Skip to main content
Log in

Interfacial engineering of Ni/V2O3 for hydrogen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrocatalytic water splitting offers a sustainable route for hydrogen production, enabling the clean and renewable alternative energy system of hydrogen economy. The scarcity and high-cost of platinum-group-metal (PGM) materials urge the exploration of high-performance non-PGM electrocatalysts. Herein, a unique hierarchical structure of Ni/V2O3 with extraordinary electrocatalytic performance (e.g., overpotentials as low as 22 mV at 20 mA·cm−2 and 94 mV at 100 mA·cm−2) toward hydrogen evolution reaction in alkaline electrolyte (1 M KOH) is reported. The investigation on the hierarchical Ni/V2O3 with a bimodal size-distribution also offers insight of interfacial engineering that only proper Ni/V2O3 interface can effectively improve H2O adsorption, H2O dissociation as well as H adsorption, for an efficient hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science2017, 355, eaad4998.

  2. Wang, J.; Xu, F.; Jin, H. Y.; Chen, Y. Q.; Wang, Y. Non-noble metalbased carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater.2017, 29, 1605838.

    Google Scholar 

  3. Wang, L.; Zhu, Y. H.; Zeng, Z. H.; Lin, C.; Giroux, M.; Jiang, L.; Han, Y.; Greeley, J.; Wang, C.; Jin, J. Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water. Nano Energy2017, 31, 456–461.

    Google Scholar 

  4. Huang, Y.; Gong, Q. F.; Song, X. N.; Feng, K.; Nie, K. Q.; Zhao, F. P.; Wang, Y. Y.; Zeng, M.; Zhong, J.; Li, Y. G. Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electro-catalytic hydrogen evolution. ACS Nano2016, 10, 11337–11343.

    CAS  Google Scholar 

  5. Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater.2012, 11, 550–557.

    CAS  Google Scholar 

  6. Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science2011, 334, 1256–1260.

    CAS  Google Scholar 

  7. Weng, Z.; Liu, W.; Yin, L. C.; Fang, R. P.; Li, M.; Altman, E. I.; Fan, Q.; Li, F.; Cheng, H. M.; Wang, H. L. Metal/oxide interface nanostructures generated by surface segregation for electrocatalysis. Nano Lett.2015, 15, 7704–7710.

    CAS  Google Scholar 

  8. Gong, M.; Wang, D. Y.; Chen, C. C.; Hwang, B. J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res.2016, 9, 28–46.

    CAS  Google Scholar 

  9. Zeng, M.; Li, Y. G. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A2015, 3, 14942–14962.

    CAS  Google Scholar 

  10. Chen, Z. Y.; Song, Y.; Cai, J. Y.; Zheng, X. S.; Han, D. D.; Wu, Y. S.; Zang, Y. P.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem., Int. Ed.2018, 57, 5076–5080.

    CAS  Google Scholar 

  11. Qu, Y. J.; Yang, M. Y.; Chai, J. W.; Tang, Z.; Shao, M. M.; Kwok, C. T.; Yang, M.; Wang, Z. Y.; Chua, D.; Wang, S. J. et al. Facile synthesis of vanadium-doped Ni3S2 nanowire arrays as active electrocatalyst for hydrogen evolution reaction. ACS Appl. Mater. Interfaces2017, 9, 5959–5967.

    CAS  Google Scholar 

  12. Ming, M.; Ma, Y. L.; Zhang, Y.; Huang, L. B.; Zhao, L.; Chen, Y. Y.; Zhang, X.; Fan, G. Y.; Hu, J. S. 3D nanoporous Ni/V2O3 hybrid nanoplate assemblies for highly efficient electrochemical hydrogen evolution. J. Mater. Chem. A2018, 6, 21452–21457.

    CAS  Google Scholar 

  13. Ji, D.; Peng, L. S.; Shen, J. J.; Deng, M. M.; Mao, Z. X.; Tan, L. Q.; Wang, M. J.; Xiang, R.; Wang, J.; Shah, S. S. A. Inert V2O3 oxide promotes the electrocatalytic activity of Ni metal for alkaline hydrogen evolution. Chem. Commun.2019, 55, 3290–3293.

    CAS  Google Scholar 

  14. Wu, C. H.; Liu, C.; Su, D.; Xin, H. L.; Fang, H. T.; Eren, B.; Zhang, S.; Murray, C. B.; Salmeron, M. B. Bimetallic synergy in cobalt-palladium nanocatalysts for CO oxidation. Nat. Catal.2019, 2, 78–85.

    CAS  Google Scholar 

  15. Liu, C.; Ma, Z.; Cui, M. Y.; Zhang, Z. Y.; Zhang, X.; Su, D.; Murray, C. B.; Wang, J. X.; Zhang, S. Favorable core/shell interface within Co2P/Pt nanorods for oxygen reduction electrocatalysis. Nano Lett.2018, 18, 7870–7875.

    CAS  Google Scholar 

  16. Kang, Y. J.; Yang, P. D.; Markovic, N. M.; Stamenkovic, V. R. Shaping electrocatalysis through tailored nanomaterials. Nano Today2016, 11, 587–600.

    CAS  Google Scholar 

  17. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science2014, 343, 1339–1343.

    CAS  Google Scholar 

  18. Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc.2011, 133, 7296–9.

    CAS  Google Scholar 

  19. Liao, H. B.; Fisher, A.; Xu, Z. J. Surface segregation in bimetallic nanoparticles: A critical issue in electrocatalyst engineering. Small2015, 11, 3221–3246.

    CAS  Google Scholar 

  20. Wang, Y. Q.; Zou, Y. Q.; Tao, L.; Wang, Y. Y.; Huang, G.; Du, S. Q.; Wang, S. Y. Rational design of three-phase interfaces for electrocatalysis. Nano Res.2019, 12, 2055–2066.

    Google Scholar 

  21. Xu, H.; Chu, W.; Sun, W. J.; Jiang, C. F.; Liu, Z. Q. DFT studies of Ni cluster on graphene surface: Effect of CO2 activation. RSC Adv.2016, 6, 96545–96553.

    CAS  Google Scholar 

  22. Green, I. X.; Tang, W. J.; Neurock, M.; Yates, J. T. Jr. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science2011, 333, 736–739.

    CAS  Google Scholar 

  23. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B1996, 54, 11169–11186.

    CAS  Google Scholar 

  24. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B1999, 59(3), 1758–1775.

    Google Scholar 

  25. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865–3868.

    CAS  Google Scholar 

  26. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B1976, 13, 5188–5192.

    Google Scholar 

  27. Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B2011, 83, 195131.

    Google Scholar 

  28. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys.2000, 113, 9901–9904.

    CAS  Google Scholar 

  29. Yu, J. Y.; Zhou, W. J.; Xiong, T. L.; Wang, A. L.; Chen, S. W.; Chu, B. L. Enhanced electrocatalytic activity of Co@N-doped carbon nanotubes by ultrasmall defect-rich TiO2 nanoparticles for hydrogen evolution reaction. Nano Res.2017, 10, 2599–2609.

    CAS  Google Scholar 

  30. Yao, Q. L.; Lu, Z. H.; Yang, Y. W.; Chen, Y. Z.; Chen, X. S.; Jiang, H. L. Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Nano Res.2018, 11, 4412–4422.

    CAS  Google Scholar 

  31. Shi, H. H.; Liang, H. F.; Ming, F. W.; Wang, Z. C. Efficient overall water-splitting electrocatalysis using lepidocrocite VOOH hollow nanospheres. Angew. Chem., Int. Ed.2017, 56, 573–577.

    CAS  Google Scholar 

  32. Fan, K.; Chen, H.; Ji, Y. F.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F. S.; Luo, Y. et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun.2016, 7, 11981.

    CAS  Google Scholar 

  33. An, L.; Zhang, Z. Y.; Feng, J. R.; Lv, F.; Li, Y. X.; Wang, R.; Lu, M.; Gupta, R. B.; Xi, P. X.; Zhang, S. Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc-air battery with neutral aqueous electrolyte. J. Am. Chem. Soc.2018, 140, 17624–17631.

    CAS  Google Scholar 

  34. Ou, G.; Xu, Y. S.; Wen, B.; Lin, R.; Ge, B. H.; Tang, Y.; Liang, Y. W.; Yang, C.; Huang, K.; Zu, D. et al. Tuning defects in oxides at room temperature by lithium reduction. Nat. Commun.2018, 9, 1302.

    Google Scholar 

  35. Bao, K. Y.; Mao, W. T.; Liu, G. Y.; Ye, L. Q.; Xie, H. Q.; Ji, S. F.; Wang, D. S.; Chen, C.; Li, Y. D. Preparation and electrochemical characterization of ultrathin WO3−x /C nanosheets as anode materials in lithium ion batteries. Nano Res.2017, 10, 1903–1911.

    CAS  Google Scholar 

  36. Wu, H.; Lu, X.; Zheng, G. F.; Ho, G. W. Topotactic engineering of ultrathin 2D nonlayered nickel selenides for full water electrolysis. Adv. Energy Mater.2018, 8, 1702704.

    Google Scholar 

  37. Vitos, L.; Ruban, A. V.; Skriver, H. L.; Kollár, J. The surface energy of metals. Surf. Sci.1998, 411, 186–202.

    CAS  Google Scholar 

  38. Ji, C. C.; Bi, J. L.; Wang, S.; Zhang, X. J.; Yang, S. C. Ni nanoparticle doped porous VN nanoflakes assembled into hierarchical hollow microspheres with a structural inheritance from the Ni1−xYxO2 cathode material for high performance asymmetric supercapacitors. J. Mater. Chem. A2016, 4, 2158–2168.

    CAS  Google Scholar 

  39. Xiao, Y. L.; Tian, C. G.; Tian, M.; Wu, A. P.; Yan, H. J.; Chen, C. F.; Wang, L.; Jiao, Y. Q.; Fu, H. G. Cobalt-vanadium bimetal-based nanoplates for efficient overall water splitting. Sci. China Mater.2018, 61, 80–90.

    CAS  Google Scholar 

  40. Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Paul Alivisatos, A. Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science2004, 304, 711–714.

    CAS  Google Scholar 

  41. González, E.; Arbiol, J.; Puntes, V. F. Carving at the nanoscale: Sequential galvanic exchange and Kirkendall growth at room temperature. Science2011, 334, 1377–1380.

    Google Scholar 

  42. Sun, T. T.; Zhao, S.; Chen, W. X.; Zhai, D.; Dong, J. C.; Wang, Y.; Zhang, S. L.; Han, A. J.; Gu, L.; Yu, R. et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl. Acad. Sci. USA2018, 115, 12692–12697.

    CAS  Google Scholar 

  43. Liao, L.; Wang, S. N.; Xiao, J. J.; Bian, X. J.; Zhang, Y. H.; Scanlon, M. D.; Hu, X. L.; Tang, Y.; Liu, B. H.; Girault, H. H. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci.2014, 7, 387–392.

    CAS  Google Scholar 

  44. Wang, S. Y.; Zhang, L.; Li, X.; Li, C. L.; Zhang, R. J.; Zhang, Y. J.; Zhu, H. W. Sponge-like nickel phosphide-carbon nanotube hybrid electrodes for efficient hydrogen evolution over a wide pH range. Nano Res.2017, 10, 415–425.

    CAS  Google Scholar 

  45. Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science2013, 341, 771–773.

    CAS  Google Scholar 

  46. Kang, Y. J.; Ye, X. C.; Chen, J.; Qi, L.; Diaz, R. E.; Doan-Nguyen, V.; Xing, G. Z.; Kagan, C. R.; Li, J.; Gorte, R. J. et al. Engineering catalytic contacts and thermal stability: Gold/iron oxide binary nanocrystal superlattices for CO oxidation. J. Am. Chem. Soc.2013, 135, 1499–1505.

    CAS  Google Scholar 

  47. Zheng, J.; Sheng, W. C.; Zhuang, Z. B.; Xu, B. J.; Yan, Y. S. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2016, 2, e1501602.

  48. Intikhab, S.; Rebollar, L.; Fu, X. B.; Yue, Q.; Li, Y. W.; Kang, Y. J.; Tang, M. H.; Snyder, J. D. Exploiting dynamic water structure and structural sensitivity for nanoscale electrocatalyst design. Nano Energy2019, 64, 103963.

    CAS  Google Scholar 

  49. Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem., Int. Ed.2012, 51, 12495–12498.

    CAS  Google Scholar 

  50. Lin, H. L.; Shi, Z. P.; He, S. N.; Yu, X.; Wang, S. N.; Gao, Q. S.; Tang, Y. Heteronanowires of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem. Sci.2016, 7, 3399–3405.

    CAS  Google Scholar 

  51. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc.2005, 152, J23–J26.

    Google Scholar 

  52. Wang, P. T.; Zhang, X.; Zhang, J.; Wan, S.; Guo, S. J.; Lu, G.; Yao, J. L.; Huang, X. Q. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun.2017, 8, 14580.

    CAS  Google Scholar 

  53. Chen, S. C.; Kang, Z. X.; Hu, X.; Zhang, X. D.; Wang, H.; Xie, J. F.; Zheng, X. S.; Yan, W. S.; Pan, B. C.; Xie, Y. Delocalized spin states in 2D atomic layers realizing enhanced electrocatalytic oxygen evolution. Adv. Mater.2017, 29, 1701687.

    Google Scholar 

  54. Pan, Y.; Sun, K. A.; Lin, Y.; Cao, X.; Cheng, Y. S.; Liu, S. J.; Zeng, L. Y.; Cheong, W. C.; Zhao, D.; Wu, K. L. et al. Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy2019, 56, 411–419.

    CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos. 11874005, 21701153, 51601030 and 21773023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanning Zhang or Yijin Kang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Rao, Y., Wang, R. et al. Interfacial engineering of Ni/V2O3 for hydrogen evolution reaction. Nano Res. 13, 2407–2412 (2020). https://doi.org/10.1007/s12274-020-2865-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2865-y

Keywords

Navigation