Skip to main content
Log in

Highly coordinated Pd overlayers on nanoporous gold for efficient formic acid electro-oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Design and fabrication of highly efficient and stable electrocatalysts remain key challenges in green energy technologies such as low-temperature direct liquid fuel cells. Based on in-depth theoretical calculations, here we demonstrate that surface Pd atoms with high coordination numbers (HCNs) can effectively modulate their adsorption energies for CO and OH, and thus achieve very high performance for formic acid electro-oxidation reaction (FAOR). Based on epitaxial coating Pd atomic layers onto nanoporous gold (NPG) thin membranes and a slight further decoration of Au clusters on top, the resulted core-shell structured NPG-Pd-Au electrocatalyst can demonstrate Pd intrinsic and mass activities of 8.62 mA·cm−2 and 27.25 A·mg−1 respectively at the peak potential around 0.33 V versus saturated calomel electrode toward FAOR, which are far better than those of commercial Pd/C catalysts (1.09 mA·cm−2 and 0.32 A·mg−1) tested under the same conditions. Moreover, the membrane electrode assemblies based on these low precious metal loading electrodes can achieve an anode Pd power efficiency over 10 W·mg−1 in a direct formic acid fuel cell, which is two orders of magnitude higher than that of the commercial Pd/C. These results provide new inspirations for the development of revolutionary electrodes for energy technologies in a rational manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mellmann, D.; Sponholz, P.; Junge, H.; Beller, M. Formic acid as a hydrogen storage material-development of homogeneous catalysts for selective hydrogen release. Chem. Soc. Rev. 2016, 45, 3954–3988.

    Article  CAS  Google Scholar 

  2. Eppinger, J.; Huang, K. W. Formic acid as a hydrogen energy carrier. ACS Energy Lett. 2017, 2, 188–195.

    Article  CAS  Google Scholar 

  3. Yang, X. C.; Pachfule, P.; Chen, Y.; Tsumori, N.; Xu, Q. Highly efficient hydrogen generation from formic acid using a reduced graphene oxide-supported AuPd nanoparticle catalyst. Chem. Commun. 2016, 52, 4171–4174.

    Article  CAS  Google Scholar 

  4. Zhan, C. Y.; Li, H. Q.; Li, X. M.; Jiang, Y. Q.; Xie, Z. X. Synthesis of PdH0.43 nanocrystals with different surface structures and their catalytic activities towards formic acid electro-oxidation. Sci. China Mater. 2020, 63, 375–382.

    Article  CAS  Google Scholar 

  5. Jiang, X.; Liu, Y.; Wang, J. X.; Wang, Y. F.; Xiong, Y. X.; Liu, Q.; Li, N. X.; Zhou, J. C.; Fu, G. T.; Sun, D. M. et al. 1-Naphthol induced Pt3Ag nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells. Nano Res. 2019, 12, 323–329.

    Article  CAS  Google Scholar 

  6. Rettenmaier, C.; Arán-Ais, R. M.; Timoshenko, J.; Rizo, R.; Jeon, H. S.; Kühl, S.; Chee, S. W.; Bergmann, A.; Cuenya, B. R. Enhanced formic acid oxidation over SnO2-decorated Pd nanocubes. ACS Catal. 2020, 10, 14540–14551.

    Article  CAS  Google Scholar 

  7. Espinosa, M. M. F.; Cheng, T.; Xu, M. J.; Abatemarco, L.; Choi, C.; Pan, X. Q.; Goddard III, W. A.; Zhao, Z. P.; Huang, Y. Compressed intermetallic PdCu for enhanced electrocatalysis. ACS Energy Lett. 2020, 5, 3672–3680.

    Article  CAS  Google Scholar 

  8. Wang, Y. L.; Hu, P.; Yang, J.; Zhu, Y. A.; Chen, D. C-H bond activation in light alkanes: A theoretical perspective. Chem. Soc. Rev. 2021, 50, 4299–4358.

    Article  CAS  Google Scholar 

  9. Motagamwala, A. H.; Dumesic, J. A. Microkinetic modeling: A tool for rational catalyst design. Chem. Rev. 2021, 121, 1049–1076.

    Article  CAS  Google Scholar 

  10. Yoo, J. S.; Abild-Pedersen, F.; Nørskov, J. K.; Studt, F. Theoretical analysis of transition-metal catalysts for formic acid decomposition. ACS Catal. 2014, 4, 1226–1233.

    Article  CAS  Google Scholar 

  11. Wang, R. Y.; Liu, J. G.; Liu, P.; Bi, X. X.; Yan, X. L.; Wang, W. X.; Meng, Y. F.; Ge, X. B.; Chen, M. W.; Ding, Y. Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells. Nano Res. 2014, 7, 1569–1580.

    Article  CAS  Google Scholar 

  12. Yang, L.; Li, G. Q.; Chang, J. F.; Ge, J. J.; Liu, C. P.; Vladimir, F.; Wang, G. L.; Jin, Z.; Xing, W. Sea urchin-like Aucore@Pdshell electrocatalysts with high FAOR performance: Coefficient of lattice strain and electrochemical surface area. Appl. Catal. B: Environ. 2020, 260, 118200.

    Article  CAS  Google Scholar 

  13. Wang, L.; Chen, M. X.; Yan, Q. Q.; Xu, S. L.; Chu, S. Q.; Chen, P.; Lin, Y.; Liang, H. W. A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts. Sci. Adv. 2019, 5, eaax6322.

    Article  CAS  Google Scholar 

  14. Chaudhari, N. K.; Joo, J.; Kwon, H. B.; Kim, B.; Kim, H. Y.; Joo, S. H.; Lee, K. Nanodendrites of platinum-group metals for electrocatalytic applications. Nano Res. 2018, 11, 6111–6140.

    Article  CAS  Google Scholar 

  15. Xi, Z.; Li, J. R.; Su, D.; Muzzio, M.; Yu, C.; Li, Q.; Sun, S. H. Stabilizing CuPd nanoparticles via CuPd coupling to WO2.72 nanorods in electrochemical oxidation of formic acid. J. Am. Chem. Soc. 2017, 139, 15191–15196.

    Article  CAS  Google Scholar 

  16. Liu, Z. Y.; Fu, G. T.; Li, J. H.; Liu, Z. Q.; Xu, L.; Sun, D. M.; Tang, Y. W. Facile synthesis based on novel carbon-supported cyanogel of structurally ordered Pd3Fe/C as electrocatalyst for formic acid oxidation. Nano Res. 2018, 11, 4686–4696.

    Article  CAS  Google Scholar 

  17. Chang, J. F.; Feng, L. G.; Liu, C. P.; Xing, W.; Hu, X. L. An Effective Pd-Ni2P/C anode catalyst for direct formic acid fuel cells. Angew. Chem., Int. Ed. 2014, 53, 122–126.

    Article  CAS  Google Scholar 

  18. Liu, S. L.; Wang, Z. Q.; Zhang, H. G.; Yin, S. L.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. B-Doped PdRu nanopillar assemblies for enhanced formic acid oxidation electrocatalysis. Nanoscale 2020, 12, 19159–19164.

    Article  Google Scholar 

  19. Liu, D.; Xie, M. L.; Wang, C. M.; Liao, L. W.; Qiu, L.; Ma, J.; Huang, H.; Long, R.; Jiang, J.; Xiong, Y. J. Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation. Nano Res. 2016, 9, 1590–1599.

    Article  CAS  Google Scholar 

  20. Liu, J. W.; Zheng, Y.; Hong, Z. L.; Cai, K.; Zhao, F.; Han, H. Y. Microbial synthesis of highly dispersed PdAu alloy for enhanced electrocatalysis. Sci. Adv. 2016, 2, e1600858.

    Article  CAS  Google Scholar 

  21. Guo, B. B.; Li, Q. L.; Lin, J.; Yu, C.; Gao, X. Q.; Fang, Y.; Liu, Z. Y.; Guo, Z. L.; Tang, C. C.; Huang, Y. Bimetallic AuPd nanoparticles loaded on amine-functionalized porous boron nitride nanofibers for catalytic dehydrogenation of formic acid. ACS Appl. Nano Mater. 2021, 4, 1849–1857.

    Article  CAS  Google Scholar 

  22. Hernández, A. R.; Estrada, E. M. A.; Ezeta, A.; Manríquez, M. E. Formic acid oxidation on AuPd core-shell electrocatalysts: Effect of surface electronic structure. Electrochim. Acta 2019, 327, 134977.

    Article  CAS  Google Scholar 

  23. Kibler, L. A.; El-Aziz, A. M.; Hoyer, R.; Kolb, D. M. Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem., Int. Ed. 2005, 44, 2080–2084.

    Article  CAS  Google Scholar 

  24. Hu, S. Z.; Munoz, F.; Noborikawa, J.; Haan, J.; Scudiero, L.; Ha, S. Carbon supported Pd-based bimetallic and trimetallic catalyst for formic acid electrochemical oxidation. Appl. Catal. B: Environ. 2016, 180, 758–765.

    Article  CAS  Google Scholar 

  25. Lee, S. Y.; Jung, N.; Cho, J.; Park, H. Y.; Ryu, J.; Jang, I.; Kim, H. J.; Cho, E. A.; Park, Y. H.; Ham, H. C. et al. Surface-rearranged Pd3Au/C nanocatalysts by using CO-induced segregation for formic acid oxidation reactions. ACS Catal. 2014, 4, 2402–2408.

    Article  CAS  Google Scholar 

  26. Lee, J. H.; Cho, J.; Jeon, M.; Ridwan, M.; Park, H. S.; Choi, S. H.; Nam, S. W.; Han, J.; Lim, T. H.; Ham, H. C. et al. Experimental and computational studies of formic acid dehydrogenation over PdAu: Influence of ensemble and ligand effects on catalysis. J. Mater. Chem. A 2016, 4, 14141–14147.

    Article  CAS  Google Scholar 

  27. Liu, J. C.; Ma, X. L.; Li, Y.; Wang, Y. G.; Xiao, H.; Li, J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 2018, 9, 1610.

    Article  CAS  Google Scholar 

  28. Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 1977, 44, 129–138.

    Article  CAS  Google Scholar 

  29. Liu, P.; Guan, P. F.; Hirata, A.; Zhang, L.; Chen, L. Y.; Wen, Y. R.; Ding, Y.; Fujita, T.; Erlebacher, J.; Chen, M. W. Visualizing under-coordinated surface atoms on 3D nanoporous gold catalysts. Adv. Mater. 2016, 28, 1753–1759.

    Article  CAS  Google Scholar 

  30. Wang, K. L.; Ding, Y. Carbon-free nanoporous gold based membrane electrocatalysts for fuel cells. Prog. Nat. Sci.: Mater. Int. 2020, 30, 775–786.

    Article  CAS  Google Scholar 

  31. Li, J.; Yin, H. M.; Li, X. B.; Okunishi, E.; Shen, Y. L.; He, J.; Tang, Z. K.; Wang, W. X.; Yücelen, E.; Li, C. et al. Surface evolution of a Pt-Pd-Au electrocatalyst for stable oxygen reduction. Nat. Energy 2017, 2, 17111.

    Article  CAS  Google Scholar 

  32. Jiang, X.; Xiong, Y. X.; Zhao, R. P.; Zhou, J. C.; Lee, J. M.; Tang, Y. W. Trimetallic Au@PdPb nanowires for oxygen reduction reaction. Nano Res. 2020, 13, 2691–2696.

    Article  CAS  Google Scholar 

  33. Lin, H. H.; Muzzio, M.; Wei, K. C.; Zhang, P.; Li, J. R.; Li, N.; Yin, Z. Y.; Su, D.; Sun, S. H. PdAu alloy nanoparticles for ethanol oxidation in alkaline conditions: Enhanced activity and C1 pathway selectivity. ACS Appl. Energy Mater. 2019, 2, 8701–8706.

    Article  CAS  Google Scholar 

  34. Wang, Z. L.; Liu, P.; Han, J. H.; Cheng, C.; Ning, S. C.; Hirata, A.; Fujita, T.; Chen, M. W. Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying. Nat. Commun. 2017, 8, 1066.

    Article  CAS  Google Scholar 

  35. Lu, X. L.; Yu, T. S.; Wang, H. L.; Qian, L. H.; Lei, P. X. Electrochemical fabrication and reactivation of nanoporous gold with abundant surface steps for CO2 reduction. ACS Catal. 2020, 10, 8860–8869.

    Article  CAS  Google Scholar 

  36. Zhou, Y.; Hu, X. C.; Fan, Q. Z.; Wen, H. R. Three-dimensional crumpled graphene as an electro-catalyst support for formic acid electro-oxidation. J. Mater. Chem. A 2016, 4, 4587–4591.

    Article  CAS  Google Scholar 

  37. Atkinson III, R. W.; John, S. S.; Dyck, O.; Unocic, K. A.; Unocic, R. R.; Burke, C. S.; Cisco, J. W.; Rice, C. A.; Zawodzinski, T. A. Jr.; Papandrew, A. B. Supportless, bismuth-modified palladium nanotubes with improved activity and stability for formic acid oxidation. ACS Catal. 2015, 5, 5154–5163.

    Article  CAS  Google Scholar 

  38. Qiu, X. Y.; Zhang, H. Y.; Wu, P. S.; Zhang, F. Q.; Wei, S. H.; Sun, D. M.; Xu, L.; Tang, Y. W. One-pot synthesis of freestanding porous palladium nanosheets as highly efficient electrocatalysts for formic acid oxidation. Adv. Funct. Mater. 2017, 27, 1603852.

    Article  CAS  Google Scholar 

  39. Fan, X. L.; Yuan, W. Y.; Zhang, D. H.; Li, C. M. Heteropolyacid-mediated self-assembly of heteropolyacid-modified pristine graphene supported Pd nanoflowers for superior catalytic performance toward formic acid oxidation. ACS Appl. Energy Mater. 2018, 1, 411–420.

    Article  CAS  Google Scholar 

  40. Bin, D.; Yang, B. B.; Ren, F. F.; Zhang, K.; Yang, P.; Du, Y. K. Facile synthesis of PdNi nanowire networks supported on reduced graphene oxide with enhanced catalytic performance for formic acid oxidation. J. Mater. Chem. A 2015, 3, 14001–14006.

    Article  CAS  Google Scholar 

  41. Lai, J. P.; Niu, W. X.; Li, S. P.; Wu, F. X.; Luque, R.; Xu, G. B. Concave and duck web-like platinum nanopentagons with enhanced electrocatalytic properties for formic acid oxidation. J. Mater. Chem. A 2016, 4, 807–812.

    Article  CAS  Google Scholar 

  42. Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y. E.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 2020, 12, 764–772.

    Article  CAS  Google Scholar 

  43. Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

    Article  CAS  Google Scholar 

  44. Xu, Y.; Yu, S. S.; Ren, T. L.; Li, C. J.; Yin, S. L.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. A quaternary metal-metalloid-nonmetal electrocatalyst: B, P-co-doping into PdRu nanospine assemblies boosts the electrocatalytic capability toward formic acid oxidation. J. Mater. Chem. A 2020, 8, 2424–2429.

    Article  CAS  Google Scholar 

  45. Xu, H.; Zhang, K.; Yan, B.; Wang, J.; Wang, C. Q.; Li, S. M.; Gu, Z. L.; Du, Y. K.; Yang, P. Ultra-uniform PdBi nanodots with high activity towards formic acid oxidation. J. Power Sources 2017, 356, 27–35.

    Article  CAS  Google Scholar 

  46. Zhang, L. Y.; Ouyang, Y. R.; Wang, S.; Wu, D. B.; Jiang, M. C.; Wang, F. Q.; Yuan, W. Y.; Li, C. M. Perforated Pd nanosheets with crystalline/amorphous heterostructures as a highly active robust catalyst toward formic acid oxidation. Small 2019, 15, 1904245.

    Article  CAS  Google Scholar 

  47. Ding, J.; Liu, Z.; Liu, X. R.; Liu, J.; Deng, Y. D.; Han, X. P.; Zhong, C.; Hu, W. B. Mesoporous decoration of freestanding palladium nanotube arrays boosts the electrocatalysis capabilities toward formic acid and formate oxidation. Adv. Energy Mater. 2019, 9, 1900955.

    Article  CAS  Google Scholar 

  48. Ding, J.; Liu, Z.; Liu, X. R.; Liu, B.; Liu, J.; Deng, Y. D.; Han, X. P.; Hu, W. B.; Zhong, C. Tunable periodically ordered mesoporosity in palladium membranes enables exceptional enhancement of intrinsic electrocatalytic activity for formic acid oxidation. Angew. Chem., Int. Ed. 2020, 59, 5092–5101.

    Article  CAS  Google Scholar 

  49. Yang, N. L.; Zhang, Z. C.; Chen, B.; Huang, Y.; Chen, J. Z.; Lai, Z. C.; Chen, Y.; Sindoro, M.; Wang, A. L.; Cheng, H. F. et al. Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv. Mater. 2017, 29, 1700769.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51901156, 52073214, and U1804255) and the National Science Fund for Distinguished Young Scholars (No. 51825102). We also thank the National Supercomputing Center in Shenzhen for providing the computational resources and material studio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ding.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, Q., Yin, S., Liu, F. et al. Highly coordinated Pd overlayers on nanoporous gold for efficient formic acid electro-oxidation. Nano Res. 14, 3502–3508 (2021). https://doi.org/10.1007/s12274-021-3642-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3642-2

Keywords

Navigation