Skip to main content
Log in

Rational designed isostructural MOF for the charge—discharge behavior study of super capacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In recent years, the rapid charge—discharge property of super capacitors based on metal-organic frameworks (MOFs) has seen excellent applications in energy storage equipment. However, the purposeful design of high-performance electrodes for MOF-derived super capacitors is still an urgent problem that needs to be solved. Herein, we rationally design and prepare three MOFs with the same crystal configuration and controllable functional groups. Through the combination of rigorous experiment and calculation, we have verified the effects of the specific surface area of the electrode material as well as the binding energy between the electrode material and the electrolyte ions on the performance of the super capacitor. This work not only extends the application of MOFs, but also provides a model-material platform for the study of charge—discharge behavior of MOF-based super capacitors, creating a way of thinking for the selection and design of MOF materials for energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanati, S.; Abazari, R.; Albero, J.; Morsali, A.; García, H.; Liang, Z. B.; Zou, R. Q. Metal-organic framework derived bimetallic materials for electrochemical energy storage. Angew. Chem., Int. Ed. 2021, 60, 11048–11067.

    Article  CAS  Google Scholar 

  2. Borchardt, L.; Leistenschneider, D.; Haase, J.; Dvoyashkin, M. Revising the concept of pore hierarchy for ionic transport in carbon materials for supercapacitors. Adv. Energy Mater. 2018, 8, 1800892.

    Article  Google Scholar 

  3. Wang, J. F.; Wang, J. R.; Kong, Z.; Lv, K. L.; Teng, C.; Zhu, Y. Conducting-polymer-based materials for electrochemical energy conversion and storage. Adv. Mater. 2017, 29, 1703044.

    Article  Google Scholar 

  4. Jiang, H.; Ma, J.; Li, C. Z. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv. Mater. 2012, 24, 4197–4202.

    Article  CAS  Google Scholar 

  5. Ajdari, F. B.; Kowsari, E.; Shahrak, M. N.; Ehsani, A.; Kiaei, Z.; Torkzaban, H.; Ershadi, M.; Eshkalak, S. K.; Haddadi-Asl, V.; Chinnappan, A. et al. A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coord. Chem. Rev. 2020, 422, 213441.

    Article  Google Scholar 

  6. Wang, F. X.; Wu, X. W.; Yuan, X. H.; Liu, Z. C.; Zhang, Y.; Fu, L. J.; Zhu, Y. S.; Zhou, Q. M.; Wu, Y. P.; Huang, W. Latest advances in supercapacitors: From new electrode materials to novel device designs. Chem. Soc. Rev. 2017, 46, 6816–6854.

    Article  CAS  Google Scholar 

  7. Li, T.; Bai, X.; Gulzar, U.; Bai, Y. J.; Capiglia, C.; Deng, W.; Zhou, X. F.; Liu, Z. P.; Feng, Z. F.; Zaccaria, R. P. A comprehensive understanding of lithium-sulfur battery technology. Adv. Funct. Mater. 2019, 29, 1901730.

    Article  Google Scholar 

  8. Yu, Z. N.; Tetard, L.; Zhai, L.; Thomas, J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 2015, 8, 702–730.

    Article  CAS  Google Scholar 

  9. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    Article  CAS  Google Scholar 

  10. Conway, B. E.; Pell, W. G. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electr. 2003, 7, 637–644.

    Article  CAS  Google Scholar 

  11. Li, W. H.; Ding, K.; Tian, H. R.; Yao, M. S.; Nath, B.; Deng, W. H.; Wang, Y. B.; Xu, G. Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv. Funct. Mater. 2017, 27, 1702067.

    Article  Google Scholar 

  12. Bi, S.; Banda, H.; Chen, M.; Niu, L.; Chen, M. Y.; Wu, T. Z.; Wang, J. S.; Wang, R. X.; Feng, J. M.; Chen, T. Y. et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat. Mater. 2020, 19, 552–558.

    Article  CAS  Google Scholar 

  13. Farma, R.; Siagian, W. F.; Taer, E.; Awitdrus. Preparation and characterization activated carbon based on mesocarp of bintaro fruit as electrode materials supercapacitor cell application. J. Phys.: Conf. Ser. 2020, 1655, 012157.

    CAS  Google Scholar 

  14. Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 2008, 130, 2730–2731.

    Article  CAS  Google Scholar 

  15. Bose, S.; Kuila, T.; Mishra, A. K.; Rajasekar, R.; Kim, N. H.; Lee, J. H. Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 2012, 22, 767–784.

    Article  CAS  Google Scholar 

  16. Zhang, H.; Cao, G. P.; Wang, Z. Y.; Yang, Y. S.; Shi, Z. J.; Gu, Z. N. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 2008, 8, 2664–2668.

    Article  CAS  Google Scholar 

  17. Gupta, V.; Kannan, A. M.; Kumar, S. Graphene foam (GF)/manganese oxide (MnO2) nanocomposites for high performance supercapacitors. J. Energy Storage 2020, 30, 101575.

    Article  Google Scholar 

  18. Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.

    Article  CAS  Google Scholar 

  19. Dubey, R.; Guruviah, V. Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 2019, 25, 1419–1445.

    Article  CAS  Google Scholar 

  20. Zhang, S. L.; Pan, N. Supercapacitors performance evaluation. Adv. Energy Mater. 2015, 5, 1401401.

    Article  Google Scholar 

  21. Forse, A. C.; Merlet, C.; Griffin, J. M.; Grey, C. P. New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 2016, 138, 5731–5744.

    Article  CAS  Google Scholar 

  22. Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763.

    Article  CAS  Google Scholar 

  23. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

    Article  Google Scholar 

  24. Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dinca, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220–224.

    Article  CAS  Google Scholar 

  25. Lukatskaya, M. R.; Feng, D. W.; Bak, S. M.; To, J. W. F.; Yang, X. Q.; Cui, Y.; Feldblyum, J. I.; Bao, Z. N. Understanding the mechanism of high capacitance in nickel hexaaminobenzene-based conductive metal-organic frameworks in aqueous electrolytes. ACS Nano 2020, 14, 15919–15925.

    Article  CAS  Google Scholar 

  26. Xia, Z. Q.; Jia, X.; Ge, X.; Ren, C. T.; Yang, Q.; Hu, J.; Chen, Z.; Han, J.; Xie, G.; Chen, S. P. et al. Tailoring electronic structure and size of ultrastable metalated metal-organic frameworks with enhanced electroconductivity for high-performance supercapacitors. Angew. Chem., Int. Ed. 2021, 60, 10228–10238.

    Article  CAS  Google Scholar 

  27. Jia, J. H.; Lin, X.; Blake, A. J.; Champness, N. R.; Hubberstey, P.; Shao, L. M.; Walker, G.; Wilson, C.; Schröder, M. Triggered ligand release coupled to framework rearrangement: Generating crystalline porous coordination materials. Inorg. Chem. 2006, 45, 8838–8840.

    Article  CAS  Google Scholar 

  28. Zhou, X. L.; Liu, W. Z.; Tian, C.; Mo, S. Q.; Liu, X. M.; Deng, H.; Lin, Z. Mussel-inspired functionalization of biological calcium carbonate for improving Eu(III) adsorption and the related mechanisms. Chem. Eng. J. 2017, 203, 740–752.

    Google Scholar 

  29. Trandafilović, L. V.; Jovanović, D. J.; Zhang, X.; Ptasińska, S.; Dramićanin, M. D. Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO: Eu nanoparticles. Appl. Catal. B: Environ. 2017, 203, 740–752.

    Article  Google Scholar 

  30. Jayaramulu, K.; Horn, M.; Schneemann, A.; Saini, H.; Bakandritsos, A.; Ranc, V.; Petr, M.; Stavila, V.; Narayana, C.; Scheibe, B. et al. Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors. Adv. Mater. 2021, 33, 2004560.

    Article  CAS  Google Scholar 

  31. Yang, R. C.; Lu, X. J.; Huang, X.; Chen, Z. M.; Zhang, X.; Xu, M. D.; Song, Q. W.; Zhu, L. T. Bi-component Cu2O-CuCl composites with tunable oxygen vacancies and enhanced photocatalytic properties. Appl. Catal. B: Environ. 2015, 170–171, 225–232.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22005273 and 21825106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Peng or Shuang-Quan Zang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Liu, XF., Li, HY. et al. Rational designed isostructural MOF for the charge—discharge behavior study of super capacitors. Nano Res. 15, 6208–6212 (2022). https://doi.org/10.1007/s12274-022-4307-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4307-5

Keywords

Navigation