Skip to main content
Log in

Trimetallic Au@PdPb nanowires for oxygen reduction reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of highly efficient and stable Pd-based catalysts is crucial to improve their sluggish oxygen reduction reaction (ORR) kinetics in acid media. To improve ORR activity and utilization efficiency of Pd, an ideal catalyst should have ORR-favorable chemical environment, optimized geometric structure, and long periods of operation. In this work, we first synthesize a novel trimetallic Au@PdPb core-shell catalyst consisting of PdPb alloy nano-layers grown on the surface of ultrathin Au nanowires (NWs) by a two-step water-bath method. The Au@PdPb NWs have the merits of anisotropic one-dimensional nanostructure, high utilization efficiency of Pd atoms and doping of Pb atoms. Because of the structural and multiple compositional advantages, Au@PdPb NWs exhibit remarkably enhanced ORR activity with a high half-wave potential (0.827 V), much better than those of commercial Pd black (0.788 V) and bimetallic Au@Pd NWs (0.803 V). Moreover, Au@PdPb NWs display better electrocatalytic stability for the ORR than those of Pd black and Au@Pd NWs. This study demonstrates the validity of our approach for deriving highly ORR-active Pd-based catalysts by modifying their structure and composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen, H. J.; Gracia-Espino, E.; Ma, J. Y.; Zang, K. T.; Luo, J.; Wang, L.; Gao, S. S.; Mamat, X.; Hu, G. Z.; Wagberg, T. et al. Synergistic effects between atomically dispersed Fe-N-C and C-S-C for the oxygen reduction reaction in acidic media. Angew. Chem., Int. Ed.2017, 56, 13800–13804.

    CAS  Google Scholar 

  2. Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev.2016, 116, 3594–3657.

    CAS  Google Scholar 

  3. Li, J. C.; Cheng, M.; Li, T.; Ma, L.; Ruan, X. F.; Liu, D.; Cheng, H. M.; Liu, C.; Du, D.; Wei, Z. D. et al. Carbon nanotube-linked hollow carbon nanospheres doped with iron and nitrogen as single-atom catalysts for the oxygen reduction reaction in acidic solutions. J. Mater. Chem. A2019, 7, 14478–14482.

    CAS  Google Scholar 

  4. Jiao, W. L.; Chen, C.; You, W. B.; Chen, G. Y.; Xue, S. Y.; Zhang, J.; Liu, J. W.; Feng, Y. Z.; Wang, P.; Wang, Y. Z. et al. Tuning strain effect and surface composition in PdAu hollow nanospheres as highly efficient ORR electrocatalysts and SERS substrates. Appl. Catal. B Environ.2020, 262, 118298.

    CAS  Google Scholar 

  5. Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature2019, 574, 81–85.

    CAS  Google Scholar 

  6. Bu, L. Z.; Shao, Q.; Pi, Y. C.; Yao, J. L.; Luo, M. C.; Lang, J. P.; Hwang, S.; Xin, H. L.; Huang, B. L.; Guo, J. et al. Coupled s-p-d exchange in facet-controlled Pd3Pb tripods enhances oxygen reduction catalysis. Chem2018, 4, 359–371.

    CAS  Google Scholar 

  7. Chen, D.; Li, C. Y.; Liu, H.; Ye, F.; Yang, J. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions. Sci. Rep.2015, 5, 11949.

    Google Scholar 

  8. Chen, D.; Sun, P. C.; Liu, H.; Yang, J. Bimetallic Cu-Pd alloy multipods and their highly electrocatalytic performance for formic acid oxidation and oxygen reduction. J. Mater. Chem. A2017, 5, 4421–4429.

    CAS  Google Scholar 

  9. Liu, R.; Zhang, L. Q.; Yu, C.; Sun, M. T.; Liu, J. F.; Jiang, G. B. Atomic-level-designed catalytically active palladium atoms on ultrathin gold nanowires. Adv. Mater.2017, 29, 1604571.

    Google Scholar 

  10. Hong, W.; Wang, J.; Wang, E. Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic activity for methanol electrooxidation. Small2014, 10, 3262–3265.

    CAS  Google Scholar 

  11. Yang, C. W.; Chanda, K.; Lin, P. H.; Wang, Y. N.; Liao, C. W.; Huang, M. H. Fabrication of Au-Pd core-shell heterostructures with systematic shape evolution using octahedral nanocrystal cores and their catalytic activity. J. Am. Chem. Soc.2011, 133, 19993–20000.

    CAS  Google Scholar 

  12. Bu, L. Z.; Tang, C. Y.; Shao, Q.; Zhu, X.; Huang, X. Q. Three-dimensional Pd3Pb nanosheet assemblies: High-performance non-Pt electrocatalysts for bifunctional fuel cell reactions. ACS Catal.2018, 8, 4569–4575.

    CAS  Google Scholar 

  13. Fang, C.; Bi, T.; Ding, Q.; Cui, Z.; Yu, N.; Xu, X.; Geng, B. High-density Pd nanorod arrays on Au nanocrystals for high-performance ethanol electrooxidation. ACS Appl. Mater. Interfaces2019, 11, 20117–20124.

    CAS  Google Scholar 

  14. Xue, Q.; Bai, J.; Han, C. C.; Chen, P.; Jiang, J. X.; Chen, Y. Au nanowires@Pd-polyethylenimine nanohybrids as highly active and methanol-tolerant electrocatalysts toward oxygen reduction reaction in alkaline media. ACS Catal.2018, 8, 11287–11295.

    CAS  Google Scholar 

  15. Hernández, A. R.; Manríquez, M. E.; Mejia, A. E.; Estrada, E. M. A. Shape effect of AuPd core-shell nanostructures on the electrocatalytical activity for oxygen reduction reaction in acid medium. Electrocatalysis2018, 9, 752–761.

    Google Scholar 

  16. Zong, Z.; Xu, K. B.; Li, D. L.; Tang, Z. H.; He, W.; Liu, Z.; Wang, X. F.; Tian, Y. Peptide templated Au@Pd core-shell structures as efficient bi-functional electrocatalysts for both oxygen reduction and hydrogen evolution reactions. J. Catal.2018, 361, 168–176.

    CAS  Google Scholar 

  17. Yang, L.; Li, G. Q.; Chang, J. F.; Ge, J. J.; Liu, C. P.; Vladimir, F.; Wang, G. L.; Jin, Z.; Xing, W. Sea urchin-like Aucore@Pdshell electrocatalysts with high FAOR performance: Coefficient of lattice strain and electrochemical surface area. Appl. Catal. B Environ.2020, 260, 118200.

    CAS  Google Scholar 

  18. Chen, D.; Li, J. Q.; Cui, P. L.; Liu, H.; Yang, J. Gold-catalyzed formation of core-shell gold-palladium nanoparticles with palladium shells up to three atomic layers. J. Mater. Chem. A2016, 4, 3813–3821.

    CAS  Google Scholar 

  19. Wang, K.; Qin, Y. N.; Lv, F.; Li, M. Q.; Liu, Q.; Lin, F.; Feng, J. R.; Yang, C.; Gao, P.; Guo, S. J. Intermetallic Pd3Pb nanoplates enhance oxygen reduction catalysis with excellent methanol tolerance. Small Methods2018, 2, 1700331.

    Google Scholar 

  20. Deng, Y. Y.; Xue, H. R.; Lu, S. L.; Song, Y. J.; Cao, X. Q.; Wang, L.; Wang, H. J.; Zhao, Y. L.; Gu, H. W. Trimetallic Au@PtPd mesoporous nanorods as efficient electrocatalysts for the oxygen reduction reaction. ACS Appl. Energy Mater.2018, 1, 4891–4898.

    CAS  Google Scholar 

  21. Tsuji, M.; Takemura, K.; Shiraishi, C.; Ikedo, K.; Uto, K.; Yajima, A.; Hattori, M.; Nakashima, Y.; Fukutomi, K.; Tsuruda, K. et al. Syntheses of Au@PdAg and Au@PdAg@Ag core-shell nanorods through distortion-induced alloying between Pd shells and Ag atoms over Au nanorods. J. Phys. Chem. C2015, 119, 10811–10823.

    CAS  Google Scholar 

  22. Shang, C. S.; Hong, W.; Wang, J.; Wang, E. Carbon supported trimetallic nickel-palladium-gold hollow nanoparticles with superior catalytic activity for methanol electrooxidation. J. Power Sources2015, 285, 12–15.

    CAS  Google Scholar 

  23. Luo, L. M.; Zhang, R. H.; Chen, D.; Hu, Q. Y.; Zhou, X. W. Synthesis of 3D thornbush-like trimetallic CoAuPd nanocatalysts and electrochemical dealloying for methanol oxidation and oxygen reduction reaction. ACS Appl. Energy Mater.2018, 1, 2619–2629.

    CAS  Google Scholar 

  24. Li, X. K.; Zhang, C. M.; Du, C.; Zhuang, Z. H.; Zheng, F. Q.; Li, P.; Zhang, Z. W.; Chen, W. Trimetallic Au@PdPt core-shell nanoparticles with ultrathin PdPt skin as highly stable electrocatalysts for the oxygen reduction reaction in acid solution. Sci. China Chem.2019, 62, 378–384.

    CAS  Google Scholar 

  25. He, D. S.; He, D. P.; Wang, J.; Lin, Y.; Yin, P. Q.; Hong, X.; Wu, Y.; Li, Y. D. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J. Am. Chem. Soc.2016, 138, 1494–1497.

    CAS  Google Scholar 

  26. Wang, L.; Yamauchi, Y. Metallic nanocages: Synthesis of bimetallic Pt-Pd hollow nanoparticles with dendritic shells by selective chemical etching. J. Am. Chem. Soc.2013, 135, 16762–16765.

    CAS  Google Scholar 

  27. Lv, H.; Sun, L. Z.; Xu, D. D.; Henzie, J.; Yamauchi, Y.; Liu, B. Mesoporous palladium-boron alloy nanospheres. J. Mater. Chem. A2019, 7, 24877–24883.

    CAS  Google Scholar 

  28. Yan, X. X.; Hu, X. J.; Fu, G. T.; Xu, L.; Lee, J. M.; Tang, Y. W. Facile synthesis of porous Pd3Pt half-shells with rich “active sites” as efficient catalysts for formic acid oxidation. Small2018, 14, 1703940.

    Google Scholar 

  29. Gong, M. X.; Deng, Z. P.; Xiao, D. D.; Han, L. L.; Zhao, T. H.; Lu, Y.; Shen, T.; Liu, X. P.; Lin, R. Q.; Huang, T. et al. One-nanometer-thick Pt3Ni bimetallic alloy nanowires advanced oxygen reduction reaction: Integrating multiple advantages into one catalyst. ACS Catal.2019, 9, 4488–4494.

    CAS  Google Scholar 

  30. Jiang, X.; Qiu, X. Y.; Fu, G. T.; Sun, J. Z.; Huang, Z. N.; Sun, D. M.; Xu, L.; Zhou, J. C.; Tang, Y. W. Highly simple and rapid synthesis of ultrathin gold nanowires with (111)-dominant facets and enhanced electrocatalytic properties. J. Mater. Chem. A2018, 6, 17682–17687.

    CAS  Google Scholar 

  31. Jiang, X.; Fu, G. T.; Wu, X.; Liu, Y.; Zhang, M. Y.; Sun, D. M.; Xu, L.; Tang, Y. W. Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. Nano Res.2018, 11, 499–510.

    CAS  Google Scholar 

  32. Fu, G. T.; Jiang, X.; Chen, Y. F.; Xu, L.; Sun, D. M.; Lee, J. M.; Tang, Y. W. Robust bifunctional oxygen electrocatalyst with a “rigid and flexible” structure for air-cathodes. NPG Asia Mater.2018, 10, 618–629.

    CAS  Google Scholar 

  33. Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science2016, 354, 1414–1419.

    CAS  Google Scholar 

  34. Feng, Y. G.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. 3D platinum-lead nanowire networks as highly efficient ethylene glycol oxidation electrocatalysts. Small2016, 12, 4464–4470.

    CAS  Google Scholar 

  35. Jiang, X.; Wang, J. X.; Huang, T.; Fu, G. T.; Tang, Y. W.; Qiu, X. Y.; Zhou, J. C.; Lee, J. M. Sub-5 nm palladium nanoparticles in situ embedded in N-doped carbon nanoframes: Facile synthesis, excellent sinter resistance and electrocatalytic properties. J. Mater. Chem. A2019, 7, 26243–26249.

    CAS  Google Scholar 

  36. Fu, G. T.; Liu, Y.; Wu, Z. X.; Lee, J. M. 3D robust carbon aerogels immobilized with Pd3Pb nanoparticles for oxygen reduction catalysis. ACS Appl. Nano Mater.2018, 1, 1904–1911.

    CAS  Google Scholar 

  37. Fu, G. T.; Jiang, X.; Gong, M. X.; Chen, Y.; Tang, Y. W.; Lin, J.; Lu, T. H. Highly branched platinum nanolance assemblies by polyallylamine functionalization as superior active, stable, and alcohol-tolerant oxygen reduction electrocatalysts. Nanoscale2014, 6, 8226–8234.

    CAS  Google Scholar 

  38. Zhao, Y. P.; Tao, L.; Dang, W.; Wang, L. L.; Xia, M. R.; Wang, B.; Liu, M. M.; Gao, F. M.; Zhang, J. J.; Zhao, Y. F. High-indexed PtNi alloy skin spiraled on Pd nanowires for highly efficient oxygen reduction reaction catalysis. Small2019, 15, 1900288.

    Google Scholar 

  39. Li, T. F.; Wang, Y.; Tang, Y. Z.; Xu, L.; Si, L.; Fu, G. T.; Sun, D. M.; Tang, Y. W. White phosphorus derived PdAu-P ternary alloy for efficient methanol electrooxidation. Catal. Sci. Technol.2017, 7, 3355–3360.

    CAS  Google Scholar 

  40. Liu, Z. Y.; Fu, G. T.; Li, J. H.; Liu, Z. Q.; Xu, L.; Sun, D. M.; Tang, Y. W. Facile synthesis based on novel carbon-supported cyanogel of structurally ordered Pd3Fe/C as electrocatalyst for formic acid oxidation. Nano Res.2018, 11, 4686–4696.

    CAS  Google Scholar 

  41. Yang, D. J.; Kamienchick, I.; Youn, D. Y.; Rothschild, A.; Kim, I. D. Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading. Adv. Funct. Mater.2010, 20, 4258–4264.

    CAS  Google Scholar 

  42. Weinert, M.; Watson, R. E. Core-level shifts in bulk alloys and surface adlayers. Phys. Rev. B1995, 51, 17168–17180.

    CAS  Google Scholar 

  43. Fu, G. T.; Liu, Z. Y.; Chen, Y.; Lin, J.; Tang, Y. W.; Lu, T. H. Synthesis and electrocatalytic activity of Au@Pd core-shell nanothorns for the oxygen reduction reaction. Nano Res.2014, 7, 1205–1214.

    CAS  Google Scholar 

  44. Wakisaka, M.; Mitsui, S.; Hirose, Y.; Kawashima, K.; Uchida, H.; Watanabe, M. Electronic structures of Pt-Co and Pt-Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS. J. Phys. Chem. B2006, 110, 23489–23496.

    CAS  Google Scholar 

  45. Luan, C. L.; Zhou, Q. X.; Wang, Y.; Xiao, Y.; Dai, X. P.; Huang, X. L.; Zhang, X. A general strategy assisted with dual reductants and dual protecting agents for preparing Pt-based alloys with high-index facets and excellent electrocatalytic performance. Small2017, 13, 1702617.

    Google Scholar 

  46. Geng, J. R.; Zhu, Z.; Bai, X. X.; Li, F. J.; Chen, J. Hot-injection synthesis of PtCu3 concave nanocubes with high-index facets for electrocatalytic oxidation of methanol and formic acid. ACS Appl. Energy Mater.2020, 3, 1010–1016.

    CAS  Google Scholar 

  47. Zhang, P. F.; Dai, X. P.; Zhang, X.; Chen, Z. K.; Yang, Y.; Sun, H.; Wang, X. B.; Wang, H.; Wang, M. L.; Su, H. X. et al. One-pot synthesis of ternary Pt-Ni-Cu nanocrystals with high catalytic performance. Chem. Mater.2015, 27, 6402–6410.

    CAS  Google Scholar 

  48. Ganduglia-Pirovano, M. V.; Natoli, V.; Cohen, M. H.; Kudrnovsky, J.; Turek, I. Potential, core-level, and d band shifts at transition-metal surfaces. Phys. Rev. B1996, 54, 8892–8898.

    CAS  Google Scholar 

  49. Lee, K.; Savadogo, O.; Ishihara, A.; Mitsushima, S.; Kamiya, N.; Ota, K. I. Methanol-tolerant oxygen reduction electrocatalysts based on Pd-3D transition metal alloys for direct methanol fuel Cells. J. Electrochem. Soc.2006, 153, A20–A24.

    CAS  Google Scholar 

  50. Tan, Y. M.; Fan, J. M.; Chen, G. X.; Zheng, N. F.; Xie, Q. J. Au/Pt and Au/Pt3Ni nanowires as self-supported electrocatalysts with high activity and durability for oxygen reduction. Chem. Commun.2011, 47, 11624–11626.

    CAS  Google Scholar 

  51. Wang, C.; van der Vliet, D.; More, K. L.; Zaluzec, N. J.; Peng, S.; Sun, S. H.; Daimon, H.; Wang, G. F.; Greeley, J.; Pearson, J. et al. Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett.2011, 11, 919–926.

    CAS  Google Scholar 

  52. You, H.; Zurawski, D. J.; Nagy, Z.; Yonco, R. M. In-situ X-ray reflectivity study of incipient oxidation of Pt(111) surface in electrolyte solutions. J. Chem. Phys.1994, 100, 4699–4702.

    CAS  Google Scholar 

  53. Komanicky, V.; Chang, K. C.; Menzel, A.; Markovic, N. M.; You, H.; Wang, X.; Myers, D. Stability and dissolution of platinum surfaces in perchloric acid. J. Electrochem. Soc.2006, 153, B446–B451.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Academic Research Fund (AcRF) Tier 1 Grant (No. RG105/19) from the Ministry of Education in Singapore, the National Natural Science Foundation of China (No. 21875112), and the China Scholarship Council (No. 201906090199).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiancheng Zhou, Jong-Min Lee or Yawen Tang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Xiong, Y., Zhao, R. et al. Trimetallic Au@PdPb nanowires for oxygen reduction reaction. Nano Res. 13, 2691–2696 (2020). https://doi.org/10.1007/s12274-020-2911-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2911-9

Keywords

Navigation