Skip to main content
Log in

A novel gene-activated matrix composed of PEI/plasmid-BMP2 complexes and hydroxyapatite/chitosan-microspheres promotes bone regeneration

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The incorporation of pro-osteogenic growth factors into bone graft materials to enhance bone regeneration is a key research area within the field of bone tissue engineering and regenerative medicine. However, growth factors directly incorporated in protein form are easily degraded, and have a limited active half-life, which cannot exert long-term and stable osteoinductive and oteoconductive effects. The combination of gene therapy and tissue engineering through gene-activated matrix (GAM) may provide a good alternative solution to overcome such limitations. Scaffold materials can be combined together with plasmid DNA and a chemical-based transfection agent to form GAM, through which transfected cells could secrete growth factors in a sustained manner over a longer time duration; thereby enabling bone graft materials to act as a repository of therapeutic genes, while providing structural support and a scaffold matrix for new bone tissue ingrowth. In this study, we prepared hydroxyapatite/chitosan-microspheres (HA/CS-MS) with microfabrication technology and emulsification method, and loaded the polyethylene imine/bone morphogenetic protein 2 plasmid (PEI/pBMP2) complexes with high transfection capacity (transfection efficiency up to 54.79% ± 4.95%), thus forming a novel GAM system with superior bone regeneration capacity—PEI/pBMP2-HA/CS-MS. The in vitro experiments in this study demonstrated that our GAM had excellent biocompatibility (with cell viability over 95%), and that the as-fabricated microsphere material possessed a nano-network fibrous structure similar to natural extracellular matrix (ECM), together with a higher surface area that can provide more cell adhesion sites. The sizes of the prepared microspheres were mainly distributed in the 160–180 µm range, while the maximal loading rate of PEI-pBMP2 complexes was 59.79% ± 1.85%. As a loaded complexes system, the GAM can release plasmids in a slow controlled manner, effectively transfecting surrounding target cells (release effect for up to 21 days), while cells adherent to the material can also take up plasmids, resulting in sustained secretion of the target protein, thereby effectively promoting bone regeneration. In vivo data from micro-computed tomography (micro-CT) and histological staining showed that the use of the composite materials effectively enhanced bone regeneration in defect areas. These findings thus demonstrated that the novel GAM system had excellent osteoinductivity with significant clinical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xie, C.; Ye, J. C.; Liang, R. J.; Yao, X. D.; Wu, X. Y.; Koh, Y.; Wei, W.; Zhang, X. Z.; Ouyang, H. W. Advanced strategies of biomimetic tissue-engineered grafts for bone regeneration. Adv. Healthc. Mater. 2021, 10, 2100408.

    Article  CAS  Google Scholar 

  2. Roddy, E.; DeBaun, M. R.; Daoud-Gray, A.; Yang, Y. P.; Gardner, M. J. Treatment of critical-sized bone defects: Clinical and tissue engineering perspectives. Eur. J. Orthop. Surg. Traumatol. 2018, 28, 351–362.

    Article  Google Scholar 

  3. Schemitsch, E. H. Size matters: Defining critical in bone defect size!. J. Orthop. Trauma. 2017, 31 Suppl 5, S20–S22.

    Article  Google Scholar 

  4. Arthur, A.; Gronthos, S. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue. Int. J. Mol. Sci. 2020, 21, 9759.

    Article  CAS  Google Scholar 

  5. Tharakan, S.; Khondkar, S.; Ilyas, A. Bioprinting of stem cells in multimaterial scaffolds and their applications in bone tissue engineering. Sensors 2021, 21, 7477.

    Article  CAS  Google Scholar 

  6. Poon, B.; Kha, T.; Tran, S.; Dass, C. R. Bone morphogenetic protein-2 and bone therapy: Successes and pitfalls. J. Pharm. Pharmacol. 2016, 68, 139–147.

    Article  CAS  Google Scholar 

  7. Haidar, Z. S.; Hamdy, R. C.; Tabrizian, M. Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part B: Delivery systems for BMPs in orthopaedic and craniofacial tissue engineering. Biotechnol. Lett. 2009, 31, 1825–1835.

    Article  CAS  Google Scholar 

  8. Tannoury, C. A.; An, H. S. Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. Spine J. 2014, 14, 552–559.

    Article  Google Scholar 

  9. Yaremchuk, K.; Toma, M.; Somers, M. Acute airway obstruction associated with the use of bone-morphogenetic protein in cervical spinal fusion. Laryngoscope 2010, 120 Suppl 4, S140.

    Article  Google Scholar 

  10. Cam, C.; Segura, T. Matrix-based gene delivery for tissue repair. Curr. Opin. Biotechnol. 2013, 24, 855–863.

    Article  CAS  Google Scholar 

  11. D’Mello, S.; Atluri, K.; Geary, S. M.; Hong, L.; Elangovan, S.; Salem, A. K. Bone regeneration using gene-activated matrices. AAPS J. 2017, 19, 43–53.

    Article  Google Scholar 

  12. Jiang, C. P.; Chen, J. T.; Li, Z. T.; Wang, Z. T.; Zhang, W. L.; Liu, J. P. Recent advances in the development of polyethylenimine-based gene vectors for safe and efficient gene delivery. Expert Opin. Drug Deliv. 2019, 16, 363–376.

    Article  CAS  Google Scholar 

  13. Neuberg, P.; Kichler, A. Recent developments in nucleic acid delivery with polyethylenimines. Adv. Genet. 2014, 88, 263–288.

    Article  CAS  Google Scholar 

  14. Shakir, M.; Zia, I.; Rehman, A.; Ullah, R. Fabrication and characterization of nanoengineered biocompatible n-HA/chitosan-tamarind seed polysaccharide: Bio-inspired nanocomposites for bone tissue engineering. Int. J. Biol. Macromol. 2018, 111, 903–916.

    Article  CAS  Google Scholar 

  15. Feng, P.; Wu, P.; Gao, C. D.; Yang, Y. W.; Guo, W.; Yang, W. J.; Shuai, C. J. A multimaterial scaffold with tunable properties: Toward bone tissue repair. Adv. Sci. 2018, 5, 1700817.

    Article  Google Scholar 

  16. Zhou, H. J.; Lee, J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011, 7, 2769–2781.

    Article  CAS  Google Scholar 

  17. Zhou, Y.; Gao, H. L.; Shen, L. L.; Pan, Z.; Mao, L. B.; Wu, T.; He, J. C.; Zou, D. H.; Zhang, Z. Y.; Yu, S. H. Chitosan microspheres with an extracellular matrix-mimicking nanofibrous structure as cell-carrier building blocks for bottom-up cartilage tissue engineering. Nanoscale 2016, 8, 309–317.

    Article  CAS  Google Scholar 

  18. Pina, S.; Oliveira, J. M.; Reis, R. L. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: A review. Adv. Mater. 2015, 27, 1143–1169.

    Article  CAS  Google Scholar 

  19. Cunniffe, G. M.; Curtin, C. M.; Thompson, E. M.; Dickson, G. R.; O’Brien, F. J. Content-dependent osteogenic response of nanohydroxyapatite: An in vitro and in vivo assessment within collagen-based scaffolds. ACS Appl. Mater. Interfaces 2016, 8, 23477–23488.

    Article  CAS  Google Scholar 

  20. Smith, L. A.; Liu, X. H.; Ma, P. X. Tissue engineering with nano-fibrous scaffolds. Soft Matter 2008, 4, 2144–2149.

    Article  CAS  Google Scholar 

  21. Duan, B.; Zheng, X.; Xia, Z. X.; Fan, X. L.; Guo, L.; Liu, J. F.; Wang, Y. F.; Ye, Q. F.; Zhang, L. N. Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers. Angew. Chem., Int. Ed. 2015, 54, 5152–5156.

    Article  CAS  Google Scholar 

  22. Xu, J. H.; Zhao, H.; Lan, W. J.; Luo, G. S. A novel microfluidic approach for monodispersed chitosan microspheres with controllable structures. Adv. Healthc. Mater. 2012, 1, 106–111.

    Article  CAS  Google Scholar 

  23. Jiang, K. Q.; Xue, C.; Arya, C.; Shao, C. R.; George, E. O.; DeVoe, D. L.; Raghavan, S. R. A new approach to in-situ “micromanufacturing”: Microfluidic fabrication of magnetic and fluorescent chains using chitosan microparticles as building blocks. Small 2011, 7, 2470–2476.

    Article  CAS  Google Scholar 

  24. Seeto, W. J.; Tian, Y.; Pradhan, S.; Kerscher, P.; Lipke, E. A. Rapid production of cell-laden microspheres using a flexible microfluidic encapsulation platform. Small 2019, 15, 1902058.

    Article  CAS  Google Scholar 

  25. Zhao, X.; Liu, S.; Yildirimer, L.; Zhao, H.; Ding, R. H.; Wang, H. N.; Cui, W. G.; Weitz, D. Injectable stem cell-laden photocrosslinkable microspheres fabricated using microfluidics for rapid generation of osteogenic tissue constructs. Adv. Funct. Mater. 2016, 26, 2809–2819.

    Article  CAS  Google Scholar 

  26. Hong, Y.; Gao, C. Y.; Xie, Y.; Gong, Y. H.; Shen, J. C. Collagen-coated polylactide microspheres as chondrocyte microcarriers. Biomaterials 2005, 26, 6305–6313.

    Article  CAS  Google Scholar 

  27. Ma, C.; Jing, Y.; Sun, H. C.; Liu, X. H. Hierarchical nanofibrous microspheres with controlled growth factor delivery for bone regeneration. Adv. Healthc. Mater. 2015, 4, 2699–2708.

    Article  CAS  Google Scholar 

  28. Liao, H. B.; Walboomers, X. F.; Habraken, W. J. E. M.; Zhang, Z.; Li, Y. B.; Grijpma, D. W.; Mikos, A. G.; Wolke, J. G. C.; Jansen, J. A. Injectable calcium phosphate cement with PLGA, gelatin and PTMC microspheres in a rabbit femoral defect. Acta Biomater. 2011, 7, 1752–1759.

    Article  CAS  Google Scholar 

  29. Qiao, C. Y.; Zhang, K.; Jin, H.; Miao, L. Y.; Shi, C.; Liu, X.; Yuan, A. L.; Liu, J. Z.; Li, D. W.; Zheng, C. Y. et al. Using poly(lactic-coglycolic acid) microspheres to encapsulate plasmid of bone morphogenetic protein 2/polyethylenimine nanoparticles to promote bone formation in vitro and in vivo. Int. J. Nanomedicine 2013, 8, 2985–2995.

    Google Scholar 

  30. Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 2005, 4, 581–593.

    Article  CAS  Google Scholar 

  31. Tierney, E. G.; Duffy, G. P.; Hibbitts, A. J.; Cryan, S. A.; O’Brien, F. J. The development of non-viral gene-activated matrices for bone regeneration using polyethyleneimine (PEI) and collagen-based scaffolds. J. Control. Release 2012, 158, 304–311.

    Article  CAS  Google Scholar 

  32. Storrie, H.; Mooney, D. J. Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Adv. Drug Deliv. Rev. 2006, 58, 500–514.

    Article  CAS  Google Scholar 

  33. Walther, W.; Stein, U. Viral vectors for gene transfer: A review of their use in the treatment of human diseases. Drugs 2000, 60, 249–271.

    Article  CAS  Google Scholar 

  34. Shou, Y.; Ma, Z. J.; Lu, T. H.; Sorrentino, B. P. Unique risk factors for insertional mutagenesis in a mouse model of XSCID gene therapy. Proc. Natl. Acad. Sci. USA 2006, 103, 11730–11735.

    Article  CAS  Google Scholar 

  35. Boussif, O.; Lezoualc’h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297–7301.

    Article  CAS  Google Scholar 

  36. Ali, O. A.; Mooney, D. J. Sustained GM-CSF and pei condensed pDNA presentation increases the level and duration of gene expression in dendritic cells. J. Control. Release 2008, 132, 273–278.

    Article  CAS  Google Scholar 

  37. Park, K. PEI-DNA complexes with higher transfection efficiency and lower cytotoxicity. J. Control. Release 2009, 146, 1.

    Article  Google Scholar 

  38. Jiang, L. Y.; Li, Y. B.; Xiong, C. D. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J. Biomed. Sci. 2009, 16, 65.

    Article  Google Scholar 

  39. Stevens, M. M.; George, J. H. Exploring and engineering the cell surface interface. Science 2005, 310, 1135–1138.

    Article  CAS  Google Scholar 

  40. Griffith, L. G.; Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 2006, 7, 211–224.

    Article  CAS  Google Scholar 

  41. Suh, J. K. F.; Matthew, H. W. T. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials 2000, 21, 2589–2598.

    Article  CAS  Google Scholar 

  42. He, Q. L.; Zhang, J. W.; Liao, Y. G.; Alakpa, E. V.; Bunpetch, V.; Zhang, J. Y.; Ouyang, H. W. Current advances in microsphere based cell culture and tissue engineering. Biotechnol. Adv. 2020, 39, 107459.

    Article  CAS  Google Scholar 

  43. Daly, A. C.; Riley, L.; Segura, T.; Burdick, J. A. Hydrogel microparticles for biomedical applications. Nat. Rev. Mater. 2020, 5, 20–43.

    Article  CAS  Google Scholar 

  44. Chen, Y.; Wang, J.; Zhu, X. D.; Fan, Y. J.; Zhang, X. D. Adsorption and release behaviors of vascular endothelial growth factor on porous hydroxyapatite ceramic under competitive conditions. J. Biomater. Tissue Eng. 2014, 4, 155–161.

    Article  CAS  Google Scholar 

  45. Pinheiro, A.; Cooley, A.; Liao, J.; Prabhu, R.; Elder, S. Comparison of natural crosslinking agents for the stabilization of xenogenic articular cartilage. J. Orthop. Res. 2016, 34, 1037–1046.

    Article  CAS  Google Scholar 

  46. Lei, Y. T.; Wang, Y. P.; Shen, J. L.; Cai, Z. W.; Zeng, Y. S.; Zhao, P.; Liao, J. Y.; Lian, C. J.; Hu, N.; Luo, X. J. et al. Stem cell-recruiting injectable microgels for repairing osteoarthritis. Adv. Funct. Mater. 2021, 31, 2105084.

    Article  CAS  Google Scholar 

  47. Bonadio, J.; Smiley, E.; Patil, P.; Goldstein, S. Localized, direct plasmid gene delivery in vivo: Prolonged therapy results in reproducible tissue regeneration. Nat. Med. 1999, 5, 753–759.

    Article  CAS  Google Scholar 

  48. Huang, Y. C.; Riddle, K.; Rice, K. G.; Mooney, D. J. Long-term in vivo gene expression via delivery of PEI-DNA condensates from porous polymer scaffolds. Hum. Gene. Ther. 2005, 16, 609–617.

    Article  CAS  Google Scholar 

  49. Endo, M.; Kuroda, S.; Kondo, H.; Maruoka, Y.; Ohya, K.; Kasugai, S. Bone regeneration by modified gene-activated matrix: Effectiveness in segmental tibial defects in rats. Tissue Eng. 2006, 12, 489–497.

    Article  CAS  Google Scholar 

  50. Elangovan, S.; D’Mello, S. R.; Hong, L.; Ross, R. D.; Allamargot, C.; Dawson, D. V.; Stanford, C. M.; Johnson, G. K.; Sumner, D. R.; Salem, A. K. The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor. Biomaterials 2014, 35, 737–747.

    Article  CAS  Google Scholar 

  51. Curtin, C. M.; Cunniffe, G. M.; Lyons, F. G.; Bessho, K.; Dickson, G. R.; Duffy, G. P.; O’Brien, F. J. Innovative collagen nanohydroxyapatite scaffolds offer a highly efficient non-viral gene delivery platform for stem cell-mediated bone formation. Adv. Mater. 2012, 24, 749–754.

    Article  CAS  Google Scholar 

  52. Guo, T.; Zhao, J. N.; Chang, J. B.; Ding, Z.; Hong, H.; Chen, J. N.; Zhang, J. F. Porous chitosan-gelatin scaffold containing plasmid DNA encoding transforming growth factor-β1 for chondrocytes proliferation. Biomaterials 2006, 27, 1095–1103.

    Article  CAS  Google Scholar 

  53. Shuai, C. J.; Yang, W. J.; Feng, P.; Peng, S. P.; Pan, H. Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity. Bioact. Mater. 2021, 6, 490–502.

    Article  CAS  Google Scholar 

  54. Shuai, C. J.; Peng, B.; Feng, P.; Yu, L.; Lai, R. L.; Min, A. J. In situ synthesis of hydroxyapatite nanorods on graphene oxide nanosheets and their reinforcement in biopolymer scaffold. J. Adv. Res. 2022, 35, 13–24.

    Article  CAS  Google Scholar 

  55. Sun, F. F.; Zhou, H. J.; Lee, J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater. 2011, 7, 3813–3828.

    Article  CAS  Google Scholar 

  56. Xu, X. L.; Qiu, S. J.; Zhang, Y. X.; Yin, J.; Min, S. X. PELA microspheres with encapsulated arginine-chitosan/pBMP-2 nanoparticles induce pBMP-2 controlled-release, transfected osteoblastic progenitor cells, and promoted osteogenic differentiation. Artif. Cells Nanomed. Biotechnol. 2017, 45, 330–339.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51973004) and the Natural Science Foundation of Anhui Province, China (No. 1908085MH255).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanyin Wang, Boon Chin Heng, Qing Yang or Jianguang Xu.

Electronic Supplementary Material

12274_2022_4292_MOESM1_ESM.pdf

A novel gene-activated matrix composed of PEI/plasmid-BMP2 complexes and hydroxyapatite/chitosan-microspheres promotes bone regeneration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, R., Liu, Y., Cheng, D. et al. A novel gene-activated matrix composed of PEI/plasmid-BMP2 complexes and hydroxyapatite/chitosan-microspheres promotes bone regeneration. Nano Res. 15, 6348–6360 (2022). https://doi.org/10.1007/s12274-022-4292-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4292-8

Keywords

Navigation