Skip to main content
Log in

Preparation and application of graphene-based wearable sensors

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

With the development of digital healthcare technology, the demand for non-invasive monitoring of human health is rapidly increasing. In recent years, the research and application of timely, economical, and easy-to-operate wearable sensing devices have attracted much attention. Among recent studies, graphene has been widely used to improve the sensing performance of wearable sensors due to its advantages in mechanical, electrical, and thermal properties. This review mainly focuses on summarizing graphene and its derivative-based wearable sensors and their latest developments in personal health monitoring. We will first introduce the novel structure and sensing mechanism of different types of graphene sensors. Then, we summarize the latest applications of the graphene wearable sensors in human health monitoring, including human activity, heart rate, pulse, electrophysiological signal, and electronic skin. Finally, the future challenges and prospects of graphene wearable devices will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cai, Y. C.; Shen, J.; Dai, Z. Y.; Zang, X. X.; Dong, Q. C.; Guan, G. F.; Li, L. J.; Huang, W.; Dong, X. C. Extraordinarily stretchable all-carbon collaborative nanoarchitectures for epidermal sensors. Adv. Mater. 2017, 29, 1606411.

    Article  Google Scholar 

  2. Wang, Z. H.; Si, Y.; Zhao, C. Y.; Yu, D.; Wang, W.; Sun, G. Flexible and washable poly(ionic liquid) nanofibrous membrane with moisture proof pressure sensing for real-life wearable electronics. ACS Appl. Mater. Interfaces 2019, 11, 27200–27209.

    Article  CAS  Google Scholar 

  3. Li, M. M.; Chen, X.; Li, X. T.; Dong, J.; Zhao, X.; Zhang, Q. H. Wearable and robust polyimide hydrogel fiber textiles for strain sensors. ACS Appl. Mater. Interfaces 2021, 13, 43323–43332.

    Article  CAS  Google Scholar 

  4. Ding, Y. R.; Xue, C. H.; Guo, X. J.; Wang, X.; Jia, S. T.; An, Q. F. Fabrication of TPE/CNTs film at air/water interface for flexible and superhydrophobic wearable sensors. Chem. Eng. J. 2021, 409, 128199.

    Article  CAS  Google Scholar 

  5. Song, Y.; Min, J. H.; Yu, Y.; Wang, H. B.; Yang, H. X.; Zhang, H. X.; Gao, W. Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 2020, 6, eaay9842.

    Article  CAS  Google Scholar 

  6. Li, Y.; Wang, S.; Xiao, Z. C.; Yang, Y.; Deng, B. W.; Yin, B.; Ke, K.; Yang, M. B. Flexible TPU strain sensors with tunable sensitivity and stretchability by coupling AgNWs with rGO. J. Mater. Chem. C 2020, 8, 4040–4048.

    Article  CAS  Google Scholar 

  7. Lyu, Q.; Gong, S.; Yin, J. L.; Dyson, J. M.; Cheng, W. L. Soft wearable healthcare materials and devices. Adv. Healthc. Mater. 2021, 10, e2100577.

  8. Qiao, Y. C.; Li, X. S.; Jian, J. M.; Wu, Q.; Wei, Y. H.; Shuai, H.; Hirtz, T.; Zhi, Y.; Deng, G.; Wang, Y. F. et al. Substrate-free multilayer graphene electronic skin for intelligent diagnosis. ACS Appl. Mater. Interfaces 2020, 12, 49945–49956.

    Article  CAS  Google Scholar 

  9. Mandal, S.; Seth, A.; Yadav, V.; Kumari, S.; Kumar, M.; Ojha, U. Nanocomposite grafted stretchable and conductive ionic hydrogels for use as soft electrode in a wearable electrocardiogram monitoring device. ACS Appl. Polym. Mater. 2019, 2, 618–625.

    Article  Google Scholar 

  10. Yang, J.; Liu, Q.; Deng, Z.; Gong, M.; Lei, F.; Zhang, J.; Zhang, X.; Wang, Q.; Liu, Y.; Wu, Z. et al. Ionic liquid-activated wearable electronics. Mater. Today Phys. 2019, 8, 78–85.

    Article  Google Scholar 

  11. Zhang, L. J.; Liu, X.; Zhong, M. J.; Zhou, Y. N.; Wang, Y. J.; Yu, T. H.; Xu, X. B.; Shen, W.; Yang, L.; Liu, N. et al. Micro-nano hybrid-structured conductive film with ultrawide range pressure-sensitivity and bioelectrical acquirability for ubiquitous wearable applications. Appl. Mater. Today 2020, 20, 100651.

    Article  Google Scholar 

  12. Cai, Y. W.; Zhang, X. N.; Wang, G. G.; Li, G. Z.; Zhao, D. Q.; Sun, N.; Li, F.; Zhang, H. Y.; Han, J. C.; Yang, Y. A flexible ultrasensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin. Nano Energy 2021, 81, 105663.

    Article  CAS  Google Scholar 

  13. Zhou, K. K.; Xu, W.; Yu, Y. F.; Zhai, W.; Yuan, Z. Q.; Dai, K.; Zheng, G. Q.; Mi, L. W.; Pan, C. F.; Liu, C. T. et al. Tunable and nacre-mimetic multifunctional electronic skins for highly stretchable contact-noncontact sensing. Small 2021, 17, 2100542.

    Article  CAS  Google Scholar 

  14. Ameri, S. K.; Ho, R.; Jang, H.; Tao, L.; Wang, Y. H.; Wang, L.; Schnyer, D. M.; Akinwande, D.; Lu, N. S. Graphene electronic tattoo sensors. ACS Nano 2017, 11, 7634–7641.

    Article  Google Scholar 

  15. Xie, J.; Chen, Q.; Shen, H. J.; Li, G. R. Review—Wearable graphene devices for sensing. J. Electrochem. Soc. 2020, 167, 037541.

    Article  CAS  Google Scholar 

  16. Zhang, K.; Kang, N. W.; Zhang, B.; Xie, R. J.; Zhu, J. Y.; Zou, B. H.; Liu, Y. H.; Chen, Y. Y.; Shi, W.; Zhang, W. N. et al. Skin conformal and antibacterial PPy-leather electrode for ECG monitoring. Adv. Electron. Mater. 2020, 6, 2000259.

    Article  CAS  Google Scholar 

  17. Gao, Y.; Wang, Y. R.; Xia, S.; Gao, G. H. An environment-stable hydrogel with skin-matchable performance for human-machine interface. Sci. China Mater. 2021, 64, 2313–2324.

    Article  CAS  Google Scholar 

  18. Xia, Y. M.; Wu, Y. P.; Yu, T.; Xue, S. S.; Guo, M. L.; Li, J. L.; Li, Z. Y. Multifunctional glycerol-water hydrogel for biomimetic human skin with resistance memory function. ACS Appl. Mater. Interfaces 2019, 11, 21117–21125.

    Article  CAS  Google Scholar 

  19. Yi, F. L.; Guo, F. L.; Li, Y. Q.; Wang, D. Y.; Huang, P.; Fu, S. Y. Polyacrylamide hydrogel composite E-skin fully mimicking human skin. ACS Appl. Mater. Interfaces 2021, 13, 32084–32093.

    Article  CAS  Google Scholar 

  20. Yun, Y.; Nandanapalli, K. R.; Choi, J. H.; Son, W.; Choi, C.; Lee, S. Extremely flexible and mechanically durable planar supercapacitors: High energy density and low-cost power source for E-skin electronics. Nano Energy 2020, 78, 105356.

    Article  CAS  Google Scholar 

  21. Gu, G. Y.; Xu, H. P.; Peng, S.; Li, L.; Chen, S. J.; Lu, T. Q.; Guo, X. J. Integrated soft ionotronic skin with stretchable and transparent hydrogel-elastomer ionic sensors for hand-motion monitoring. Soft Robot. 2019, 6, 368–376.

    Article  Google Scholar 

  22. Park, H.; Song, C.; Jin, S. W.; Lee, H.; Keum, K.; Lee, Y. H.; Lee, G.; Jeong, Y. R.; Ha, J. S. High performance flexible microsupercapacitor for powering a vertically integrated skin-attachable strain sensor on a bio-inspired adhesive. Nano Energy 2021, 83, 105837.

    Article  CAS  Google Scholar 

  23. Liu, S. Y.; Meng, X. L.; Zhang, J. W.; Chae, J. A wireless fully-passive acquisition of biopotentials. Biosens. Bioelectron. 2019, 139, 111336.

    Article  CAS  Google Scholar 

  24. Kim, S. J.; Mondal, S.; Min, B. K.; Choi, C. G. Highly sensitive and flexible strain-pressure sensors with cracked paddy-shaped MoS2/graphene foam/ecoflex hybrid nanostructures. ACS Appl. Mater. Interfaces 2018, 10, 36377–36384.

    Article  CAS  Google Scholar 

  25. Li, Z. K.; Zhang, S. M.; Chen, Y. H.; Ling, H. N.; Zhao, L. B.; Luo, G. X.; Wang, X. C.; Hartel, M. C.; Liu, H.; Xue, Y. M. et al. Gelatin methacryloyl-based tactile sensors for medical wearables. Adv. Funct. Mater. 2020, 30, 2003601.

    Article  CAS  Google Scholar 

  26. Xu, X. W.; Chen, Y. C.; He, P.; Wang, S.; Ling, K.; Liu, L. H.; Lei, P. F.; Huang, X. J.; Zhao, H.; Cao, J. Y. et al. Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 2021, 14, 2875–2883.

    Article  CAS  Google Scholar 

  27. Rashkovska, A.; Depolli, M.; Tomašić, I.; Avbelj, V.; Trobec, R. Medical-grade ECG sensor for long-term monitoring. Sensors (Basel) 2020, 20, 1695.

    Article  Google Scholar 

  28. Cai, P. Q.; Wan, C. J.; Pan, L.; Matsuhisa, N.; He, K.; Cui, Z. Q.; Zhang, W.; Li, C. C.; Wang, J. W.; Yu, J. et al. Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify muscular excitation-contraction signatures. Nat. Commun. 2020, 11, 2183.

    Article  CAS  Google Scholar 

  29. Zhang, L.; Kumar, K. S.; He, H.; Cai, C. J.; He, X.; Gao, H. X.; Yue, S. Z.; Li, C. S.; Seet, R. C. S.; Ren, H. L. et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 2020, 11, 4683.

    Article  CAS  Google Scholar 

  30. Peng, B.; Zhao, F. N.; Ping, J. F.; Ying, Y. B. Recent advances in nanomaterial-enabled wearable sensors: Material synthesis, sensor design, and personal health monitoring. Small 2020, 16, 2002681.

    Article  CAS  Google Scholar 

  31. Teymourian, H.; Parrilla, M.; Sempionatto, J. R.; Montiel, N. F.; Barfidokht, A.; Van Echelpoel, R.; De Wael, K.; Wang, J. Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sens. 2020, 5, 2679–2700.

    Article  CAS  Google Scholar 

  32. Yin, X. Y.; Zhang, Y.; Cai, X. B.; Guo, Q. Q.; Yang, J.; Wang, Z. L. 3D printing of ionic conductors for high-sensitivity wearable sensors. Mater. Horizons 2019, 6, 767–780.

    Article  CAS  Google Scholar 

  33. Li, F. L.; Xu, Z. F.; Hu, H.; Kong, Z. Y.; Chen, C.; Tian, Y.; Zhang, W. W.; Bin Ying, W.; Zhang, R. Y.; Zhu, J. A polyurethane integrating self-healing, anti-aging and controlled degradation for durable and eco-friendly E-skin. Chem. Eng. J. 2021, 410, 128363.

    Article  CAS  Google Scholar 

  34. Abadi, M. B.; Weissing, R.; Wilhelm, M.; Demidov, Y.; Auer, J.; Ghazanfari, S.; Anasori, B.; Mathur, S.; Maleki, H. Nacre-mimetic, mechanically flexible, and electrically conductive silk fibroin-MXene composite foams as piezoresistive pressure sensors. ACS Appl. Mater. Interfaces 2021, 13, 34996–35007.

    Article  Google Scholar 

  35. Zhang, X. F.; Yang, G. H.; Zong, L.; Jiang, M.; Song, Z. Q.; Ma, C.; Zhang, T. P.; Duan, Y. X.; Zhang, J. M. Tough, ultralight, and water-adhesive graphene/natural rubber latex hybrid aerogel with sandwichlike cell wall and biomimetic rose-petal-like surface. ACS Appl. Mater. Interfaces 2020, 12, 1378–1386.

    Article  CAS  Google Scholar 

  36. Yun, J.; Song, C.; Lee, H.; Park, H.; Jeong, Y. R.; Kim, J. W.; Jin, S. W.; Oh, S. Y.; Sun, L. F.; Zi, G. et al. Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy 2018, 49, 644–654.

    Article  CAS  Google Scholar 

  37. Cao, M. H.; Fan, S. Q.; Qiu, H. W.; Su, D. L.; Li, L.; Su, J. CB nanoparticles optimized 3D wearable graphene multifunctional piezoresistive sensor framed by loofah sponge. ACS Appl. Mater. Interfaces 2020, 12, 36540–36547.

    Article  CAS  Google Scholar 

  38. Boland, C. S.; Khan, U.; Binions, M.; Barwich, S.; Boland, J. B.; Weaire, D.; Coleman, J. N. Graphene-coated polymer foams as tuneable impact sensors. Nanoscale 2018, 10, 5366–5375.

    Article  CAS  Google Scholar 

  39. Xu, X.; Guan, C.; Xu, L.; Tan, Y. H.; Zhang, D. W.; Wang, Y. Q.; Zhang, H.; Blackwood, D. J.; Wang, J.; Li, M. et al. Three dimensionally free-formable graphene foam with designed structures for energy and environmental applications. ACS Nano 2020, 14, 937–947.

    Article  CAS  Google Scholar 

  40. Zhou, P. D.; Lin, J.; Zhang, W.; Luo, Z. L.; Chen, L. Z. Photothermoelectric generator integrated in graphene-based actuator for self-powered sensing function. Nano Res., in press, https://doi.org/10.1007/s12274-021-3791-3.

  41. Chai, Y. Q.; Ma, X. L.; Wang, X. S.; Chen, R. Q.; Jiang, Q. Q.; Zhang, F.; Xie, Z.; Guan, L.; Xue, M. Q. Graphene/high-oriented polypyrrole foam enables new-type ultrasensitive micro-distance detection. Chem. Eng. J. 2020, 402, 126236.

    Article  CAS  Google Scholar 

  42. Hou, C.; Tai, G. A.; Liu, B.; Wu, Z. H.; Yin, Y. H. Borophene-graphene heterostructure: Preparation and ultrasensitive humidity sensing. Nano Res. 2020, 14, 2337–2344.

    Article  Google Scholar 

  43. Zhang, F.; Feng, Y. Y.; Qin, M. M.; Gao, L.; Li, Z. Y.; Zhao, F. L.; Zhang, Z. X.; Lv, F.; Feng, W. Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite. Adv. Funct. Mater. 2019, 29, 1901383.

    Article  Google Scholar 

  44. Zu, G. Q.; Kanamori, K.; Nakanishi, K.; Huang, J. Superhydrophobic ultraflexible triple-network graphene/polyorganosiloxane aerogels for a high-performance multifunctional temperature/strain/pressure sensing array. Chem. Mater. 2019, 31, 6276–6285.

    Article  CAS  Google Scholar 

  45. Yang, L.; Jiang, C.; Yan, J. X.; Shen, Y. F.; Chen, Y.; Xu, L.; Zhu, H. Structuring the reduced graphene oxide/polyHIPE foam for piezoresistive sensing via emulsion-templated polymerization. Compos. A:Appl. Sci. Manufactur. 2020, 134, 105898.

    Article  CAS  Google Scholar 

  46. Xu, H.; Zhang, M. K.; Lu, Y. F.; Li, J. J.; Ge, S. J.; Gu, Z. Z. Dual-mode wearable strain sensor based on graphene/colloidal crystal films for simultaneously detection of subtle and large human motions. Adv. Mater. Technol. 2020, 5, 1901056.

    Article  CAS  Google Scholar 

  47. Li, Z.; Guo, W.; Huang, Y. Y.; Zhu, K. H.; Yi, H. K.; Wu, H. On-skin graphene electrodes for large area electrophysiological monitoring and human-machine interfaces. Carbon 2020, 164, 164–170.

    Article  CAS  Google Scholar 

  48. Cheng, H. N.; Wang, B.; Yang, K.; Yang, Y. Q.; Wang, C. X. A high-performance piezoresistive sensor based on poly(styrene-co-methacrylic acid)@polypyrrole microspheres/graphene-decorated TPU electrospun membrane for human motion detection. Chem. Eng. J. 2021, 426, 131152.

    Article  CAS  Google Scholar 

  49. Zheng, Q. B.; Liu, X.; Xu, H. R.; Cheung, M. S.; Choi, Y. W.; Huang, H. C.; Lei, H. Y.; Shen, X.; Wang, Z. Y.; Wu, Y. et al. Sliced graphene foam films for dual-functional wearable strain sensors and switches. Nanoscale Horiz. 2018, 3, 35–44.

    Article  CAS  Google Scholar 

  50. Manjakkal, L.; Núñez, C. G.; Dang, W. T.; Dahiya, R. Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy 2018, 51, 604–612.

    Article  CAS  Google Scholar 

  51. Wan, S.; Bi, H. C.; Zhou, Y. L.; Xie, X.; Su, S.; Yin, K. B.; Sun, L. T. Graphene oxide as high-performance dielectric materials for capacitive pressure sensors. Carbon 2017, 114, 209–216.

    Article  CAS  Google Scholar 

  52. Ma, Y. X.; Yu, M.; Liu, J. H.; Li, X. J.; Li, S. M. Ultralight interconnected graphene-amorphous carbon hierarchical foam with mechanical resiliency for high sensitivity and durable strain sensors. ACS Appl. Mater. Interfaces 2017, 9, 27127–27134.

    Article  CAS  Google Scholar 

  53. Xia, S.; Song, S. X.; Jia, F.; Gao, G. H. A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring. J. Mater. Chem. B 2019, 7, 4638–4648.

    Article  CAS  Google Scholar 

  54. Huang, S. C.; Li, J. L.; Zhang, X. Y.; Yang, X. J.; Wang, L. Y.; Li, X. S.; Lü, W. Reduced graphene oxide/polyaniline wrapped carbonized sponge with elasticity for energy storage and pressure sensing. New J. Chem. 2021, 45, 7860–7866.

    Article  CAS  Google Scholar 

  55. Shen, X. P.; Nie, K. C.; Zheng, L.; Wang, Z. S.; Wang, Z.; Li, S.; Jin, C. D.; Sun, Q. F. Muscle-inspired capacitive tactile sensors with superior sensitivity in an ultra-wide stress range. J. Mater. Chem. C 2020, 8, 5913–5922.

    Article  CAS  Google Scholar 

  56. Kim, T.; Park, C.; Samuel, E. P.; An, S.; Aldalbahi, A.; Alotaibi, F.; Yarin, A. L.; Yoon, S. S. Supersonically sprayed washable, wearable, stretchable, hydrophobic, and antibacterial rGO/AgNW fabric for multifunctional sensors and supercapacitors. ACS Appl. Mater. Interfaces 2021, 13, 10013–10025.

    Article  CAS  Google Scholar 

  57. Jia, J.; Huang, G. T.; Deng, J. P.; Pan, K. Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles. Nanoscale 2019, 11, 4258–4266.

    Article  CAS  Google Scholar 

  58. Ge, G.; Cai, Y. C.; Dong, Q. C.; Zhang, Y. Z.; Shao, J. J.; Huang, W.; Dong, X. C. A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. Nanoscale 2018, 10, 10033–10040.

    Article  CAS  Google Scholar 

  59. Ray, T. R.; Choi, J.; Bandodkar, A. J.; Krishnan, S.; Gutruf, P.; Tian, L. M.; Ghaffari, R.; Rogers, J. R. Bio-integrated wearable systems: A comprehensive review. Chem. Rev. 2019, 119, 5461–5533.

    Article  CAS  Google Scholar 

  60. Sun, X.; Yao, F. L.; Li, J. J. Nanocomposite hydrogel-based strain and pressure sensors: A review. J. Mater. Chem. A 2020, 8, 18605–18623.

    Article  CAS  Google Scholar 

  61. Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

    Article  CAS  Google Scholar 

  62. Zhang, H. Q.; He, R. Y.; Niu, Y.; Han, F.; Li, J.; Zhang, X. W.; Xu, F. Graphene-enabled wearable sensors for healthcare monitoring. Biosens Bioelectron. 2021, 197, 113777.

    Article  Google Scholar 

  63. Yang, Y. B.; Yang, X. D.; Tan, Y. N.; Yuan, Q. Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res. 2017, 10, 1560–1583.

    Article  Google Scholar 

  64. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308–1308.

    Article  CAS  Google Scholar 

  65. Singh, E.; Meyyappan, M.; Nalwa, H. S. Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 2017, 9, 34544–34586.

    Article  CAS  Google Scholar 

  66. Krishnan, S. K.; Singh, E.; Singh, P.; Meyyappan, M.; Nalwa, H. S. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 2019, 9, 8778–8881.

    Article  CAS  Google Scholar 

  67. Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C. et al. Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 2021, 37, 2108017.

    Article  Google Scholar 

  68. Xia, S.; Song, S. X.; Li, Y.; Gao, G. H. Highly sensitive and wearable gel-based sensors with a dynamic physically cross-linked structure for strain-stimulus detection over a wide temperature range. J. Mater. Chem. C 2019, 7, 11303–11314.

    Article  CAS  Google Scholar 

  69. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  70. Qiao, Y. C.; Li, X. S.; Hirtz, T.; Deng, G.; Wei, Y. H.; Li, M. R.; Ji, S. R.; Wu, Q.; Jian, J. M.; Wu, F. et al. Graphene-based wearable sensors. Nanoscale 2019, 11, 18923–18945.

    Article  CAS  Google Scholar 

  71. Cao, Y.; Fatemi, V.; Demir, A.; Fang, S. A.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

    Article  CAS  Google Scholar 

  72. Ciesielski, A.; Haar, S.; Aliprandi, A.; El Garah, M.; Tregnago, G.; Cotella, G. F.; El Gemayel, M.; Richard, F.; Sun, H. Y.; Cacialli, F. et al. Modifying the size of ultrasound-induced liquid-phase exfoliated graphene: From nanosheets to nanodots. ACS Nano 2016, 10, 10768–10777.

    Article  CAS  Google Scholar 

  73. Silva, A. A.; Pinheiro, R. A.; Rodrigues, A. C.; Baldan, M. R.; Trava-Airoldi, V. J.; Corat, E. J. Graphene sheets produced by carbon nanotubes unzipping and their performance as supercapacitor. Appl. Surf. Sci. 2018, 446, 201–208.

    Article  CAS  Google Scholar 

  74. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  CAS  Google Scholar 

  75. Zhao, H. M.; Lin, Y. C.; Yeh, C. H.; Tian, H.; Chen, Y. C.; Xie, D.; Yang, Y.; Suenaga, K.; Ren, T. L.; Chiu, P. W. Growth and Raman spectra of single-crystal trilayer graphene with different stacking orientations. ACS Nano 2014, 8, 10766–10773.

    Article  CAS  Google Scholar 

  76. Xu, X. Z.; Zhang, Z. H.; Dong, J. C.; Yi, D.; Niu, J. J.; Wu, M. H.; Lin, L.; Yin, R. K.; Li, M. Q.; Zhou, J. Y. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 2017, 62, 1074–1080.

    Article  CAS  Google Scholar 

  77. Yang, Y.; Fu, Q.; Wei, W.; Bao, X. H. Segregation growth of epitaxial graphene overlayers on Ni(111). Sci. Bull. 2016, 61, 1536–1542.

    Article  CAS  Google Scholar 

  78. Yu, Q.; Jiang, J. C.; Jiang, L. Y.; Yang, Q. Q.; Yan, N. Advances in green synthesis and applications of graphene. Nano Res. 2021, 14, 3724–3743.

    Article  CAS  Google Scholar 

  79. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    Article  CAS  Google Scholar 

  80. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Article  CAS  Google Scholar 

  81. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

    Article  CAS  Google Scholar 

  82. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581.

    Article  CAS  Google Scholar 

  83. Goli, P.; Ning, H.; Li, X. S.; Lu, C. Y.; Novoselov, K. S.; Balandin, A. A. Thermal properties of graphene-copper-graphene heterogeneous films. Nano Lett. 2014, 14, 1497–1503.

    Article  CAS  Google Scholar 

  84. Chen, D. H.; Lin, Z.; Sartin, M. M.; Huang, T. X.; Liu, J.; Zhang, Q. G.; Han, L. H.; Li, J. F.; Tian, Z. Q.; Zhan, D. P. Photosynergetic electrochemical synthesis of graphene oxide. J. Am. Chem. Soc. 2020, 142, 6516–6520.

    Article  CAS  Google Scholar 

  85. Sofer, Z.; Luxa, J.; Jankovský, O.; Sedmidubský, D.; Bystroñ, T.; Pumera, M. Synthesis of graphene oxide by oxidation of graphite with ferrate(VI) compounds: Myth or reality? Angew. Chem., Int. Ed. 2016, 55, 11965–11969.

    Article  CAS  Google Scholar 

  86. Wang, Y. F.; Song, C. P.; Yu, X. H.; Liu, L.; Han, Y. C.; Chen, J.; Fu, J. Thermo-responsive hydrogels with tunable transition temperature crosslinked by multifunctional graphene oxide nanosheets. Compos. Sci. Technol. 2017, 151, 139–146.

    Article  CAS  Google Scholar 

  87. Lu, N.; Wang, L. Q.; Lv, M.; Tang, Z. S.; Fan, C. H. Graphene-based nanomaterials in biosystems. Nano Res. 2019, 12, 247–264.

    Article  CAS  Google Scholar 

  88. Kim, S. J.; Song, W.; Yi, Y.; Min, B. K.; Mondal, S.; An, K. S.; Choi, C. G. High durability and waterproofing rGO/SWCNT-fabric-based multifunctional sensors for human-motion detection. ACS Appl. Mater. Interfaces 2018, 10, 3921–3928.

    Article  CAS  Google Scholar 

  89. Yu, T. T.; Zhang, D. G.; Wu, Y. L.; Guo, S. Z.; Lei, F.; Li, Y.; Yang, J. Y. Graphene foam pressure sensor based on fractal electrode with high sensitivity and wide linear range. Carbon 2021, 182, 497–505.

    Article  CAS  Google Scholar 

  90. Zhang, Z. X.; Tang, L.; Chen, C.; Yu, H. T.; Bai, H. H.; Wang, L.; Qin, M. M.; Feng, Y. Y.; Feng, W. Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple sensations as artificial flexible sensors. J. Mater. Chem. A 2021, 9, 875–883.

    Article  CAS  Google Scholar 

  91. Yang, X. L.; Cao, L. Q.; Wang, J. D.; Chen, L. P. Sandwich-like polypyrrole/reduced graphene oxide nanosheets integrated gelatin hydrogel as mechanically and thermally sensitive skinlike bioelectronics. ACS Sustain. Chem. Eng. 2020, 8, 10726–10739.

    CAS  Google Scholar 

  92. Liu, Q.; Zhang, M.; Huang, L.; Li, Y. R.; Chen, J.; Li, C.; Shi, G. Q. High-quality graphene ribbons prepared from graphene oxide hydrogels and their application for strain sensors. ACS Nano 2015, 9, 12320–12326.

    Article  CAS  Google Scholar 

  93. Zhu, Z. C.; Li, Y.; Xu, H.; Peng, X.; Chen, Y. N.; Shang, C.; Zhang, Q.; Liu, J. Q.; Wang, H. L. Tough and thermosensitive poly(N-isopropylacrylamide)/graphene oxide hydrogels with macroscopically oriented liquid crystalline structures. ACS Appl. Mater. Interfaces 2016, 8, 15637–15644.

    Article  CAS  Google Scholar 

  94. Liu, B. T.; Xie, J.; Ma, H.; Zhang, X.; Pan, Y.; Lv, J. W.; Ge, H.; Ren, N.; Su, H. Q.; Xie, X. J. et al. From graphite to graphene oxide and graphene oxide quantum dots. Small 2017, 13, 1601001.

    Article  Google Scholar 

  95. Lee, S. Y.; Mahajan, R. L. A facile method for coal to graphene oxide and its application to a biosensor. Carbon 2021, 181, 408–420.

    Article  CAS  Google Scholar 

  96. Lee, S. H.; Lee, H. B.; Kim, Y.; Jeong, J. R.; Lee, M. H.; Kang, K. Neurite guidance on laser-scribed reduced graphene oxide. Nano Lett. 2018, 18, 7421–7427.

    Article  CAS  Google Scholar 

  97. Liu, Y. C.; Tu, W. W.; Chen, M. Y.; Ma, L. L.; Yang, B.; Liang, Q. L.; Chen, Y. Y. A mussel-induced method to fabricate reduced graphene oxide/halloysite nanotubes membranes for multifunctional applications in water purification and oil/water separation. Chem. Eng. J. 2018, 336, 263–277.

    Article  CAS  Google Scholar 

  98. Wang, Y. L.; Chen, Y. N.; Lacey, S. D.; Xu, L. S.; Xie, H.; Li, T.; Danner, V. A.; Hu, L. B. Reduced graphene oxide film with record-high conductivity and mobility. Mater. Today 2018, 21, 186–192.

    Article  CAS  Google Scholar 

  99. Gao, X.; Zhang, J.; Ju, P. F.; Liu, J. Z.; Ji, L.; Liu, X. H.; Ma, T. B.; Chen, L.; Li, H. X.; Zhou, H. D. et al. Shear-induced interfacial structural conversion of graphene oxide to graphene at macroscale. Adv. Funct. Mater. 2020, 30, 2004498.

    Article  CAS  Google Scholar 

  100. Feng, H. B.; Cheng, R.; Zhao, X.; Duan, X. F.; Li, J. H. A low-temperature method to produce highly reduced graphene oxide. Nat. Commun. 2013, 4, 1539.

    Article  Google Scholar 

  101. Jing, X.; Mi, H. Y.; Peng, X. F.; Turng, L. S. Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry. Carbon 2018, 136, 63–72.

    Article  CAS  Google Scholar 

  102. Liu, H. B.; Xiang, H. C.; Wang, Y.; Li, Z. J.; Qian, L. W.; Li, P.; Ma, Y. C.; Zhou, H. W.; Huang, W. A flexible multimodal sensor that detects strain, humidity, temperature, and pressure with carbon black and reduced graphene oxide hierarchical composite on paper. ACS Appl. Mater. Interfaces 2019, 11, 40613–40619.

    Article  CAS  Google Scholar 

  103. Zhu, M.; Yue, Y.; Cheng, Y. F.; Zhang, Y. N.; Su, J.; Long, F.; Jiang, X. L.; Ma, Y. N.; Gao, Y. H. Hollow MXene sphere/reduced graphene aerogel composites for piezoresistive sensor with ultrahigh sensitivity. Adv. Electron. Mater. 2019, 6, 1901064.

    Article  Google Scholar 

  104. Tewari, A.; Gandla, S.; Bohm, S.; McNeill, C. R.; Gupta, D. Highly exfoliated MWNT-rGO ink-wrapped polyurethane foam for piezoresistive pressure sensor applications. ACS Appl. Mater. Interfaces 2018, 10, 5185–5195.

    Article  CAS  Google Scholar 

  105. Wang, Y. L.; Hao, J.; Huang, Z. Q.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon 2018, 126, 360–371.

    Article  CAS  Google Scholar 

  106. Ni, Y. M.; Huang, J. Y.; Li, S. H.; Wang, X. Q.; Liu, L. X.; Wang, M. Y.; Chen, Z.; Li, X.; Lai, Y. K. Underwater, multifunctional superhydrophobic sensor for human motion detection. ACS Appl. Mater. Interfaces 2021, 13, 4740–4749.

    Article  CAS  Google Scholar 

  107. Zou, X. J.; Chai, Y. Q.; Ma, H.; Jiang, Q. Q.; Zhang, W.; Ma, X. L.; Wang, X. S.; Lian, H. Q.; Huang, X. L.; Ji, J. H. et al. Ultrahigh sensitive wearable pressure sensors based on reduced graphene oxide/polypyrrole foam for sign language translation. Adv. Mater. Technol. 2021, 6, 2001188.

    Article  CAS  Google Scholar 

  108. Kang, K.; Park, J.; Kim, K.; Yu, K. J. Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Res. 2021, 14, 3096–3111.

    Article  CAS  Google Scholar 

  109. Jayathilaka, W. A. D. M.; Qi, K.; Qin, Y. L.; Chinnappan, A.; Serrano-Garcia, W.; Baskar, C.; Wang, H. B.; He, J. X.; Cui, S. Z.; Thomas, S. W. et al. Significance of nanomaterials in wearables: A review on wearable actuators and sensors. Adv. Mater. 2019, 31, e1805921.

    Article  Google Scholar 

  110. Zeng, Y. Q.; Li, T.; Yao, Y. G.; Li, T. Y.; Hu, L. B.; Marconnet, A. Thermally conductive reduced graphene oxide thin films for extreme temperature sensors. Adv. Funct. Mater. 2019, 29, 1901388.

    Article  Google Scholar 

  111. Afroj, S.; Tan, S. R.; Abdelkader, A. M.; Novoselov, K. S.; Karim, N. Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications. Adv. Funct. Mater. 2020, 30, 2000293.

    Article  CAS  Google Scholar 

  112. Huang, T.; He, P.; Wang, R. R.; Yang, S. W.; Sun, J.; Xie, X. M.; Ding, G. Q. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors. Adv. Funct. Mater. 2019, 29, 1903732.

    Article  CAS  Google Scholar 

  113. Sun, S. B.; Liu, Y. Q.; Chang, X. T.; Jiang, Y. C.; Wang, D. S.; Tang, C. J.; He, S. Y.; Wang, M. W.; Guo, L.; Gao, Y. A wearable, waterproof, and highly sensitive strain sensor based on three-dimensional graphene/carbon black/Ni sponge for wirelessly monitoring human motions. J. Mater. Chem. C 2020, 8, 2074–2085.

    Article  CAS  Google Scholar 

  114. Ma, Z. L.; Wei, A. J.; Ma, J. Z.; Shao, L.; Jiang, H. E.; Dong, D. D.; Ji, Z. Y.; Wang, Q.; Kang, S. L. Lightweight, compressible and electrically conductive polyurethane sponges coated with synergistic multiwalled carbon nanotubes and graphene for piezoresistive sensors. Nanoscale 2018, 10, 7116–7126.

    Article  CAS  Google Scholar 

  115. Feng, C. F.; Yi, Z. F.; Jin, X.; Seraji, S. M.; Dong, Y. J.; Kong, L. X.; Salim, N. Solvent crystallization-induced porous polyurethane/graphene composite foams for pressure sensing. Compos. B:Eng. 2020, 194, 108065.

    Article  CAS  Google Scholar 

  116. Cao, X. Y.; Zhang, J.; Chen, S. W.; Varley, R. J.; Pan, K. 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor. Adv. Funct. Mater. 2020, 30, 2003618.

    Article  CAS  Google Scholar 

  117. Pang, K.; Song, X.; Xu, Z.; Liu, X. T.; Liu, Y. J.; Zhong, L.; Peng, Y. X.; Wang, J. X.; Zhou, J. Z.; Meng, F. X. et al. Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci. Adv. 2020, 6, eabd4045.

    Article  CAS  Google Scholar 

  118. Xie, Z. H.; Li, H.; Mi, H. Y.; Feng, P. Y.; Liu, Y.; Jing, X. Freezing-tolerant, widely detectable and ultra-sensitive composite organohydrogel for multiple sensing applications. J. Mater. Chem. C 2021, 9, 10127–10137.

    Article  CAS  Google Scholar 

  119. Zheng, C. X.; Lu, K. Y.; Lu, Y.; Zhu, S. L.; Yue, Y. Y.; Xu, X. W.; Mei, C. T.; Xiao, H. N.; Wu, Q. L.; Han, J. Q. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Carbohydr. Polym. 2020, 250, 116905.

    Article  CAS  Google Scholar 

  120. Chen, H. J.; Huang, J. R.; Liu, J. T.; Gu, J. F.; Zhu, J. D.; Huang, B.; Bai, J.; Guo, J.; Yang, X.; Guan, L. Q. et al. High toughness multifunctional organic hydrogels for flexible strain and temperature sensor. J. Mater. Chem. A 2021, 9, 23243–23255.

    Article  CAS  Google Scholar 

  121. Xue, B.; Sheng, H.; Li, Y. Q.; Li, L.; Di, W. S.; Xu, Z. Y.; Ma, L. J.; Wang, X.; Jiang, H. T.; Qin, M. et al. Stretchable and self-healable hydrogel artificial skin. Nat. Sci. Rev. 2021, nwab147.

    Google Scholar 

  122. Li, Q. S.; Wu, T. Y.; Zhao, W.; Ji, J. W.; Wang, G. Laser-induced corrugated graphene films for integrated multimodal sensors. ACS Appl. Mater. Interfaces 2021, 13, 37433–37444.

    Article  CAS  Google Scholar 

  123. Ren, H. Y.; Zheng, L. M.; Wang, G. R.; Gao, X.; Tan, Z. J.; Shan, J. Y.; Cui, L. Z.; Li, K.; Jian, M. Q.; Zhu, L. C. et al. Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors. ACS Nano 2019, 13, 5541–5548.

    Article  CAS  Google Scholar 

  124. Moussa, M.; Zhao, Z. H.; El-Kady, M. F.; Liu, H. K.; Michelmore, A.; Kawashima, N.; Majewski, P.; Ma, J. Free-standing composite hydrogel films for superior volumetric capacitance. J. Mater. Chem. A 2015, 3, 15668–15674.

    Article  CAS  Google Scholar 

  125. Xue, P. D.; Chen, C.; Diao, D. F. Ultra-sensitive flexible strain sensor based on graphene nanocrystallite carbon film with wrinkle structures. Carbon 2019, 147, 227–235.

    Article  CAS  Google Scholar 

  126. Wang, M. T.; Qiu, Y. Y.; Jia, J.; Wang, C. Z.; Deng, J. P.; Pan, K. Wavelength-gradient graphene films for pressure-sensitive sensors. Adv. Mater. Technol. 2019, 4, 1800363.

    Article  Google Scholar 

  127. Ye, X. H.; Qi, M.; Yang, Y. F.; Yu, M.; Huang, T.; Zhang, J. Y.; Yuan, X. B.; Suo, G. Q.; Hou, X. J.; Feng, L. et al. Pattern directive sensing selectivity of graphene for wearable multifunctional sensors via femtosecond laser fabrication. Adv. Mater. Technol. 2020, 5, 2000446.

    Article  CAS  Google Scholar 

  128. Chen, X. P.; Luo, F.; Yuan, M.; Xie, D. L.; Shen, L.; Zheng, K.; Wang, Z. P.; Li, X. D.; Tao, L. Q. A dual-functional graphene-based self-alarm health-monitoring E-Skin. Adv. Funct. Mater. 2019, 29, 1904706.

    Article  CAS  Google Scholar 

  129. Xia, K. L.; Wang, C. Y.; Jian, M. Q.; Wang, Q.; Zhang, Y. Y. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 2017, 11, 1124–1134.

    Article  Google Scholar 

  130. Xu, M. X.; Qi, J. J.; Li, F.; Zhang, Y. Highly stretchable strain sensors with reduced graphene oxide sensing liquids for wearable electronics. Nanoscale 2018, 10, 5264–5271.

    Article  CAS  Google Scholar 

  131. Wang, Y. M.; Wang, Y.; Yang, Y. Graphene-polymer nanocomposite-based redox-induced electricity for flexible self-powered strain sensors. Adv. Energy Mater. 2018, 8, 1800961.

    Article  Google Scholar 

  132. Dan, L.; Elias, A. L. Flexible and stretchable temperature sensors fabricated using solution-processable conductive polymer composites. Adv. Healthc. Mater. 2020, 9, 2000380.

    Article  CAS  Google Scholar 

  133. Zhang, D. Z.; Xu, Z. Y.; Yang, Z. M.; Song, X. S. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy 2020, 67, 104251.

    Article  CAS  Google Scholar 

  134. Zhang, R. J.; Peng, B.; Yuan, Y. Flexible printed humidity sensor based on poly(3,4-ethylenedioxythiophene)/reduced graphene oxide/Au nanoparticles with high performance. Compos. Sci. Technol. 2018, 168, 118–125.

    Article  Google Scholar 

  135. Tham, N. C. Y.; Sahoo, P. K.; Kim, Y.; Hegde, C.; Lee, S. W.; Kim, Y. J.; Murukeshan, V. M. Thermally controlled localized porous graphene for integrated graphene-paper electronics. Adv. Mater. Technol. 2021, 6, 2001156.

    Article  CAS  Google Scholar 

  136. Jiang, Y. G.; Liu, M. Y.; Yan, X.; Ono, T.; Feng, L.; Cai, J.; Zhang, D. Y. Electrical breakdown-induced tunable piezoresistivity in graphene/polyimide nanocomposites for flexible force sensor applications. Adv. Mater. Technol. 2018, 3, 1800113.

    Article  Google Scholar 

  137. Carvalho, A. F.; Fernandes, A. J. S.; Leitão, C.; Deuermeier, J.; Marques, A. C.; Martins, R.; Fortunato, E.; Costa, F. M. Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv. Funct. Mater. 2018, 28, 1805271.

    Article  Google Scholar 

  138. Cai, G. M.; Yang, M. Y.; Xu, Z. L.; Liu, J. G.; Tang, B.; Wang, X. G. Flexible and wearable strain sensing fabrics. Chem. Eng. J. 2017, 325, 396–403.

    Article  CAS  Google Scholar 

  139. Karim, N.; Afroj, S.; Tan, S. R.; He, P.; Fernando, A.; Carr, C.; Novoselov, K. S. Scalable production of graphene-based wearable E-textiles. ACS Nano 2017, 11, 12266–12275.

    Article  CAS  Google Scholar 

  140. Afroj, S.; Karim, N.; Wang, Z. H.; Tan, S. R.; He, P.; Holwill, M.; Ghazaryan, D.; Fernando, A.; Novoselov, K. S. Engineering graphene flakes for wearable textile sensors via highly scalable and ultrafast yarn dyeing technique. ACS Nano 2019, 13, 3847–3857.

    Article  CAS  Google Scholar 

  141. Hu, X. R.; Huang, T.; Liu, Z. D.; Wang, G.; Chen, D.; Guo, Q. L.; Yang, S. W.; Jin, Z. W.; Lee, J. M.; Ding, G. Q. Conductive graphene-based E-textile for highly sensitive, breathable, and water-resistant multimodal gesture-distinguishable sensors. J. Mater. Chem. A 2020, 8, 14778–14787.

    Article  CAS  Google Scholar 

  142. Liu, X.; Tang, C.; Du, X. H.; Xiong, S.; Xi, S. Y.; Liu, Y. F.; Shen, X.; Zheng, Q. B.; Wang, Z. Y.; Wu, Y. et al. A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments. Mater. Horiz. 2017, 4, 477–486.

    Article  CAS  Google Scholar 

  143. Zheng, Y. J.; Li, Y. L.; Zhou, Y. J.; Dai, K.; Zheng, G. Q.; Zhang, B.; Liu, C. T.; Shen, C. Y. High-performance wearable strain sensor based on graphene/cotton fabric with high durability and low detection limit. ACS Appl. Mater. Interfaces 2020, 12, 1474–1485.

    Article  CAS  Google Scholar 

  144. Zheng, S. D.; Wu, X. T.; Huang, Y. H.; Xu, Z. W.; Yang, W.; Liu, Z. Y.; Yang, M. B. Multifunctional and highly sensitive piezoresistive sensing textile based on a hierarchical architecture. Compos. Sci. d Technol. 2020, 197, 108255.

    Article  CAS  Google Scholar 

  145. Kedambaimoole, V.; Kumar, N.; Shirhatti, V.; Nuthalapati, S.; Nayak, M. M.; Konandur, R. Electric spark induced instantaneous and selective reduction of graphene oxide on textile for wearable electronics. ACS Appl. Mater. Interfaces 2020, 12, 15527–15537.

    Article  CAS  Google Scholar 

  146. Sun, Y. Z.; Zhang, Z. Q.; Zhou, Y.; Liu, S. N.; Xu, H. Wearable strain sensor based on double-layer graphene fabrics for real-time, continuous acquirement of human pulse signal in daily activities. Adv. Mater. Technol. 2021, 6, 2001071.

    Article  CAS  Google Scholar 

  147. Wei, Y. H.; Li, X. S.; Wang, Y. F.; Hirtz, T.; Guo, Z. F.; Qiao, Y. C.; Cui, T. R.; Tian, H.; Yang, Y.; Ren, T. L. Graphene-based multifunctional textile for sensing and actuating. ACS Nano 2021, 15, 17738–17747.

    Article  CAS  Google Scholar 

  148. Han, W. P.; Wu, Y. J.; Gong, H.; Liu, L. X.; Yan, J. X.; Li, M. F.; Long, Y. Z.; Shen, G. Z. Reliable sensors based on graphene textile with negative resistance variation in three dimensions. Nano Res. 2021, 14, 2810–2818.

    Article  CAS  Google Scholar 

  149. Chen, Y. X.; Deng, Z. R.; Ouyang, R.; Zheng, R. H.; Jiang, Z. Q.; Bai, H.; Xue, H. 3D printed stretchable smart fibers and textiles for self-powered e-skin. Nano Energy 2021, 84, 105866.

    Article  CAS  Google Scholar 

  150. Zhao, X.; Xu, L. L.; Chen, Q.; Peng, Q. Y.; Yang, M. L.; Zhao, W. Q.; Lin, Z. S.; Xu, F.; Li, Y. B.; He, X. D. Highly conductive multifunctional rGO/CNT hybrid sponge for electromagnetic wave shielding and strain sensor. Adv. Mater. Technol. 2019, 4, 1900443.

    Article  CAS  Google Scholar 

  151. Braff, M. H.; Di Nardo, A.; Gallo, R. L. Keratinocytes store the antimicrobial peptide cathelicidin in lamellar bodies. J. Invest. Dermatol. 2005, 124, 394–400.

    Article  CAS  Google Scholar 

  152. Zhao, S. F.; Guo, L. Z.; Li, J. H.; Li, N.; Zhang, G. P.; Gao, Y. J.; Li, J.; Cao, D. X.; Wang, W.; Jin, Y. F. et al. Binary synergistic sensitivity strengthening of bioinspired hierarchical architectures based on fragmentized reduced graphene oxide sponge and silver nanoparticles for strain sensors and beyond. Small 2017, 13, 1700944.

    Article  Google Scholar 

  153. Pei, X. J.; Zhang, H.; Zhou, Y.; Zhou, L. J.; Fu, J. Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions. Mater. Horiz. 2020, 7, 1872–1882.

    Article  CAS  Google Scholar 

  154. Huang, J. X.; Wang, H. G.; Li, Z. P.; Wu, X. Z.; Wang, J. Q.; Yang, S. R. Improvement of piezoresistive sensing behavior of graphene sponge by polyaniline nanoarrays. J. Mater. Chem. C 2019, 7, 7386–7394.

    Article  CAS  Google Scholar 

  155. Ben-Shimon, Y.; Reddy, S. K.; Ya’akobovitz, A. Graphene foam resonators: Fabrication and characterization. Nano Res. 2022, 15, 225–229.

    Article  CAS  Google Scholar 

  156. Liang, J. J.; Zhao, Z. B.; Tang, Y. C.; Hao, X. J.; Wang, X. Z.; Qiu, J. S. Covalent bonds-integrated graphene foam with superb electromechanical properties as elastic conductor and compressive sensor. Carbon 2019, 147, 206–213.

    Article  CAS  Google Scholar 

  157. Park, H.; Kim, J. W.; Hong, S. Y.; Lee, G.; Kim, D. S.; Oh, J. H.; Jin, S. W.; Jeong, Y. R.; Oh, S. Y.; Yun, J. Y. et al. Microporous polypyrrole-coated graphene foam for high-performance multifunctional sensors and flexible supercapacitors. Adv. Funct. Mater. 2018, 28, 1707013.

    Article  Google Scholar 

  158. Sengupta, D.; Pei, Y. T.; Kottapalli, A. G. P. Ultralightweight and 3D squeezable graphene-polydimethylsiloxane composite foams as piezoresistive sensors. ACS Appl. Mater. Interfaces 2019, 11, 35201–35211.

    Article  CAS  Google Scholar 

  159. Wang, T. J.; Zhao, J.; Weng, C. X.; Wang, T.; Liu, Y. Y.; Han, Z. P.; Zhang, Z. Three-dimensional graphene coated shape memory polyurethane foam with fast responsive performance. J. Mater. Chem. C 2021, 9, 7444–7451.

    Article  CAS  Google Scholar 

  160. Li, G. C.; Chu, Z. Y.; Gong, X. F.; Xiao, M.; Dong, Q. C.; Zhao, Z. K.; Hu, T. J.; Zhang, Y.; Wang, J.; Tan, Y. L. et al. A wide-range linear and stable piezoresistive sensor based on methylcellulose-reinforced, lamellar, and wrinkled graphene aerogels. Adv. Mater. Technol. 2021, 10, 2101021.

    Google Scholar 

  161. Ma, Y. N.; Yue, Y.; Zhang, H.; Cheng, F.; Zhao, W. Q.; Rao, J. Y.; Luo, S. J.; Wang, J.; Jiang, X. L.; Liu, Z. T. et al. 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 2018, 12, 3209–3216.

    Article  CAS  Google Scholar 

  162. Xiao, J. L.; Tan, Y. Q.; Song, Y. H.; Zheng, Q. A flyweight and superelastic graphene aerogel as a high-capacity adsorbent and highly sensitive pressure sensor. J. Mater. Chem. A 2018, 6, 9074–9080.

    Article  CAS  Google Scholar 

  163. Yang, C. X.; Liu, W. J.; Liu, N. S.; Su, J.; Li, L. Y.; Xiong, L.; Long, F.; Zou, Z. G.; Gao, Y. H. Graphene aerogel broken to fragments for a piezoresistive pressure sensor with a higher sensitivity. ACS Appl. Mater. Interfaces 2019, 11, 33165–33172.

    Article  CAS  Google Scholar 

  164. Huang, H. Z.; Su, S.; Wu, N.; Wan, H.; Wan, S.; Bi, H. C.; Sun, L. T. Graphene-based sensors for human health monitoring. Front. Chem. 2019, 7, 399.

    Article  CAS  Google Scholar 

  165. Long, S. S.; Feng, Y. C.; He, F. L.; He, S. S.; Hong, H. C.; Yang, X. R.; Zheng, L. L.; Liu, J.; Gan, L. H.; Long, M. N. An ultralight, supercompressible, superhydrophobic and multifunctional carbon aerogel with a specially designed structure. Carbon 2020, 158, 137–145.

    Article  CAS  Google Scholar 

  166. Huang, J. K.; Zeng, J. B.; Liang, B. Q.; Wu, J. W.; Li, T. G.; Li, Q.; Feng, F.; Feng, Q. W.; Rood, M. J.; Yan, Z. F. Multi-arch-structured all-carbon aerogels with superelasticity and high fatigue resistance as wearable sensors. ACS Appl. Mater. Interfaces 2020, 12, 16822–16830.

    Article  CAS  Google Scholar 

  167. Lü, X. Z.; Yu, T. T.; Meng, F. C.; Bao, W. M. Wide-range and high-stability flexible conductive graphene/thermoplastic polyurethane foam for piezoresistive sensor applications. Adv. Mater. Technol. 2021, 6, 2100248.

    Article  Google Scholar 

  168. Guan, H.; Dai, X. J.; Ni, L.; Hu, J. H.; Wang, X. Q. Highly elastic and fatigue-resistant graphene-wrapped lamellar wood sponges for high-performance piezoresistive sensors. ACS Sustain. Chem. Eng. 2021, 9, 15267–15277.

    Article  CAS  Google Scholar 

  169. Ying, B. B.; Wu, Q. Y.; Li, J. Y.; Liu, X. Y. An ambient-stable and stretchable ionic skin with multimodal sensation. Mater. Horiz. 2020, 7, 477–488.

    Article  CAS  Google Scholar 

  170. Sun, J. Y.; Keplinger, C.; Whitesides, G. M.; Suo, Z. G. Ionic skin. Adv. Mater. 2014, 26, 7608–7614.

    Article  CAS  Google Scholar 

  171. Lei, Z. Y.; Zhu, W. C.; Zhang, X. C.; Wang, X. J.; Wu, P. Y. Bio-inspired ionic skin for theranostics. Adv. Funct. Mater. 2020, 31, 2008020.

    Article  Google Scholar 

  172. Xia, S.; Zhang, Q.; Song, S. X.; Duan, L. J.; Gao, G. H. Bioinspired dynamic cross-linking hydrogel sensors with skin-like strain and pressure sensing behaviors. Chem. Mater. 2019, 31, 9522–9531.

    Article  CAS  Google Scholar 

  173. Xia, S.; Song, S. X.; Gao, G. H. Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion. Chem. Eng. J. 2018, 354, 817–824.

    Article  CAS  Google Scholar 

  174. Zhang, Z. Y.; Zheng, Z.; Zhao, Y. L.; Hu, J. H.; Wang, H. T. Highly stretchable porous composite hydrogels with stable conductivity for strain sensing. Compos. Sci. Technol. 2021, 213, 108968.

    Article  CAS  Google Scholar 

  175. Fan, L.; Xie, J. L.; Zheng, Y. P.; Wei, D. X.; Yao, D. D.; Zhang, J.; Zhang, T. D. Antibacterial, self-adhesive, recyclable, and tough conductive composite hydrogels for ultrasensitive strain sensing. ACS Appl. Mater. Interfaces 2020, 12, 22225–22236.

    Article  CAS  Google Scholar 

  176. Wu, J.; Huang, W. X.; Liang, Y. N.; Wu, Z. X.; Zhong, B. Z.; Zhou, Z. J.; Ye, J. D.; Tao, K.; Zhou, Y. B.; Xie, X. Self-calibrated, sensitive, and flexible temperature sensor based on 3D chemically modified graphene hydrogel. Adv. Electron. Mater. 2021, 7, 2001084.

    Article  CAS  Google Scholar 

  177. Zhan, Y. H.; Hao, S.; Li, Y. C.; Santillo, C.; Zhang, C. M.; Sorrentino, L.; Lavorgna, M.; Xia, H. S.; Chen, Z. M. High sensitivity of multi-sensing materials based on reduced graphene oxide and natural rubber: The synergy between filler segregation and macro-porous morphology. Compos. Sci. Technol. 2021, 205, 108689.

    Article  CAS  Google Scholar 

  178. Yang, H. S.; Li, Z. L.; Sun, G. Q.; Jin, X. T.; Lu, B.; Zhang, P. P.; Lin, T. Y.; Qu, L. T. Superplastic air-dryable graphene hydrogels for wet-press assembly of ultrastrong superelastic aerogels with infinite macroscale. Adv. Funct. Mater. 2019, 29, 1901917.

    Article  Google Scholar 

  179. He, F. L.; You, X. Y.; Gong, H.; Yang, Y.; Bai, T.; Wang, W. G.; Guo, W. X.; Liu, X. Y.; Ye, M. D. Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators. ACS Appl. Mater. Interfaces 2020, 12, 6442–6450.

    Article  CAS  Google Scholar 

  180. Han, L.; Lu, X.; Wang, M. H.; Gan, D. L.; Deng, W. L.; Wang, K. F.; Fang, L. M.; Liu, K. Z.; Chan, C. W.; Tang, Y. H. et al. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small 2017, 13, 1601916.

    Article  Google Scholar 

  181. Gan, D. L.; Huang, Z. Q.; Wang, X.; Jiang, L. L.; Wang, C. M.; Zhu, M. Y.; Ren, F. Z.; Fang, L. M.; Wang, K. F.; Xie, C. M. et al. Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics. Adv. Funct. Mater. 2019, 30, 1907678.

    Article  Google Scholar 

  182. Cai, Y. T.; Qin, J. B.; Li, W. M.; Tyagi, A.; Liu, Z. J.; Hossain, M. D.; Chen, H. M.; Kim, J. K.; Liu, H. W.; Zhuang, M. H. et al. A stretchable, conformable, and biocompatible graphene strain sensor based on a structured hydrogel for clinical application. J. Mater. Chem. A 2019, 7, 27099–27109.

    Article  CAS  Google Scholar 

  183. Yang, Z.; Pang, Y.; Han, X. L.; Yang, Y. F.; Ling, J.; Jian, M. Q.; Zhang, Y. Y.; Yang, Y.; Ren, T. L. Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 2018, 12, 9134–9141.

    Article  CAS  Google Scholar 

  184. Pang, Y.; Zhang, K. N.; Yang, Z.; Jiang, S.; Ju, Z. Y.; Li, Y. X.; Wang, X. F.; Wang, D. Y.; Jian, M. Q.; Zhang, Y. Y. et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 2018, 12, 2346–2354.

    Article  CAS  Google Scholar 

  185. Bi, S. Y.; Hou, L.; Dong, W. W.; Lu, Y. X. Multifunctional and ultrasensitive-reduced graphene oxide and pen ink/polyvinyl alcohol-decorated modal/spandex fabric for high-performance wearable sensors. ACS Appl. Mater. Interfaces 2021, 13, 2100–2109.

    Article  CAS  Google Scholar 

  186. Wu, Q.; Qiao, Y. C.; Guo, R.; Naveed, S.; Hirtz, T.; Li, X. S.; Fu, Y. X.; Wei, Y. H.; Deng, G.; Yang, Y. et al. Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring. ACS Nano 2020, 14, 10104–10114.

    Article  CAS  Google Scholar 

  187. Du, X. J.; Jiang, W. C.; Zhang, Y.; Qiu, J. K.; Zhao, Y.; Tan, Q. S.; Qi, S. Y.; Ye, G.; Zhang, W. F.; Liu, N. Transparent and stretchable graphene electrode by intercalation doping for epidermal electrophysiology. ACS Appl. Mater. Interfaces 2020, 12, 56361–56371.

    Article  CAS  Google Scholar 

  188. Pan, X. F.; Wang, Q. H.; He, P.; Liu, K.; Ni, Y. H.; Chen, L. H.; Ouyang, X. H.; Huang, L. L.; Wang, H. P.; Xu, S. Y. A bionic tactile plastic hydrogel-based electronic skin constructed by a nervelike nanonetwork combining stretchable, compliant, and self-healing properties. Chem. Eng. J. 2020, 379, 122271.

    Article  CAS  Google Scholar 

  189. Sun, B. H.; McCay, R. N.; Goswami, S.; Xu, Y. D.; Zhang, C.; Ling, Y.; Lin, J.; Yan, Z. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater. 2018, 30, e1804327.

    Article  Google Scholar 

  190. Zhao, Y.; Zhang, S.; Yu, T. H.; Zhang, Y.; Ye, G.; Cui, H.; He, C. Z.; Jiang, W. C.; Zhai, Y.; Lu, C. M. et al. Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nat. Commun. 2021, 12, 4880.

    Article  CAS  Google Scholar 

  191. Yin, R. K.; Xu, Z.; Mei, M.; Chen, Z. L.; Wang, K.; Liu, Y. L.; Tang, T.; Priydarshi, M. K.; Meng, X. J.; Zhao, S. Y. et al. Soft transparent graphene contact lens electrodes for conformal full-cornea recording of electroretinogram. Nat. Commun. 2018, 9, 2334.

    Article  Google Scholar 

  192. Yue, Z. Y.; Wang, Y.; Lin, Y.; Jia, C. Y. Fully integrated pressure-controlled electrochromic E-skins. J. Mater. Chem. A 2021, 9, 9134–9144.

    Article  CAS  Google Scholar 

  193. Zhang, X. H.; Sheng, N. N.; Wang, L. N.; Tan, Y. Q.; Liu, C. Z.; Xia, Y. Z.; Nie, Z. H.; Sui, K. Y. Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Mater. Horiz. 2019, 6, 326–333.

    Article  CAS  Google Scholar 

  194. Miao, P.; Wang, J.; Zhang, C. C.; Sun, M. Y.; Cheng, S. S.; Liu, H. Graphene nanostructure-based tactile sensors for electronic skin applications. Nano-Micro Lett. 2019, 11, 71.

    Article  CAS  Google Scholar 

  195. Xiang, S. X.; Liu, D. J.; Jiang, C. C.; Zhou, W. M.; Ling, D.; Zheng, W. T.; Sun, X. P.; Li, X.; Mao, Y. C.; Shan, C. X. Liquid-metal-based dynamic thermoregulating and self-powered electronic skin. Adv. Funct. Mater. 2021, 31, 2100940.

    Article  CAS  Google Scholar 

  196. Zhang, Y. J.; Zhao, Y.; Zhai, W.; Zheng, G. Q.; Ji, Y. X.; Dai, K.; Mi, L. W.; Zhang, D. B.; Liu, C. T.; Shen, C. Y. Multifunctional interlocked e-skin based on elastic micropattern array facilely prepared by hot-air-gun. Chem. Eng. J. 2021, 407, 127960.

    Article  CAS  Google Scholar 

  197. Bu, Y. B.; Shen, T. Y.; Yang, W. K.; Yang, S. Y.; Zhao, Y.; Liu, H.; Zheng, Y. J.; Liu, C. T.; Shen, C. Y. Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human-motion monitoring and E-skin. Sci. Bull. 2021, 66, 1849–1857.

    Article  CAS  Google Scholar 

  198. Kim, M. H.; Cho, C. H.; Kim, J. S.; Nam, T. U.; Kim, W. S.; Il Lee, T.; Oh, J. Y. Thermoelectric energy harvesting electronic skin (e-skin) patch with reconfigurable carbon nanotube clays. Nano Energy 2021, 87, 106156.

    Article  CAS  Google Scholar 

  199. Chhetry, A.; Sharma, S.; Barman, S. C.; Yoon, H.; Ko, S.; Park, C.; Yoon, S.; Kim, H.; Park, J. Y. Black phosphorus@laser-engraved graphene heterostructure-based temperature-strain hybridized sensor for electronic-skin applications. Adv. Funct. Mater. 2020, 31, 2007661.

    Article  Google Scholar 

  200. Qiao, Y. C.; Wang, Y. F.; Tian, H.; Li, M. R.; Jian, J. M.; Wei, Y. H.; Tian, Y.; Wang, D. Y.; Pang, Y.; Geng, X. S. et al. Multilayer graphene epidermal electronic skin. ACS Nano 2018, 12, 8839–8846.

    Article  CAS  Google Scholar 

  201. Qiao, Y. C.; Wang, Y. F.; Jian, J. M.; Li, M. R.; Jiang, G. Y.; Li, X. S.; Deng, G.; Ji, S. R.; Wei, Y. H.; Pang, Y. et al. Multifunctional and high-performance electronic skin based on silver nanowires bridging graphene. Carbon 2020, 156, 253–260.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the National Natural Science Foundation of China (NSFC) (No. 51873024) and Science and Technology Research Project of the Education Department of Jilin Province (No. JJKH20210734KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, S., Wang, M. & Gao, G. Preparation and application of graphene-based wearable sensors. Nano Res. 15, 9850–9865 (2022). https://doi.org/10.1007/s12274-022-4272-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4272-z

Keywords

Navigation