Z. Y.; Talreja, N.; Tao, H. C.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. F. Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges. Angew. Chem., Int. Ed. 2018, 57, 7610–7627.

    Article  CAS  Google Scholar 

  5. Wang, C.; Ren, H. A.; Wang, Z. H.; Guan, Q. X.; Liu, Y. P.; Li, W. A promising single-atom Co−N−C catalyst for efficient CO2 electroreduction and high-current solar conversion of CO2 to CO. Appl. Catal. B: Environ. 2022, 304, 120958.

    Article  CAS  Google Scholar 

  6. Ye, J.; Hu, A. D.; Ren, G. P.; Chen, M.; Zhou, S. G.; He, Z. Biophotoelectrochemistry for renewable energy and environmental applications. iScience 2021, 24, 102828.

    Article  CAS  Google Scholar 

  7. Zhao, G. X.; Huang, X. B.; Wang, X. X.; Wang, X. K. Progress in catalyst exploration for heterogeneous CO2 reduction and utilization: A critical review. J. Mater. Chem. A 2017, 5, 21625–21649.

    Article  CAS  Google Scholar 

  8. Jiang, Z. F.; Wan, W. M.; Li, H. M.; Yuan, S. Q.; Zhao, H. J.; Wong, P. K. A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv. Mater. 2018, 30, 1706108.

    Article  Google Scholar 

  9. Park, H. R.; Pawar, A. U.; Pal, U.; Zhang, T. R.; Kang, Y. S. Enhanced solar photoreduction of CO2 to liquid fuel over rGO grafted NiO−CeO2 heterostructure nanocomposite. Nano Energy 2021, 79, 105483.

    Article  CAS  Google Scholar 

  10. Sabbah, A.; Shown, I.; Qorbani, M.; Fu, F. Y.; Lin, T. Y.; Wu, H. L.; Chung, P. W.; Wu, C. I.; Santiago, S. R. M.; Shen, J. L. et al. Boosting photocatalytic CO2 reduction in a ZnS/ZnIn2S4 heterostructure through strain-induced direct Z-scheme and a mechanistic study of molecular CO2 interaction thereon. Nano Energy 2022, 93, 106809.

    Article  CAS  Google Scholar 

  11. Di, J.; Chen, C.; Zhu, C.; Song, P.; Duan, M. L.; Xiong, J.; Long, R.; Xu, M. Z.; Kang, L. X.; Guo, S. S. et al. Cobalt nitride as a novel cocatalyst to boost photocatalytic CO2 reduction. Nano Energy 2021, 79, 105429.

    Article  CAS  Google Scholar 

  12. Tang, Q. J.; Sun, Z. X.; Deng, S.; Wang, H. Q.; Wu, Z. B. Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance. J. Colloid Interface Sci. 2020, 564, 406–417.

    Article  CAS  Google Scholar 

  13. Talapaneni, S. N., Singh, G.; Kim, I. Y.; AlBahily, K.; Al-Muhtaseb, A. H.; Karakoti, A. S.; Tavakkoli, E.; Vinu, A. Nanostructured carbon nitrides for CO2 capture and conversion. Adv. Mater. 2020, 32, 1904635.

    Article  CAS  Google Scholar 

  14. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  15. Zeng, L.; Xue, C. Single metal atom decorated photocatalysts: Progress and challenges. Nano Res. 2021, 14, 934–944.

    Article  CAS  Google Scholar 

  16. Mao, J. J.; He, C. T.; Pei, J. J.; Chen, W. X.; He, D. S.; He, Y. Q.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Wang, D. S. et al. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat. Commun. 2018, 9, 4958.

    Article  Google Scholar 

  17. Zhou, M.; Jiang, Y.; Wang, G.; Wu, W. J.; Chen, W. X.; Yu, P.; Lin, Y. Q.; Mao, J. J.; Mao, L. Q. Single-atom Ni−N4 provides a robust cellular NO sensor. Nat. Commun. 2020, 11, 3188.

    Article  CAS  Google Scholar 

  18. Ding, S. P.; Hülsey, M. J.; Pérez-Ramírez, J.; Yan, N. Transforming energy with single-atom catalysts. Joule 2019, 3, 2897–2929.

    Article  CAS  Google Scholar 

  19. Wang, B.; Cai, H. R.; Shen, S. H. Single metal atom photocatalysis. Small Methods 2019, 3, 1800447.

    Article  Google Scholar 

  20. Gao, C.; Chen, S. M.; Wang, Y.; Wang, J. W.; Zheng, X. S.; Zhu, J. F.; Song, L.; Zhang, W. K.; Xiong, Y. J. Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: The role of electron transfer. Adv. Mater. 2018, 30, 1704624.

    Article  Google Scholar 

  21. Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

    Article  CAS  Google Scholar 

  22. Li, J.; Stephanopoulos, M. F.; Xia, Y. N. Introduction: Heterogeneous single-atom catalysis. Chem. Rev. 2020, 120, 11699–11702.

    Article  CAS  Google Scholar 

  23. Wang, P. L.; Fan, S. Y.; Li, X. Y.; Wang, J.; Liu, Z. Y.; Niu, Z. D.; Tadé, M. O.; Liu, S. M. Single Pd atoms synergistically manipulating charge polarization and active sites for simultaneously photocatalytic hydrogen production and oxidation of benzylamine. Nano Energy 2022, 95, 107045.

    Article  CAS  Google Scholar 

  24. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  25. Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.

    Article  CAS  Google Scholar 

  26. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

  27. Huang, G. C.; Niu, Q.; Zhang, J. W.; Huang, H. M.; Chen, Q. S.; Bi, J. H.; Wu, L. Platinum single-atoms anchored covalent triazine framework for efficient photoreduction of CO2 to CH4. Chem. Eng. J. 2022, 427, 131018.

    Article  CAS  Google Scholar 

  28. Huang, G. C.; Lin, G. Y.; Niu, Q.; Bi, J. H.; Wu, L. Covalent triazine-based frameworks confining cobalt single atoms for photocatalytic CO2 reduction and hydrogen production. J. Mater. Sci. Technol. 2022, 116, 41–49.

    Article  Google Scholar 

  29. Li, Z. J.; Wang, D. H.; Wu, Y. E.; Li, Y. D. Recent advances in the precise control of isolated single-site catalysts by chemical methods. Natl. Sci. Rev. 2018, 5, 673–689.

    Article  CAS  Google Scholar 

  30. Ma, M. Z.; Huang, Z. A.; Doronkin, D. E.; Fa, W. J.; Rao, Z. Q.; Zou, Y. Z.; Wang, R.; Zhong, Y. Q.; Cao, Y. H.; Zhang, R. Y. et al. Ultrahigh surface density of Co−N2C single-atom-sites for boosting photocatalytic CO2 reduction to methanol. Appl. Catal. B: Environ. 2022, 300, 120695.

    Article  CAS  Google Scholar 

  31. Qi, K.; Chhowalla, M.; Voiry, D. Single atom is not alone: Metal-support interactions in single-atom catalysis. Mater. Today 2020, 40, 173–192.

    Article  CAS  Google Scholar 

  32. Liang, J. L.; Song, Q. Q.; Wu, J. H.; Lei, Q.; Li, J.; Zhang, W.; Huang, Z. M.; Kang, T. X.; Xu, H.; Wang, P. et al. Anchoring copper single atoms on porous boron nitride nanofiber to boost selective reduction of nitroaromatics. ACS Nano 2022, 16, 4152–4161.

    Article  CAS  Google Scholar 

  33. Zhong, W. F.; Sa, R. J.; Li, L. Y.; He, Y. J.; Li, L. Y.; Bi, J. H.; Zhuang, Z. Y.; Yu, Y.; Zou, Z. G. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141, 7615–7621.

    Article  CAS  Google Scholar 

  34. Wei, S. J.; Wang, Y.; Chen, W. X.; Li, Z.; Cheong, W. C.; Zhang, Q. H.; Gong, Y.; Gu, L.; Chen, C.; Wang, D. S. et al. Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chem. Sci. 2020, 11, 786–790.

    Article  CAS  Google Scholar 

  35. Kou, M. P.; Wang, Y. Y.; Xu, Y. X.; Ye, L. Q.; Huang, Y. P.; Jia, B. H.; Li, H.; Ren, J. Q.; Deng, Y.; Chen, J. H. et al. Molecularly engineered covalent organic frameworks for hydrogen peroxide photosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202200413.

    Article  CAS  Google Scholar 

  36. Lu, C. B.; Yang, J.; Wei, S. C.; Bi, S.; Xia, Y.; Chen, M. X.; Hou, Y.; Qiu, M.; Yuan, C.; Su, Y. Z. et al. Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for carbon dioxide conversion. Adv. Funct. Mater. 2019, 29, 1806884.

    Article  Google Scholar 

  37. Bi, J. H.; Fang, W.; Li, L. Y.; Wang, J. Y.; Liang, S. J.; He, Y. H.; Liu, M. H.; Wu, L. Covalent triazine-based frameworks as visible light photocatalysts for the splitting of water. Macromol. Rapid Commun. 2015, 36, 1799–1805.

    Article  CAS  Google Scholar 

  38. Bi, J. H.; Xu, B.; Sun, L.; Huang, H. M.; Fang, S. Q.; Li, L. Y.; Wu, L. A cobalt-modified covalent triazine-based framework as an efficient cocatalyst for visible-light-driven photocatalytic CO2 reduction. ChemPlusChem 2019, 84, 1149–1154.

    Article  CAS  Google Scholar 

  39. Chen, Z. Q.; Wang, T.; Liu, B.; Cheng, D. F.; Hu, C. L.; Zhang, G.; Zhu, W. J.; Wang, H. Y.; Zhao, Z. J.; Gong, J. L. Grain-boundary-rich copper for efficient solar-driven electrochemical CO2 reduction to ethylene and ethanol. J. Am. Chem. Soc. 2020, 142, 6878–6883.

    Article  CAS  Google Scholar 

  40. Zheng, W. Z.; Yang, J.; Chen, H. Q.; Hou, Y.; Wang, Q.; Gu, M.; He, F.; Xia, Y.; Xia, Z.; Li, Z. J. et al. Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 2020, 30, 1907658.

    Article  CAS  Google Scholar 

  41. Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 1994, 39, 1833–1839.

    Article  CAS  Google Scholar 

  42. Tang, X.; Wang, L.; Yang, B.; Fei, C.; Yao, T. Y.; Liu, W.; Lou, Y.; Dai, Q. G.; Cai, Y. F.; Cao, X. M. et al. Direct oxidation of methane to oxygenates on supported single Cu atom catalyst. Appl. Catal. B: Environ. 2021, 285, 119827.

    Article  CAS  Google Scholar 

  43. Choi, C.; Kwon, S.; Cheng, T.; Xu, M. J.; Tieu, P.; Lee, C.; Cai, J.; Lee, H. M.; Pan, X. Q.; Duan, X. F. et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 2020, 3, 804–812.

    Article  CAS  Google Scholar 

  44. Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    Article  CAS  Google Scholar 

  45. Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    Article  CAS  Google Scholar 

  46. Zhang, J. S.; Zhang, M. W.; Sun, R. Q.; Wang, X. C. A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem., Int. Ed. 2012, 51, 10145–10149.

    Article  CAS  Google Scholar 

  47. Yang, F. Q.; Jiang, C.; Ma, M. F.; Shu, F. H.; Mao, X. Y.; Yu, W. K.; Wang, J.; Zeng, Z. L.; Deng, S. G. Solid-state synthesis of Cu nanoparticles embedded in carbon substrate for efficient electrochemical reduction of carbon dioxide to formic acid. Chem. Eng. J. 2020, 400, 125879.

    Article  CAS  Google Scholar 

  48. Li, L. Y.; Fang, W.; Zhang, P.; Bi, J. H.; He, Y. H.; Wang, J. Y.; Su, W. Y. Sulfur-doped covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem. A 2016, 4, 12402–12406.

    Article  CAS  Google Scholar 

  49. Schwinghammer, K.; Hug, S.; Mesch, M. B.; Senker, J.; Lotsch, B. V. Phenyl-triazine oligomers for light-driven hydrogen evolution. Energy Environ. Sci. 2015, 8, 3345–3353.

    Article  CAS  Google Scholar 

  50. Cheng, Z.; Fang, W.; Zhao, T. S.; Fang, S. Q.; Bi, J. H.; Liang, S. J.; Li, L. Y.; Yu, Y.; Wu, L. Efficient visible-light-driven photocatalytic hydrogen evolution on phosphorus-doped covalent triazine-based frameworks. ACS Appl. Mater. Interfaces 2018, 10, 41415–41421.

    Article  CAS  Google Scholar 

  51. Zhang, G. G.; Zhang, J. S.; Zhang, M. W.; Wang, X. C. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem. 2012, 22, 8083–8091.

    Article  CAS  Google Scholar 

  52. Luo, Z. Q.; Lim, S.; Tian, Z. Q.; Shang, J. Z.; Lai, L. F.; MacDonald, B.; Fu, C.; Shen, Z. X.; Yu, T.; Lin, J. Y. Pyridinic N doped graphene: Synthesis, electronic structure, and electrocatalytic property. J. Mater. Chem. 2011, 21, 8038–8044.

    Article  CAS  Google Scholar 

  53. Artyushkova, K.; Kiefer, B.; Halevi, B.; Knop-Gericke, A.; Schlogl, R.; Atanassov, P. Density functional theory calculations of XPS binding energy shift for nitrogen-containing graphene-like structures. Chem. Commun. 2013, 49, 2539–2541.

    Article  CAS  Google Scholar 

  54. Wu, C. K.; Yin, M.; O’Brien, S.; Koberstein, J. T. Quantitative analysis of copper oxide nanoparticle composition and structure by X-ray photoelectron spectroscopy. Chem. Mater. 2006, 18, 6054–6058.

    Article  CAS  Google Scholar 

  55. Duan, Y. X.; Meng, F. L.; Liu, K. H.; Yi, S. S.; Li, S. J.; Yan, J. M.; Jiang, Q. Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic efficiencies. Adv. Mater. 2018, 30, 1706194.

    Article  Google Scholar 

  56. Wang, G.; He, C. T.; Huang, R.; Mao, J. J.; Wang, D. S.; Li, Y. D. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 2020, 142, 19339–19345.

    Article  CAS  Google Scholar 

  57. Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Cuenya, B. R.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944.

    Article  Google Scholar 

  58. Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806–1854.

    Article  CAS  Google Scholar 

  59. Li, X. N.; Huang, X.; Xi, S. B.; Miao, S.; Ding, J.; Cai, W. Z.; Liu, S.; Yang, X. L.; Yang, H. B.; Gao, J. J. et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis. J. Am. Chem. Soc. 2018, 140, 12469–12475.

    Article  CAS  Google Scholar 

  60. Wang, G.; Huang, R.; Zhang, J. W.; Mao, J. J.; Wang, D. S.; Li, Y. D. Synergistic modulation of the separation of photo-generated carriers via engineering of dual atomic sites for promoting photocatalytic performance. Adv. Mater. 2021, 33, 2105904.

    Article  CAS  Google Scholar 

  61. Liu, Y. X.; Wang, H. H.; Zhao, T. J.; Zhang, B.; Su, H.; Xue, Z. H.; Li, X. H.; Chen, J. S. Schottky barrier induced coupled interface of electron-rich N-doped carbon and electron-deficient Cu: In-built Lewis acid-base pairs for highly efficient CO2 fixation. J. Am. Chem. Soc. 2019, 141, 38–41.

    Article  CAS  Google Scholar 

  62. Zhao, J. Q.; Yang, Q.; Shi, R.; Waterhouse, G. I. N.; Zhang, X.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. FeO−CeO2 nanocomposites: An efficient and highly selective catalyst system for photothermal CO2 reduction to CO. NPG Asia Mater. 2020, 12, 5.

    Article  CAS  Google Scholar 

  63. Khan, M. U.; Wang, L. B.; Liu, Z.; Gao, Z. H.; Wang, S. P.; Li, H. L.; Zhang, W. B.; Wang, M. L.; Wang, Z. F.; Ma, C. et al. Pt3Co octapods as superior catalysts of CO2 hydrogenation. Angew. Chem., Int. Ed. 2016, 55, 9548–9552.

    Article  Google Scholar 

  64. Yang, P. J.; Wang, R. R.; Tao, H. L.; Zhang, Y. F.; Titirici, M. M.; Wang, X. C. Cobalt nitride anchored on nitrogen-rich carbons for efficient carbon dioxide reduction with visible light. Appl. Catal. B: Environ. 2021, 280, 119454.

    Article  CAS  Google Scholar 

  65. Hakim, A.; Marliza, T. S.; Tahari, N. M. A.; Isahak, R. W. N. W.; Yusop, R. M.; Hisham, W. M. M.; Yarmo, A. M. Studies on CO2 adsorption and desorption properties from various types of iron oxides (FeO, Fe2O3, and Fe3O4). Ind. Eng. Chem. Res. 2016, 55, 7888–7897.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge BL14W1 beamline of Shanghai Synchrotron Radiation Facility (SSRF) Shanghai, China for providing the beam time. This work was financially supported by the National Natural Science Foundation of China (Nos. 51672047, 21707173, and 21701168), Dalian high level talent innovation project (No. 2019RQ063), the National Natural Science Foundation of Fujian Province (Nos. 2019J01648 and 2019J01226), Open project Foundation of State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (No. 20200021), and the Youth Talent Support Program of Fujian Province (No. 00387077).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingbin Gao, Jinhong Bi or Jiangwei Zhang.

Electronic Supplementary Material

12274_2022_4629_MOESM1_ESM.pdf

Spatial confinement of copper single atoms into covalent triazine-based frameworks for highly efficient and selective photocatalytic CO2 reduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Niu, Q., He, Y. et al. Spatial confinement of copper single atoms into covalent triazine-based frameworks for highly efficient and selective photocatalytic CO2 reduction. Nano Res. 15, 8001–8009 (2022). https://doi.org/10.1007/s12274-022-4629-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4629-3

Keywords

Navigation