Skip to main content
Log in

Molecular modulating of cobalt phthalocyanines on amino-functionalized carbon nanotubes for enhanced electrocatalytic CO2 conversion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metal porphyrins and metal phthalocyanines (Pc) constitute a promising class of metal molecular catalysts (MMCs) for efficient CO2-to-CO electrocatalytic conversion due to their well-defined molecular structures. How to adjust the local coordination and electronic environment of the metal center and enhance the molecular-level dispersion of the active components remains as great challenges for further improving the performance. Herein, a cobalt(II) Pc (CoPc)-COOH/carbon nanotube (CNT)-NH2 hybrid catalyst was rationally designed by clicking the CoPc-COOH molecules onto the surface of CNT-NH2 through amidation reaction. This novel hybrid catalyst exhibited the enhanced current density of 22.4 mA/cm2 and CO selectivity of 91% at −0.88 V vs. reversible hydrogen electrode (RHE) in the CO2 electroreduction, as compared with CoPc-COOH/CNT and CoPc/CNT samples. The superior activity was ascribed to the charge transfer induced by introduction of -COOH and -NH2 functional groups to CoPc and CNT, respectively, facilitating the active centers of Coɪ being generated at lower potentials, and leading to the highest turnover frequency (TOF) being obtained over the CoPc-COOH/CNT-NH2 hybrid catalyst. The inherent directivity and saturability of covalent bonds formed via the amidation reaction ensure not only a higher density of Co active centers, but also an improved stability for CO2 reduction reaction (CO2RR). The present study represents an effective strategy for improving MMCs performance by molecular modulating of metal phthalocyanines on functionalized carbon substrates directed by click confinement chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

    CAS  Google Scholar 

  2. Tomboc, G. M.; Choi, S.; Kwon, T.; Hwang, Y. J.; Lee, K. Potential link between Cu surface and selective CO2 electroreduction: Perspective on future electrocatalyst designs. Adv. Mater. 2020, 32, 1908398.

    CAS  Google Scholar 

  3. Zhu, S. Q.; Delmo, E. P.; Li, T. H.; Qin, X. P.; Tian, J.; Zhang, L. L.; Shao, M. H. Recent advances in catalyst structure and composition engineering strategies for regulating CO2 electrochemical reduction. Adv. Mater. 2021, 33, 2005484.

    CAS  Google Scholar 

  4. Wagner, A.; Sahm, C. D.; Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 2020, 3, 775–786.

    CAS  Google Scholar 

  5. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Google Scholar 

  6. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    CAS  Google Scholar 

  7. Rosen, J.; Hutchings, G. S.; Lu, Q.; Rivera, S.; Zhou, Y.; Vlachos, D. G.; Jiao, F. Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces. ACS Catal. 2015, 5, 4293–4299.

    CAS  Google Scholar 

  8. Marshall-Roth, T.; Libretto, N. J.; Wrobel, A. T.; Anderton, K. J.; Pegis, M. L.; Ricke, N. D.; Voorhis, T. V.; Miller, J. T.; Surendranath, Y. A pyridinic Fe-N4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts. Nat. Commun. 2020, 11, 5283.

    CAS  Google Scholar 

  9. Chen, C. J.; Sun, X. F.; Yan, X. P.; Wu, Y. H.; Liu, H. Z.; Zhu, Q. G.; Bediako, B. B. A.; Han, B. X. Boosting CO2 electroreduction on N, P-co-doped carbon aerogels. Angew. Chem., Int. Ed. 2020, 59, 11123–11129.

    CAS  Google Scholar 

  10. Jiang, Z.; Wang, Y.; Zhang, X.; Zheng, H. Z.; Wang, X. J.; Liang, Y. Y. Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes. Nano Res. 2019, 12, 2330–2334.

    CAS  Google Scholar 

  11. Zhu, H. L.; Zheng, Y. Q.; Shui, M. Synergistic interaction of nitrogen-doped carbon nanorod array anchored with cobalt phthalocyanine for electrochemical reduction of CO2. ACS Appl. Energy Mater. 2020, 3, 3893–3901.

    CAS  Google Scholar 

  12. Xia, Y. J.; Kashtanov, S.; Yu, P. F.; Chang, L. Y.; Feng, K.; Zhong, J.; Guo, J. H.; Sun, X. H. Identification of dual-active sites in cobalt phthalocyanine for electrochemical carbon dioxide reduction. Nano Energy 2020, 67, 104163.

    CAS  Google Scholar 

  13. Göttle, A. J.; Koper, M. T. M. Determinant role of electrogenerated reactive nucleophilic species on selectivity during reduction of CO2 catalyzed by metalloporphyrins. J. Am. Chem. Soc. 2018, 140, 4826–4834.

    Google Scholar 

  14. Liu, J. H.; Yang, L. M.; Ganz, E. Efficient and selective electroreduction of CO2 by single-atom catalyst two-dimensional TM-Pc monolayers. ACS Sustainable Chem. Eng. 2018, 6, 15494–15502.

    CAS  Google Scholar 

  15. Ma, J. J.; Zhu, H. L.; Zheng, Y. Q.; Shui, M. An insight into anchoring of cobalt phthalocyanines onto carbon: Efficiency of the CO2 reduction reaction. ACS Appl. Energy Mater. 2021, 4, 1442–1448.

    CAS  Google Scholar 

  16. Zhao, C. X.; Liu, J. N.; Wang, J.; Wang, C. D.; Guo, X.; Li, X. Y.; Chen, X.; Song, L.; Li, B. Q.; Zhang, Q. A clicking confinement strategy to fabricate transition metal single-atom sites for bifunctional oxygen electrocatalysis. Sci. Adv. 2022, 8, eabn5091.

    CAS  Google Scholar 

  17. Choi, J.; Kim, J.; Wagner, P.; Gambhir, S.; Jalili, R.; Byun, S.; Sayyar, S.; Lee, Y. M.; MacFarlane, D. R.; Wallace, G. G. et al. Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel. Energy Environ. Sci. 2019, 12, 747–755.

    CAS  Google Scholar 

  18. Yang, Z. J.; Zhang, X. F.; Long, C.; Yan, S. H.; Shi, Y. N.; Han, J. Y.; Zhang, J.; An, P. F.; Chang, L.; Tang, Z. Y. Covalently anchoring cobalt phthalocyanine on zeolitic imidazolate frameworks for efficient carbon dioxide electroreduction. CrystEngComm 2020, 22, 1619–1624.

    CAS  Google Scholar 

  19. Choi, J.; Wagner, P.; Gambhir, S.; Jalili, R.; MacFarlane, D. R.; Wallace, G. G.; Officer, D. L. Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical CO2 reduction to CO. ACS Energy Lett. 2019, 4, 666–672.

    CAS  Google Scholar 

  20. Abe, T.; Imaya, H.; Yoshida, T.; Tokita, S.; Schlettwein, D.; Wöhrle, D.; Kaneko, M. Electrochemical CO2 reduction catalysed by cobalt octacyanophthalocyanine and its mechanism. J. Porphyrins Phthalocyanines 1997, 1, 315–321.

    CAS  Google Scholar 

  21. Chen, K. J.; Cao, M. Q.; Lin, Y. Y.; Fu, J. W.; Liao, H. X.; Zhou, Y. J.; Li, H. M.; Qiu, X. Q.; Hu, J. H.; Zheng, X. S. et al. Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2. Adv. Funct. Mater. 2022, 32, 2111322.

    CAS  Google Scholar 

  22. Zhang, X.; Wang, Y.; Gu, M.; Wang, M. Y.; Zhang, Z. S.; Pan, W. Y.; Jiang, Z.; Zheng, H. Z.; Lucero, M.; Wang, H. L. et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 2020, 5, 684–692.

    CAS  Google Scholar 

  23. Wu, Y. S.; Liang, Y. Y.; Wang, H. L. Heterogeneous molecular catalysts of metal phthalocyanines for electrochemical CO2 reduction reactions. Acc. Chem. Res. 2021, 54, 3149–3159.

    CAS  Google Scholar 

  24. Sun, L. B.; Reddu, V.; Fisher, A. C.; Wang, X. Electrocatalytic reduction of carbon dioxide: Opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 2020, 13, 374–403.

    CAS  Google Scholar 

  25. Zhang, X.; Wu, Z. S.; Zhang, X.; Li, L. W.; Li, Y. Y.; Xu, H. M.; Li, X. X.; Yu, X. L.; Zhang, Z. S.; Liang, Y. Y. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675.

    Google Scholar 

  26. Morlanés, N.; Takanabe, K.; Rodionov, V. Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst. ACS Catal. 2016, 6, 3092–3095.

    Google Scholar 

  27. Gong, S. H.; Wang, W. B.; Xiao, X. X.; Liu, J.; Wu, C. D.; Lv, X. M. Elucidating influence of the existence formation of anchored cobalt phthalocyanine on electrocatalytic CO2-to-CO conversion. Nano Energy 2021, 84, 105904.

    CAS  Google Scholar 

  28. Han, N.; Wang, Y.; Ma, L.; Wen, J. G.; Li, J.; Zheng, H. C.; Nie, K. Q.; Wang, X. X.; Zhao, F. P.; Li, Y. F. et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 2017, 3, 652–664.

    CAS  Google Scholar 

  29. Zhu, M. H.; Chen, J. C.; Guo, R.; Xu, J.; Fang, X. C.; Han, Y. F. Cobalt phthalocyanine coordinated to pyridine-functionalized carbon nanotubes with enhanced CO2 electroreduction. Appl. Catal. B:Environ. 2019, 251, 112–118.

    CAS  Google Scholar 

  30. Liu, Y. S.; McCrory, C. C. L. Modulating the mechanism of electrocatalytic CO2 reduction by cobalt phthalocyanine through polymer coordination and encapsulation. Nat. Commun. 2019, 10, 1683.

    Google Scholar 

  31. Ma, D. D.; Han, S. G.; Cao, C. S.; Wei, W. B.; Li, X. F.; Chen, B.; Wu, X. T.; Zhu, Q. L. Bifunctional single-molecular heterojunction enables completely selective CO2-to-CO conversion integrated with oxidative 3D nano-polymerization. Energy Environ. Sci. 2021, 14, 1544–1552.

    CAS  Google Scholar 

  32. Zhu, M. H.; Chen, J. C.; Huang, L. B.; Ye, R. Q.; Xu, J.; Han, Y. F. Covalently grafting cobalt porphyrin onto carbon nanotubes for efficient CO2 electroreduction. Angew. Chem., Int. Ed. 2019, 58, 6595–6599.

    CAS  Google Scholar 

  33. Wang, M.; Torbensen, K.; Salvatore, D.; Ren, S. X.; Joulié, D.; Dumoulin, F.; Mendoza, D.; Lassalle-Kaiser, B.; Işci, U.; Berlinguette, C. P. et al. CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat. Commun. 2019, 14, 3602.

    Google Scholar 

  34. Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

    CAS  Google Scholar 

  35. Ma, D. D.; Han, S. G.; Cao, C. S.; Li, X. F.; Wu, X. T.; Zhu, Q. L. Remarkable electrocatalytic CO2 reduction with ultrahigh CO/H2 ratio over single-molecularly immobilized pyrrolidinonyl nickel phthalocyanine. Appl. Catal. B: Environ. 2020, 264, 118530.

    Google Scholar 

  36. Cai, H. Z.; Chen, B. B.; Zhang, X.; Deng, Y. C.; Xiao, D. Q.; Ma, D.; Shi, C. Highly active sites of low spin FeIIN4 species: The identification and the ORR performance. Nano Res. 2021, 14, 122–130.

    CAS  Google Scholar 

  37. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    CAS  Google Scholar 

  38. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    CAS  Google Scholar 

  39. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  40. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Google Scholar 

  41. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Google Scholar 

  42. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

    CAS  Google Scholar 

  43. Li, H. D.; Pan, Y.; Wang, Z. C.; Yu, Y. D.; Xiong, J.; Du, H. Y.; Lai, J. P.; Wang, L.; Feng, S. H. Coordination engineering of cobalt phthalocyanine by functionalized carbon nanotube for efficient and highly stable carbon dioxide reduction at high current density. Nano Res. 2022, 15, 3056–3064.

    CAS  Google Scholar 

  44. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Google Scholar 

  45. Ni, W. P.; Liu, Z. X.; Guo, X. G.; Zhang, Y.; Ma, C.; Deng, Y. J.; Zhang, S. G. Dual single-cobalt atom-based carbon electrocatalysts for efficient CO2-to-syngas conversion with industrial current densities. Appl. Catal. B: Environ. 2021, 291, 120092.

    CAS  Google Scholar 

  46. Ma, Z. J.; Zhang, X. L.; Han, X. Y.; Wu, D. P.; Wang, H. J.; Gao, Z. Y.; Xu, F.; Jiang, K. Synergistic adsorption and activation of nickel phthalocyanine anchored onto ketjenblack for CO2 electrochemical reduction. Appl. Surf. Sci. 2021, 538, 148134.

    CAS  Google Scholar 

  47. Wu, H. H.; Zeng, M.; Zhu, X.; Tian, C. C.; Mei, B. B.; Song, Y.; Du, X. L.; Jiang, Z.; He, L.; Xia, C. G. et al. Defect engineering in polymeric cobalt phthalocyanine networks for enhanced electrochemical CO2 deduction. ChemElertroChem 2018, 5, 2717–2721.

    CAS  Google Scholar 

  48. Zhang, M. D.; Si, D. H.; Yi, J. D.; Zhao, S. S.; Huang, Y. B.; Cao, R. Conductive phthalocyanine-based covalent organic framework for highly efficient electroreduction of carbon dioxide. Small 2020, 16, 2005254.

    CAS  Google Scholar 

  49. Zhu, M. H.; Ye, R. Q.; Jin, K.; Lazouski, N.; Manthiram, K. Elucidating the reactivity and mechanism of CO2 electroreduction at highly dispersed cobalt phthalocyanine. ACS Energy Lett. 2018, 3, 1381–1386.

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 21872014, 21932002, 21902018, 21962013, and 22172083), the National Key Research and Development (R&D) Program of China (No. 2017YFA0700103), the Fundamental Research Funds for the Central Universities (No. DUT20ZD205), the Natural Science Foundation of Liaoning Province (No. 2019-MS-053), and the Liaoning Revitalization Talent Program (No. XLYC2008032). The authors thank Zirui Gao from Peking university for providing the AC-HAADF-STEM measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Limei Yu, Rui Gao or Chuan Shi.

Electronic Supplementary Material

12274_2022_4578_MOESM1_ESM.pdf

Molecular modulating of cobalt phthalocyanines on aminofunctionalized carbon nanotubes for enhanced electrocatalytic CO2 conversion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Cai, H., Cui, L. et al. Molecular modulating of cobalt phthalocyanines on amino-functionalized carbon nanotubes for enhanced electrocatalytic CO2 conversion. Nano Res. 16, 3649–3657 (2023). https://doi.org/10.1007/s12274-022-4578-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4578-x

Keywords

Navigation