Skip to main content
Log in

Photodeposition fabrication of hierarchical layered Co-doped Ni oxyhydroxide (NixCo1−xOOH) catalysts with enhanced electrocatalytic performance for oxygen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Highly active, durable and inexpensive oxygen evolution reaction (OER) catalysts are crucial for achieving practical and high-efficiency water splitting. Herein, hierarchical interconnected NixCo1−xOOH nanosheet arrays supported on TiO2/Ti substrate have been fabricated through a facile photodeposition method. Compared with pristine NiOOH, the obtained NixCo1−xOOH nanosheet arrays possess larger exposed electrochemical active surface area, faster transfer and collection of electrons and stronger electronic interaction, showing a low overpotential of 350 mV at a current density of 10 mA·cm−2 and a small Tafel slope of 41 mV·dec−1 in basic solutions, with the OER performance superior to pristine NiOOH and most Ni-based catalysts. Furthermore, the NixCo1−xOOH electrode demonstrates excellent stability at the current density of 10 mA·cm−2 for 24 hours, which is attributed to the structural maintenance caused by the good adhesion of the catalyst and the substrate. Our study provides an alternative approach for the rational design of highly active and promising OER electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal.2017, 7, 7196–7225.

    CAS  Google Scholar 

  2. Zhang, H.; Li, H. Y.; Akram, B.; Wang, X. Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res.2019, 12, 1327–1331.

    CAS  Google Scholar 

  3. Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res.2018, 11, 1883–1894.

    CAS  Google Scholar 

  4. He, W. H.; Yang, Y.; Wang, L. R.; Yang, J. J.; Xiang, X.; Yan, D. P.; Li, F. Photoelectrochemical water oxidation efficiency of a core/shell array photoanode enhanced by a dual suppression strategy. ChemSusChem2015, 8, 1568–1576.

    CAS  Google Scholar 

  5. Ye, W.; Fang, X. Y.; Chen, X. B.; Yan, D. P. A three-dimensional nickel-chromium layered double hydroxide micro/nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting. Nanoscale2018, 10, 19484–19491.

    CAS  Google Scholar 

  6. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev.2015, 44, 5148–5180.

    CAS  Google Scholar 

  7. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc.2014, 136, 7587–7590.

    CAS  Google Scholar 

  8. Zhang, Q.; Zhong, H. X.; Meng, F. L.; Bao, D.; Zhang, X. B.; Wei, X. L. Three-dimensional interconnected Ni(Fe)OxHy nanosheets on stainless steel mesh as a robust integrated oxygen evolution electrode. Nano Res.2018, 11, 1294–1300.

    CAS  Google Scholar 

  9. Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev.2014, 43, 6555–6569.

    CAS  Google Scholar 

  10. Grätzel, M. Photoelectrochemical cells. Nature2001, 414, 338–344.

    Google Scholar 

  11. Swierk, J. R.; Mallouk, T. E. Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chem. Soc. Rev.2013, 42, 2357–2387.

    CAS  Google Scholar 

  12. Chen, B.; Zhang, Z.; Kim, S.; Lee, S.; Lee, J.; Kim, W.; Yong, K. Ostwald ripening driven exfoliation to ultrathin layered double hydroxides nanosheets for enhanced oxygen evolution reaction. ACS Appl. Mater. Interfaces2018, 10, 44518–44526.

    CAS  Google Scholar 

  13. Wu, Z. C.; Wang, X.; Huang, J. S.; Gao, F. A Co-doped Ni-Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting. J. Mater. Chem. A2018, 6, 167–178.

    CAS  Google Scholar 

  14. Shen, J. Y.; Wang, M.; Zhao, L.; Jiang, J.; Liu, H.; Liu, J. X Self-supported stainless steel nanocone array coated with a layer of Ni-Fe oxides/(oxy)hydroxides as a highly active and robust electrode for water oxidation. ACS Appl. Mater. Interfaces2018, 10, 8786–8796.

    CAS  Google Scholar 

  15. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Horn, Y. S. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science2011, 334, 1383–1385.

    CAS  Google Scholar 

  16. Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc.2015, 137, 3638–3648.

    CAS  Google Scholar 

  17. Liu, G. G.; Li, P.; Zhao, G. X.; Wang, X.; Kong, J. T.; Liu, H. M.; Zhang, H. B.; Chang, K.; Meng, X. G.; Kako, T. et al. Promoting active species generation by plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc.2016, 138, 9128–9136.

    CAS  Google Scholar 

  18. Cui, X. J.; Ren, P. J.; Deng, D. H.; Deng, J.; Bao, X. H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci.2016, 9, 123–129.

    CAS  Google Scholar 

  19. Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater.2012, 11, 550–557.

    CAS  Google Scholar 

  20. Tkalych, A. J.; Martirez, J. M. P.; Carter, E. A. Effect of transition-metal-ion dopants on the oxygen evolution reaction on NiOOH(0001). Phys. Chem. Chem. Phys.2018, 20, 19525–19531.

    CAS  Google Scholar 

  21. Conesa, J. C. Electronic structure of the (undoped and Fe-doped) NiOOH O2 evolution electrocatalyst. J. Phys. Chem. C2016, 120, 18999–19010.

    CAS  Google Scholar 

  22. Zaffran, J.; Toroker, M. C. Benchmarking density functional theory based methods to model NiOOH material properties: Hubbard and van der Waals corrections vs hybrid functionals. J. Chem. Theory Comput.2016, 12, 3807–3812.

    CAS  Google Scholar 

  23. Shao, Y. B.; Zheng, M. Y.; Cai, M. M.; He, L.; Xu, C. L. Improved electrocatalytic performance of core-shell NiCo/NiCoOx with amorphous FeOOH for oxygen-evolution reaction. Electrochim. Acta2017, 257, 1–8.

    CAS  Google Scholar 

  24. Jin, Y. S.; Huang, S. L.; Yue, X.; Shu, C.; Shen, P. K. Highly stable and efficient non-precious metal electrocatalysts of Mo-doped NiOOH nanosheets for oxygen evolution reaction. Int. J. Hydrogen Energy2018, 43, 12140–12145.

    CAS  Google Scholar 

  25. Stevens, M. B.; Trang, C. D. M.; Enman, L. J.; Deng, J.; Boettcher, S. W. Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc.2017, 139, 11361–11364.

    CAS  Google Scholar 

  26. Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc.2018, 140, 3876–3879.

    CAS  Google Scholar 

  27. Liang, Y.; Yu, Y. F.; Huang, Y.; Shi, Y. M.; Zhang, B. Adjusting the electronic structure by Ni incorporation: A generalized in situ electrochemical strategy to enhance water oxidation activity of oxyhydroxides. J. Mater. Chem. A2017, 5, 13336–13340.

    CAS  Google Scholar 

  28. Gao, R.; Yan, D. P. Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater, in press, DOI: https://doi.org/10.1002/aenm.201900954.

  29. Guo, Z. G.; Ye, W.; Fang, X. Y.; Wan, J.; Ye, Y. Y.; Dong, Y. Y.; Cao, D.; Yan, D. P. Amorphous cobalt-iron hydroxides as high-efficiency oxygen-evolution catalysts based on a facile electrospinning process. Inorg. Chem. Front.2019, 6, 687–693.

    CAS  Google Scholar 

  30. Yang, Y.; Fei, H. L.; Ruan, G. D.; Xiang, C. S.; Tour, J. M. Efficient electrocatalytic oxygen evolution on amorphous nickel-cobalt binary oxide nanoporous layers. ACS Nano2014, 8, 9518–9523.

    CAS  Google Scholar 

  31. Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc.2014, 136, 6744–6753.

    CAS  Google Scholar 

  32. Xu, Y. Q.; Hao, Y. C.; Zhang, G. X.; Lu, Z. Y.; Han, S.; Li, Y. P.; Sun, X. M. Room-temperature synthetic NiFe layered double hydroxide with different anions intercalation as an excellent oxygen evolution catalyst. RSC Adv.2015, 5, 55131–55135.

    CAS  Google Scholar 

  33. Zhu, S. S.; Zhang, P. P.; Chang, L.; Zhong, Y.; Wang, K.; Shao, H. B.; Wang, J. M.; Zhang, J. Q.; Cao, C. N. Photochemical fabrication of 3D hierarchical Mn3O4/H-TiO2 composite films with excellent electrochemical capacitance performance. Phys. Chem. Chem. Phys.2016, 18, 8529–8536.

    CAS  Google Scholar 

  34. Zhang, L. Y.; Zhong, Y.; He, Z. S.; Wang, J. M.; Xu, J.; Cai, J.; Zhang, N.; Zhou, H.; Fan, H. Q.; Shao, H. B. et al. Surfactant-assisted photochemical deposition of three-dimensional nanoporous nickel oxyhydroxide films and their energy storage and conversion properties. J. Mater. Chem. A2013, 1, 4277–4285.

    CAS  Google Scholar 

  35. Shao, F.; Sun, J.; Gao, L.; Yang, S. W.; Luo, J. Q. Growth of various TiO2 nanostructures for dye-sensitized solar cells. J. Phys. Chem. C2011, 115, 1819–1823.

    CAS  Google Scholar 

  36. Zhu, Z. J.; Liu, X. Y.; Ye, Z. N.; Zhang, J. Q.; Cao, F. H.; Zhang, J. X. A fabrication of iridium oxide film pH micro-sensor on Pt ultramicroelectrode and its application on in-situ pH distribution of 316L stainless steel corrosion at open circuit potential. Sens. Actuators B Chem.2018, 255, 1974–1982.

    CAS  Google Scholar 

  37. Lu, X. H.; Zeng, Y. X.; Yu, M. H.; Zhai, T.; Liang, C. L.; Xie, S. L.; Balogun, M. S.; Tong, Y. X. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater.2014, 26, 3148–3155.

    CAS  Google Scholar 

  38. Gao, T. T.; Jin, Z. Y.; Liao, M.; Xiao, J. L.; Yuan, H. Y.; Xiao, D. A trimetallic V-Co-Fe oxide nanoparticle as an efficient and stable electrocatalyst for oxygen evolution reaction. J. Mater. Chem. A2015, 3, 17763–17770.

    CAS  Google Scholar 

  39. Li, J. T.; Huang, W. Z.; Wang, M. M.; Xi, S. B.; Meng, J. S.; Zhao, K. N.; Jin, J.; Xu, W. W.; Wang, Z. Y.; Liu, X. et al. Low-crystalline bimetallic metal-organic framework electrocatalysts with rich active sites for oxygen evolution. ACS Energy Lett.2019, 4, 285–292.

    CAS  Google Scholar 

  40. Bledowski, M.; Wang, L. D.; Neubert, S.; Mitoraj, D.; Beranek, R. Improving the performance of hybrid photoanodes for water splitting by photodeposition of iridium oxide nanoparticles. J. Phys. Chem. C2014, 118, 18951–18961.

    CAS  Google Scholar 

  41. Le Formal, F.; Grätzel, M.; Sivula, K. Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv. Funct. Mater.2010, 20, 1099–1107.

    CAS  Google Scholar 

  42. Park, H.; Kim, K. Y.; Choi, W. Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode. J. Phys. Chem. B2002, 106, 4775–4781.

    CAS  Google Scholar 

  43. Zhang, L. Y.; Xu, L.; Wang, J. M.; Shao, H. B.; Fan, Y. Q.; Zhang, J. Q. UV-induced oxidative energy storage behavior of a novel nanostructured TiO2-Ni(OH)2 bilayer system. J. Phys. Chem. C2011, 115, 18027–18034.

    CAS  Google Scholar 

  44. Li, Y.; Hu, L. S.; Zheng, W. R.; Peng, X.; Liu, M. J.; Chu, P. K.; Lee, L. Y. S. Ni/Co-based nanosheet arrays for efficient oxygen evolution reaction. Nano Energy2018, 52, 360–368.

    CAS  Google Scholar 

  45. Steimecke, M.; Seiffarth, G.; Bron, M. In situ characterization of Ni and Ni/Fe thin film electrodes for oxygen evolution in alkaline media by a Raman-coupled scanning electrochemical microscope setup. Anal. Chem.2017, 89, 10679–10686.

    CAS  Google Scholar 

  46. Yeo, B. S.; Bell, A. T. In situ Raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J. Phys. Chem. C2012, 116, 8394–8400.

    CAS  Google Scholar 

  47. Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc.2013, 135, 12329–12337.

    CAS  Google Scholar 

  48. Xu, R.; Wu, R.; Shi, Y. M.; Zhang, J. F.; Zhang, B. Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations. Nano Energy2016, 24, 103–110.

    CAS  Google Scholar 

  49. Huang, J. H.; Chen, J. T.; Yao, T.; He, J. F.; Jiang, S.; Sun, Z. H.; Liu, Q. H.; Cheng, W. R.; Hu, F. C.; Jiang, Y. et al. CoOOH nanosheets with high mass activity for water oxidation. Angew. Chem., Int. Ed.2015, 54, 8722–8727.

    CAS  Google Scholar 

  50. Han, X. T.; Yu, C.; Zhou, S.; Zhao, C. T.; Huang, H. W.; Yang, J.; Liu, Z. B.; Zhao, J. J.; Qiu, J. S. Ultrasensitive iron-triggered nanosized Fe-CoOOH integrated with graphene for highly efficient oxygen evolution. Adv. Energy Mater.2017, 7, 1602148.

    Google Scholar 

  51. Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc.2011, 133, 5587–5593.

    CAS  Google Scholar 

  52. Zhu, S. S.; Huang, L. A.; He, Z. S.; Wang, K.; Guo, J. F.; Pei, S. E.; Shao, H. B.; Wang, J. M. Investigation of oxygen vacancies in Fe2O3/CoOx composite films for boosting electrocatalytic oxygen evolution performance stably. J. Electroanal. Chem.2018, 827, 42–50.

    CAS  Google Scholar 

  53. Chen, Z.; Cai, L.; Yang, X. F.; Kronawitter, C.; Guo, L. J.; Shen, S. H.; Koel, B. E. Reversible structural evolution of NiCoOxHy during the oxygen evolution reaction and identification of the catalytically active phase. ACS Catal.2018, 8, 1238–1247.

    CAS  Google Scholar 

  54. Dupin, J. C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys.2000, 2, 1319–1324.

    CAS  Google Scholar 

  55. Levine, S.; Smith, A. L. Theory of the differential capacity of the oxide/aqueous electrolyte interface. Discuss. Faraday Soc.1971, 52, 290–301.

    Google Scholar 

  56. Wu, L. K.; Wu, W. Y.; Xia, J.; Cao, H. Z.; Hou, G. Y.; Tang, Y. P.; Zheng, G. Q. Nanostructured NiCo@NiCoOx core-shell layer as efficient and robust electrocatalyst for oxygen evolution reaction. Electrochim. Acta2017, 254, 337–347.

    CAS  Google Scholar 

  57. Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc.2014, 136, 4897–4900.

    CAS  Google Scholar 

  58. Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. L. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci.2012, 3, 2515–2525.

    CAS  Google Scholar 

  59. Peng, S. J.; Li, L. L.; Han, X. P.; Sun, W. P.; Srinivasan, M.; Mhaisalkar, S. G.; Cheng, F. Y.; Yan, Q. Y.; Chen, J.; Ramakrishna, S. Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew. Chem., Int. Ed.2014, 53, 12594–12599.

    CAS  Google Scholar 

  60. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc.2013, 135, 16977–16987.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21373182) and the Zhejiang Provincial Natural Science Foundation of China (No. LY17B030004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Wang.

Electronic Supplementary Material

12274_2019_2607_MOESM1_ESM.pdf

Photodeposition fabrication of hierarchical layered Co-doped Ni oxyhydroxide (NixCo1−xOOH) catalysts with enhanced electrocatalytic performance for oxygen evolution reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, La., He, Z., Guo, J. et al. Photodeposition fabrication of hierarchical layered Co-doped Ni oxyhydroxide (NixCo1−xOOH) catalysts with enhanced electrocatalytic performance for oxygen evolution reaction. Nano Res. 13, 246–254 (2020). https://doi.org/10.1007/s12274-019-2607-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2607-1

Keywords

Navigation