Skip to main content
Log in

Donor–acceptor covalent organic frameworks-confined ultrafine bimetallic Pt-based nanoclusters for enhanced photocatalytic H2 generation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photocatalytic hydrogen generation from hydrogen storage media is an effective and promising approach for the green hydrogen industry as well as for achieving carbon neutrality goals. However, the lower photocatalytic efficiency due to the limited light trapping capacity, low electron transfer rate, and severe aggregation of nanoparticles caused by high surface energy seriously restricts their practical application. Herein, we constructed a series of donor–acceptor (D–A) type covalent organic frameworks to confine ultrafine bimetallic Pt-based nanoclusters for photocatalytic hydrogen generation from ammonia borane (AB) hydrolysis. Under visible light irradiation at 20 °C, PtCo2@covalent organic framework (COF) showed the highest photocatalytic activity with a turnover frequency (TOF) of 486 min−1. Experiments and density functional theory (DFT) calculations reveal that the high catalytic activity is mainly attributed to the strong electronic interactions between D–A type COF and ultrafine PtCo2 nanoclusters. Specifically, the D–A type COF can significantly enhance the light-trapping ability by fine-tuning the electron-acceptor type in the framework, and accelerate the photogenerated electron transfer from D–A type COF to PtCo2 nanocluster, which promotes the adsorption and activation of H2O and AB molecules and accelerates hydrogen release. Furthermore, PtCo2@COF also exhibited ultra-high durability due to the significantly enhanced resistance to nanocluster aggregation caused by the nanopore confinement effect of D–A type COF. We believe that this work will provide a theoretical guide for the rational design of efficient D–A COF-based catalysts for photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng, P. S.; Wang, P.; Wang, X. F.; Chen, F.; Yu, H. G. Oxygen-contained amorphous MoSx cocatalyst by one-step photodeposition to enhance H-adsorption affinity for efficient photocatalytic H2 generation. Nano Res. 2023, 16, 8977–8986.

    Article  ADS  CAS  Google Scholar 

  2. Rueda-Navarro, C. M.; Cabrero-Antonino, M.; Escamilla, P.; Díez-Cabanes, V.; Fan, D.; Atienzar, P.; Ferrer, B.; Vayá, I.; Maurin, G.; Baldovi, H. G. et al. Solar-assisted photocatalytic water splitting using defective UiO-66 solids from modulated synthesis. Nano Res., in press, https://doi.org/10.1007/s12274-023-6351-1.

  3. Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni (Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem. 2023, 135, e202308800.

    Article  ADS  Google Scholar 

  4. Rossin, A.; Peruzzini, M. Ammonia-borane and amine-borane dehydrogenation mediated by complex metal hydrides. Chem. Rev. 2016, 116, 8848–8872.

    Article  CAS  PubMed  Google Scholar 

  5. Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene. Angew. Chem., Int. Ed. 2024, 63, e202316550.

    Article  CAS  Google Scholar 

  6. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    Article  ADS  CAS  Google Scholar 

  7. Zhang, S. B.; Li, M.; Li, L. S.; Dushimimana, F.; Zhao, J. K.; Wang, S.; Han, J. Y.; Zhu, X. L.; Liu, X.; Ge, Q. F. et al. Visible-light-driven multichannel regulation of local electron density to accelerate activation of O–H and B–H bonds for ammonia borane hydrolysis. ACS Catal. 2020, 10, 14903–14915.

    Article  CAS  Google Scholar 

  8. Wang, Y. T.; Shen, G. Q.; Zhang, Y. X.; Pan, L.; Zhang, X. W.; Zou, J. J. Visible-light-induced unbalanced charge on NiCoP/TiO2 sensitized system for rapid H2 generation from hydrolysis of ammonia borane. Appl. Catal. B: Environ. 2020, 260, 118183.

    Article  CAS  Google Scholar 

  9. Xu, H.; Gao, J.; Jiang, D. L. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 2015, 7, 905–912.

    Article  CAS  PubMed  Google Scholar 

  10. Lohse, M. S.; Bein, T. Covalent organic frameworks: Structures, synthesis, and applications. Adv. Funct. Mater. 2018, 28, 1705553.

    Article  Google Scholar 

  11. Fan, Y.; Zhang, J.; Shen, Y.; Zheng, B.; Zhang, W. N.; Huo, F. W. Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Res. 2021, 14, 1–28.

    Article  ADS  Google Scholar 

  12. Dey, K.; Mohata, S.; Banerjee, R. Covalent organic frameworks and supramolecular nano-synthesis. ACS Nano 2021, 15, 12723–12740.

    Article  CAS  Google Scholar 

  13. Shang, Q. G.; Liu, Y. Y.; Ai, J.; Yan, Y.; Yang, X. F.; Wang, D. S.; Liao, G. Y. Embedding Au nanoclusters into the pores of carboxylated COF for the efficient photocatalytic production of hydrogen peroxide. J. Mater. Chem. A 2023, 11, 21109–21122.

    Article  CAS  Google Scholar 

  14. Sun, Q. M.; Wang, N.; Xu, Q.; Yu, J. H. Nanopore-supported metal nanocatalysts for efficient hydrogen generation from liquid-phase chemical hydrogen storage materials. Adv. Mater. 2020, 62, 2001818.

    Article  Google Scholar 

  15. Qian, Y. Y.; Han, Y. L.; Zhang, X. Y.; Yang, G.; Zhang, G. Z.; Jiang, H. L. Computation-based regulation of excitonic effects in donor–acceptor covalent organic frameworks for enhanced photocatalysis. Nat. Commun. 2023, 14, 3083.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun, L.; Li, L. L.; Fan, J. J.; Xu, Q. L.; Ma, D. K. Construction of highly active WO3/TpPa-1-COF S-scheme heterojunction toward photocatalytic H2 generation. J. Mater. Sci. Technol. 2022, 123, 41–48.

    Article  CAS  Google Scholar 

  17. Liu, M. Y.; Yang, K. N.; Li, Z. Y.; Fan, E. C.; Fu, H. F.; Zhang, L. K.; Zhang, Y. G.; Zheng, Z. The O/S heteroatom effects of covalent triazine frameworks for photocatalytic hydrogen evolution. Chem. Comm. 2022, 58, 92–95.

    Article  CAS  Google Scholar 

  18. Wu, Q.; Mao, M. J.; Wu, Q. J.; Liang, J.; Huang, Y. B.; Cao, R. Construction of donor-acceptor heterojunctions in covalent organic framework for enhanced CO2 electroreduction. Small 2021, 17, 2004933.

    Article  CAS  Google Scholar 

  19. Xu, M.; Yu, S. S.; Li, W. R.; Li, C. Y.; Peng, Y. K.; Yu, F. T. Molecular engineering of donor-acceptor sp2-carbon-linked covalent organic frameworks for enhancing photocatalytic hydrogen production. Polym. Chem. 2023, 14, 5133–5139.

    Article  CAS  Google Scholar 

  20. Xia, Y. Q.; Zhang, W. F.; Yang, S.; Wang, L. P.; Yu, G. Research progress in donor-acceptor type covalent organic frameworks. Adv. Mater. 2023, 35, 2301190.

    Article  CAS  Google Scholar 

  21. Wang, F. D.; Yang, L. J.; Wang, X. X.; Rong, Y.; Yang, L. B.; Zhang, C. X.; Yan, F. Y.; Wang, Q. L. Pyrazine-functionalized donor-acceptor covalent organic frameworks for enhanced photocatalytic H2 evolution with high proton transport. Small 2023, 19, 2207421.

    Article  CAS  Google Scholar 

  22. Cong, W. W.; Xu, C. Y.; Mu, Y. H.; Li, Q.; Bing, L. C.; Wang, F.; Han, D. Z.; Wang, G. J. PtCo nanoparticles supported on hierarchical SAPO-34 for hydrolysis of ammonia borane and tandem reduction of 4-nitrophenol. Catal. Today 2022, 402, 27–37.

    Article  CAS  Google Scholar 

  23. Wang, Q.; Fu, F. Y.; Yang, S.; Martinez Moro, M.; de los Angeles Ramirez, M.; Moya, S.; Salmon, L.; Ruiz, J.; Astruc, D. Dramatic synergy in CoPt nanocatalysts stabilized by “click” dendrimers for evolution of hydrogen from hydrolysis of ammonia borane. ACS Catal. 2019, 9, 1110–1119.

    Article  CAS  Google Scholar 

  24. Mullangi, D.; Chakraborty, D.; Pradeep, A.; Koshti, V.; Vinod, C. P.; Panja, S.; Nair, S.; Vaidhyanathan, R. Highly stable COF-supported Co/Co(OH)2 nanoparticles heterogeneous catalyst for reduction of nitrile/nitro compounds under mild conditions. Small 2018, 14, 1801233.

    Article  Google Scholar 

  25. Zhu, Y. F.; Zhu, D. Y.; Yan, Q. Q.; Gao, G. H.; Xu, J. N.; Liu, Y. F.; Alahakoon, S. B.; Rahman, M. M.; Ajayan, P. M.; Egap, E. et al. Metal oxide catalysts for the synthesis of covalent organic frameworks and one-step preparation of covalent organic framework-based composites. Chem. Mater. 2021, 33, 6158–6165.

    Article  CAS  Google Scholar 

  26. Liang, Y.; Xia, T.; Chang, Z. S.; Xie, W. Y.; Li, Y. P.; Li, C. K.; Fan, R. M.; Wang, W. X.; Sui, Z. Y.; Chen, Q. Boric acid functionalized triazine-based covalent organic frameworks with dual-function for selective adsorption and lithium-sulfur battery cathode. Chem. Eng. J. 2022, 437, 135314.

    Article  CAS  Google Scholar 

  27. Tian, X. X.; Qiu, J. K.; Wang, Z. Z.; Chen, Y. K.; Li, Z. Y.; Wang, H. Y.; Zhao, Y. L.; Wang, J. J. A record ammonia adsorption by calcium chloride confined in covalent organic frameworks. Chem. Comm. 2022, 58, 1151–1154.

    Article  CAS  PubMed  Google Scholar 

  28. Meng, Y. L.; Sun, Q. H.; Zhang, T. J.; Zhang, J. C.; Dong, Z. Y.; Ma, Y. H.; Wu, Z. X.; Wang, H. F.; Bao, X. G.; Sun, Q. M. et al. Cobalt-promoted noble-metal catalysts for efficient hydrogen generation from ammonia borane hydrolysis. J. Am. Chem. Soc. 2023, 145, 5486–5495.

    Article  CAS  PubMed  Google Scholar 

  29. Shirman, R.; Sasson, Y. Hydrogen generation from sodium hypophosphite catalyzed by metallic nanoparticles supported on graphitic carbon nitride. Int. J. Hydrog. Energy 2023, 48, 27611–27618.

    Article  CAS  Google Scholar 

  30. Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    Article  ADS  CAS  Google Scholar 

  31. Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

    Google Scholar 

  32. Asim, M.; Maryam, B.; Liu, X. H.; Pan, L.; Shi, C. X.; Zou, J. J. Self-supported Pt@Ni2P for controllable hydrogen release from ammonia-borane hydrolysis. Ind. Eng. Chem. Res. 2023, 62, 10951–10960.

    Article  CAS  Google Scholar 

  33. Kang, N. X.; Wei, X. R.; Shen, R. F.; Li, B. J.; Cal, E. G.; Moya, S.; Salmon, L.; Wang, C. L.; Coy, E.; Berlande, M. et al. Fast Au-Ni@ZIF-8-catalyzed ammonia borane hydrolysis boosted by dramatic volcano-type synergy and plasmonic acceleration. Appl. Catal. B: Environ. 2023, 320, 121957.

    Article  CAS  Google Scholar 

  34. Li, M.; Zhang, S. B.; Zhao, J. K.; Wang, H. Maximizing metal-support interactions in Pt/Co3O4 nanocages to simultaneously boost hydrogen production activity and durability. ACS Appl. Mater. Interfaces 2021, 13, 57362–57371.

    Article  CAS  PubMed  Google Scholar 

  35. Xu, H. Q.; Hu, J. H.; Wang, D. K.; Li, Z. H.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Visible-light photoreduction of CO2 in a metal-organic framework: Boosting electron–hole separation via electron trap states. J. Am. Chem. Soc. 2015, 137, 13440–13443.

    Article  CAS  PubMed  Google Scholar 

  36. Liang, H. P.; Acharjya, A.; Anito, D. A.; Vogl, S.; Wang, T. X.; Thomas, A.; Han, B. H. Rhenium-metalated polypyridine-based porous polycarbazoles for visible-light CO2 photoreduction. ACS Catal. 2019, 9, 3959–3968.

    Article  CAS  Google Scholar 

  37. Ahmad, I.; Shukrullah, S.; Naz, M. Y.; Bhatti, H. N.; Khalid, N. R.; Ullah, S. Rational design of ZnO-CuO-Au S-scheme heterojunctions for photocatalytic hydrogen production under visible light. Int. J. Hydrog. Energy 2023, 48, 12683–12698.

    Article  CAS  Google Scholar 

  38. Reyes-Vallejo, O.; Sánchez-Albores, R.; Fernández-Madrigal, A.; Torres-Arellano, S.; Sebastian, P. J. Evaluation of hydrogen evolution reaction on chemical bath deposited Cu2O thin films: Effect of copper source and triethanolamine content. Int. J. Hydrog. Energy 2022, 47, 22775–22786.

    Article  CAS  Google Scholar 

  39. Zhou, Z. M.; Bie, C. B.; Li, P. Z.; Tan, B. E.; Shen, Y. A thioether-functionalized pyrene-based covalent organic framework anchoring ultrafine Au nanoparticles for efficient photocatalytic hydrogen generation. Chin. J. Catal. 2022, 43, 2699–2707.

    Article  CAS  Google Scholar 

  40. Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

    Article  ADS  CAS  Google Scholar 

  41. Chen, J.; Tao, X. P.; Tao, L.; Li, H.; Li, C. Z.; Wang, X. L.; Li, C.; Li, R. G.; Yang, Q. H. Novel conjugated organic polymers as candidates for visible-light-driven photocatalytic hydrogen production. Appl. Catal. B: Environ. 2019, 241, 461–470.

    Article  CAS  Google Scholar 

  42. Ren, X. M.; Li, C. Z.; Liu, J. L.; Li, H.; Bing, L. J.; Bai, S. Y.; Xue, G. Y.; Shen, Y. B.; Yang, Q. H. The fabrication of Pd single atoms/clusters on COF layers as Co-catalysts for photocatalytic H2 evolution. ACS Appl. Mater. Interfaces 2022, 14, 6885–6893.

    Article  CAS  PubMed  Google Scholar 

  43. Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Ronnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: A double solvents approach. J. Am. Chem. Soc. 2012, 134, 13926–13929.

    Article  CAS  PubMed  Google Scholar 

  44. Meng, X. B.; Sheng, J. L.; Tang, H. L.; Sun, X. J.; Dong, H.; Zhang, F. M. Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst. Appl. Catal. B: Environ. 2019, 244, 340–346.

    Article  CAS  Google Scholar 

  45. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  46. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  ADS  CAS  Google Scholar 

  47. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  ADS  Google Scholar 

  48. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  ADS  CAS  Google Scholar 

  49. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22178266), the Fundamental Research Funds for the Central Universities, and China Postdoctoral Science Foundation (Nos. 2021M691754 and 2023T160369). We acknowledge the Tianjin University for their help in sample characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Wang or Shengbo Zhang.

Electronic Supplementary Material

12274_2024_6544_MOESM1_ESM.pdf

Electronic Supplementary Material: Donor–acceptor covalent organic frameworks-confined ultrafine bimetallic Pt-based nanoclusters for enhanced photocatalytic H2 generation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Shi, Y., Wang, H. et al. Donor–acceptor covalent organic frameworks-confined ultrafine bimetallic Pt-based nanoclusters for enhanced photocatalytic H2 generation. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6544-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6544-2

Keywords

Navigation