Skip to main content
Log in

Recent development of Au arched Pt nanomaterials as promising electrocatalysts for methanol oxidation reaction

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The recent development of Aurum (Au) introduced Platinum (Pt) based nanomaterials is of great significance to direct methanol fuel cell as electrocatalysts for anode reactions, due to its stability and anti-poisoning features. Therefore, the performance of PtAu based catalysts with different elements, atomic ratio, and morphology was studied in methanol solution to further improve its electrocatalytic activity. Furthermore, the effects of Au have aroused the researchers’ attention in Pt-based nanocatalysts. In this review, we summarize the controllable synthesis, mechanism, and catalytic performance of Au introduced Pt-based electrocatalysts such as PtAu core-shell nanostructures, PtAu dendrite, PtAu nanowires, self-supporting Au@Pt NPs, and Au@Pt star-like nanocrystals for the methanol oxidation reaction. Finally, the challenges and research directions for the future development of PtAu based catalysts are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tian, X. L.; Xu, Y. Y.; Zhang, W. Y.; Wu, T.; Xia, B. Y.; Wang, X. Unsupported platinum-based electrocatalysts for oxygen reduction reaction. ACS Energy Lett. 2017, 2, 2035–2043.

    Article  CAS  Google Scholar 

  2. Panwar, N. L.; Kaushik, S. C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sust. Energ. Rev. 2011, 15, 1513–1524.

    Article  Google Scholar 

  3. Lei, Z. D.; Xue, Y. C.; Chen, W. Q.; Qiu, W. H.; Zhang, Y.; Horike, S.; Tang, L. MOFs-based heterogeneous catalysts: New opportunities for energy-related CO2 conversion. Adv. Energy Mater. 2018, 8, 1801587.

    Article  Google Scholar 

  4. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  5. Leow, W. R.; Lum, Y.; Ozden, A.; Wang, Y. H.; Nam, D. H.; Chen, B.; Wicks, J.; Zhuang, T. T.; Li, F. W.; Sinton, D. et al. Chloridemediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 2020, 368, 1228–1233.

    Article  CAS  Google Scholar 

  6. Lemmon, J. P. Energy: Reimagine fuel cells. Nature 2015, 525, 447–449.

    Article  CAS  Google Scholar 

  7. Borghei, M.; Lehtonen, J.; Liu, L.; Rojas, O. J. Advanced biomass-derived electrocatalysts for the oxygen reduction reaction. Adv. Mater. 2018, 30, 1703691.

    Article  Google Scholar 

  8. Chen, G. R.; Yang, X. T.; Xie, Z. X.; Zhao, F. L.; Zhou, Z. Y.; Yuan, Q. Hollow PtCu octahedral nanoalloys: Efficient bifunctional electrocatalysts towards oxygen reduction reaction and methanol oxidation reaction by regulating near-surface composition. J. Colloid Interface Sci. 2020, 562, 244–251.

    Article  CAS  Google Scholar 

  9. Xu, X. L.; Xia, Z. X.; Zhang, X. M.; Sun, R. L.; Sun, X. J.; Li, H. Q.; Wu, C. C.; Wang, J. H.; Wang, S. L.; Sun, G. Q. Atomically dispersed Fe-N-C derived from dual metal-organic frameworks as efficient oxygen reduction electrocatalysts in direct methanol fuel cells. Appl. Catal. B Environ. 2019, 259, 118042.

    Article  CAS  Google Scholar 

  10. Scofield, M. E.; Koenigsmann, C.; Wang, L.; Liu, H. Q.; Wong, S. S. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy Environ. Sci. 2015, 8, 350–363.

    Article  CAS  Google Scholar 

  11. Feng, Y.; Liu, H.; Yang, J. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol. Sci. Adv. 2017, 3, e1700580.

    Article  Google Scholar 

  12. Zhao, W. Y.; Ni, B.; Yuan, Q.; He, P. L.; Gong, Y.; Gu, L.; Wang, X. Highly active and durable Pt72Ru28 porous nanoalloy assembled with sub-4.0 nm particles for methanol oxidation. Adv. Energy Mater. 2017, 7, 1601593.

    Article  Google Scholar 

  13. Huang, H. J.; Yang, S. B.; Vajtai, R.; Wang, X.; Ajayan, P. M. Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv. Mater. 2014, 26, 5160–5165.

    Article  CAS  Google Scholar 

  14. Ali, A.; Shen, P. K. Recent advances in graphene-based platinum and palladium electrocatalysts for the methanol oxidation reaction. J. Mater. Chem. A 2019, 7, 22189–22217.

    Article  CAS  Google Scholar 

  15. Lu, S. Q.; Li, H. M.; Sun, J. Y.; Zhuang, Z. B. Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles. Nano Res. 2018, 11, 2058–2068.

    Article  CAS  Google Scholar 

  16. Abdullah, N.; Kamarudin, S. K. Titanium dioxide in fuel cell technology: An overview. J. Power Sources 2015, 278, 109–118.

    Article  CAS  Google Scholar 

  17. Zheng, J.; Cullen, D. A.; Forest, R. V.; Wittkopf, J. A.; Zhuang, Z. B.; Sheng, W. C.; Chen, J. G.; Yan, Y. S. Platinum-ruthenium nanotubes and platinum-ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol. Acs Catal. 2015, 5, 1468–1474.

    Article  CAS  Google Scholar 

  18. Shi, Y.; Fang, Y.; Zhang, G. L.; Wang, X. S.; Cui, P.; Wang, Q.; Wang, Y. X. Hollow PtCu nanorings with high performance for the methanol oxidation reaction and their enhanced durability by using trace Ir. J. Mater. Chem. A 2020, 8, 3795–3802.

    Article  CAS  Google Scholar 

  19. Zhang, G. L.; Yang, Z. Z.; Zhang, W.; Wang, Y. X. Nanosized Mo-doped CeO2 enhances the electrocatalytic properties of the Pt anode catalyst in direct methanol fuel cells. J. Mater. Chem. A 2017, 5, 1481–1487.

    Article  CAS  Google Scholar 

  20. Yang, Z. Z.; Shi, Y.; Wang, X. S.; Zhang, G. L.; Cui, P. Boron as a superior activator for Pt anode catalyst in direct alcohol fuel cell. J. Power Sources 2019, 431, 125–134.

    Article  CAS  Google Scholar 

  21. Yan, Z. X.; He, G. Q.; Shen, P. K.; Luo, Z. B.; Xie, J. M.; Chen, M. MoC-graphite composite as a Pt electrocatalyst support for highly active methanol oxidation and oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 4014–4022.

    Article  CAS  Google Scholar 

  22. Wang, Z.; Hu, S. Q.; Ali, A.; Chen, H. L.; Shen, P. K. Facile one-pot synthesis of a PtRh alloy decorated on Ag nanocubes as a trimetallic core-shell catalyst for boosting methanol oxidation reaction. ACS Appl. Energy Mater. 2021, 4, 1085–1092.

    Article  CAS  Google Scholar 

  23. Zhao, F. L.; Ye, J. Y.; Yuan, Q.; Yang, X. T.; Zhou, Z. Y. Realizing a CO-free pathway and enhanced durability in highly dispersed Cu-doped PtBi nanoalloys towards methanol full electrooxidation. J. Mater. Chem. A 2020, 8, 11564–11572.

    Article  CAS  Google Scholar 

  24. Zhang, Y. P.; Gao, F.; Song, T. X.; Wang, C.; Chen, C. Y.; Du, Y. K. Novel networked wicker-like PtFe nanowires with branch-rich exteriors for efficient electrocatalysis. Nanoscale 2019, 11, 15561–15566.

    Article  CAS  Google Scholar 

  25. Li, Z. J.; Jiang, X.; Wang, X. R.; Hu, J. R.; Liu, Y. Y.; Fu, G. T.; Tang, Y. W. Concave PtCo nanocrosses for methanol oxidation reaction. Appl. Catal. B Environ. 2020, 277, 119135.

    Article  CAS  Google Scholar 

  26. Chen, G. J.; Shan, H. Q.; Li, Y.; Bao, H. W.; Hu, T. W.; Zhang, L.; Liu, S.; Ma, F. Hollow PtCu nanoparticles encapsulated into a carbon shell via mild annealing of Cu metal-organic frameworks. J. Mater. Chem. A 2020, 8, 10337–10345.

    Article  CAS  Google Scholar 

  27. Shan, A. X.; Huang, S. Y.; Zhao, H. F.; Jiang, W. G.; Teng, X. A.; Huang, Y. C.; Chen, C. P.; Wang, R. M.; Lau, W. M. Atomic-scaled surface engineering Ni-Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction. Nano Res. 2020, 13, 3088–3097.

    Article  CAS  Google Scholar 

  28. Xu, L. L.; Cui, Q. Q.; Zhang, H.; Jiao, A. X.; Tian, Y.; Li, S.; Li, H. S.; Chen, M.; Chen, F. Ultra-clean PtPd nanoflowers loaded on go supports with enhanced low-temperature electrocatalytic activity for fuel cells in harsh environment. Appl. Surf. Sci. 2020, 511, 145603.

    Article  CAS  Google Scholar 

  29. Radhakrishnan, T.; Sandhyarani, N. Pt-Ag nanostructured 3D architectures: A tunable catalyst for methanol oxidation reaction. Electrochim. Acta 2019, 298, 835–843.

    Article  CAS  Google Scholar 

  30. Gong, W. H.; Jiang, Z.; Wu, R. F.; Liu, Y.; Huang, L.; Hu, N.; Tsiakaras, P.; Shen, P. K. Cross-double dumbbell-like Pt-Ni nano-structures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. Appl. Catal. B Environ. 2019, 246, 277–283.

    Article  CAS  Google Scholar 

  31. Li, C. L.; Tan, H. B.; Lin, J. J.; Luo, X. L.; Wang, S. P.; You, J.; Kang, Y. M.; Bando, Y.; Yamauchi, Y.; Kim, J. Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano Today 2018, 21, 91–105.

    Article  CAS  Google Scholar 

  32. Zhu, X. X.; Huang, L.; Wei, M.; Tsiakaras, P.; Shen, P. K. Highly stable Pt-Co nanodendrite in nanoframe with Pt skin structured catalyst for oxygen reduction electrocatalysis. Appl. Catal. B Environ. 2021, 281, 119460.

    Article  CAS  Google Scholar 

  33. Du, H. Y.; Wang, K.; Tsiakaras, P.; Shen, P. K. Excavated and dendritic Pt-Co nanocubes as efficient ethylene glycol and glycerol oxidation electrocatalysts. Appl. Catal. B Environ. 2019, 258, 117951.

    Article  CAS  Google Scholar 

  34. Zhang, W. Q.; Shen, Y. L.; Pang, F. J.; Quek, D.; Niu, W. X.; Wang, W. J.; Chen, P. Facet-dependent catalytic performance of Au nanocrystals for electrochemical nitrogen reduction. ACS Appl. Mater. Interfaces 2020, 12, 41613–41619.

    Article  Google Scholar 

  35. Sun, S. M.; An, Q.; Watanabe, M.; Cheng, J. F.; Kim, H. H.; Akbay, T.; Takagaki, A.; Ishihara, T. Highly correlation of CO2 reduction selectivity and surface electron accumulation: A case study of Au-MoS2 and Ag-MoS2 catalyst. Appl. Catal. B Environ. 2020, 271, 118931.

    Article  CAS  Google Scholar 

  36. Ishida, T.; Murayama, T.; Taketoshi, A.; Haruta, M. Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes. Chem. Rev. 2020, 120, 464–525.

    Article  CAS  Google Scholar 

  37. Xu, J. W.; Liu, N.; Wu, D.; Gao, Z. D.; Song, Y. Y.; Schmuki, P. Upconversion nanoparticle-assisted payload delivery from TiO2 under near-infrared light irradiation for bacterial inactivation. ACS Nano 2020, 14, 337–346.

    Article  CAS  Google Scholar 

  38. Zhu, B.; Zhang, L. Y.; Li, M.; Yan, Y.; Zhang, X. M.; Zhu, Y. M. High-performance of plasma-catalysis hybrid system for toluene removal in air using supported Au nanocatalysts. Chem. Eng. J. 2020, 381, 122599.

    Article  CAS  Google Scholar 

  39. Malta, G.; Kondrat, S. A.; Freakley, S. J.; Davies, C. J.; Lu, L.; Dawson, S.; Thetford, A.; Gibson, E. K.; Morgan, D. J.; Jones, W. et al. Identification of single-site gold catalysis in acetylene hydrochlorination. Science 2017, 355, 1399–1403.

    Article  CAS  Google Scholar 

  40. Jeong, H.; Kim, J. Methanol dehydrogenation reaction at Au@Pt catalysts: Insight into the methanol electrooxidation. Electrochim. Acta 2018, 283, 11–17.

    Article  CAS  Google Scholar 

  41. Xu, G. D. A comparative study on electrocatalytic performance of PtAu/C and PtRu/C nanoparticles for methanol oxidation reaction. Ionics 2018, 24, 3915–3921.

    Article  CAS  Google Scholar 

  42. Tian, X. L.; Luo, J. M.; Nan, H. X.; Zou, H. B.; Chen, R.; Shu, T.; Li, X. H.; Li, Y. W.; Song, H. Y.; Liao, S. J. et al. Transition metal nitride coated with atomic layers of Pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 2016, 138, 1575–1583.

    Article  CAS  Google Scholar 

  43. Yang, F.; Ye, J. Y.; Yuan, Q.; Yang, X. T.; Xie, Z. X.; Zhao, F. L.; Zhou, Z. Y.; Gu, L.; Wang, X. Ultrasmall Pd-Cu-Pt trimetallic twin icosahedrons boost the electrocatalytic performance of glycerol oxidation at the operating temperature of fuel cells. Adv. Funct. Mater. 2020, 30, 1908235.

    Article  CAS  Google Scholar 

  44. Kwon, T.; Jun, M.; Kim, H. Y.; Oh, A.; Park, J.; Baik, H.; Joo, S. H.; Lee, K. Vertex-reinforced PtCuCo ternary nanoframes as efficient and stable electrocatalysts for the oxygen reduction reaction and the methanol oxidation reaction. Adv. Funct. Mater. 2018, 28, 1706440.

    Article  Google Scholar 

  45. Niu, Z. Q.; Becknell, N.; Yu, Y.; Kim, D.; Chen, C.; Kornienko, N.; Somorjai, G. A.; Yang, P. D. Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. Nat. Mater. 2016, 15, 1188–1194.

    Article  CAS  Google Scholar 

  46. Liu, S.; Tian, N.; Xie, A. Y.; Du, J. H.; Xiao, J.; Liu, L.; Sun, H. Y.; Cheng, Z. Y.; Zhou, Z. Y.; Sun, S. G. Electrochemically seed-mediated synthesis of sub-10 nm tetrahexahedral Pt nanocrystals supported on graphene with improved catalytic performance. J. Am. Chem. Soc. 2016, 138, 5753–5756.

    Article  CAS  Google Scholar 

  47. Zhao, F. L.; Yuan, Q.; Luo, B.; Li, C. Z.; Yang, F.; Yang, X. T.; Zhou, Z. Y. Surface composition-tunable octahedral PtCu nanoalloys advance the electrocatalytic performance on methanol and ethanol oxidation. Sci. China Mater. 2019, 62, 1877–1887.

    Article  CAS  Google Scholar 

  48. Lan, J.; Wang, K.; Yuan, Q.; Wang, X. Composition-controllable synthesis of defect-rich PtPdCu nanoalloys with hollow cavities as superior electrocatalysts for alcohol oxidation. Mater. Chem. Front. 2017, 1, 1217–1222.

    Article  CAS  Google Scholar 

  49. Wang, J. P.; Thomas, D. F.; Chen, A. C. Direct growth of novel alloyed PtAu nanodendrites. Chem. Commun. 2008, 5010–5012.

    Google Scholar 

  50. Seselj, N.; Engelbrekt, C.; Ding, Y.; Hjuler, H. A.; Ulstrup, J.; Zhang, J. D. Tailored electron transfer pathways in Aucore/Ptshell-graphene nanocatalysts for fuel cells. Adv. Energy Mater. 2018, 8, 1702609.

    Article  Google Scholar 

  51. Bhunia, K.; Khilari, S.; Pradhan, D. Trimetallic PtAuNi alloy nanoparticles as an efficient electrocatalyst for the methanol electrooxidation reaction. Dalton Trans. 2017, 46, 15558–15566.

    Article  CAS  Google Scholar 

  52. Bian, T.; Sun, B.; Luo, S.; Huang, L.; Su, S.; Meng, C. F.; Su, S. C.; Yuan, A. H.; Zhang, H. Seed-mediated synthesis of Au@PtCu nanostars with rich twin defects as efficient and stable electrocatalysts for methanol oxidation reaction. RSC Adv. 2019, 9, 35887–35894.

    Article  CAS  Google Scholar 

  53. Xie, Y. X.; Li, C.; Razek, S. A.; Fang, J. Y.; Dimitrov, N. Synthesis of nanoporous Au-Cu-Pt alloy as a superior catalyst for the methanol oxidation reaction. ChemElectroChem 2020, 7, 569–580.

    Article  CAS  Google Scholar 

  54. Lin, Z. C.; Sheng, Y.; Li, J.; Rui, Z. Y.; Liu, Y. D.; Liu, J. G.; Zou, Z. G. Ternary heterogeneous Pt-Ni-Au nanowires with enhanced activity and stability for PEMFCs. Chem. Commun. 2020, 56, 4276–4279.

    Article  CAS  Google Scholar 

  55. Lu, B. A.; Sheng, T.; Tian, N.; Zhang, Z. C.; Xiao, C.; Cao, Z. M.; Ma, H. B.; Zhou, Z. Y.; Sun, S. G. Octahedral PtCu alloy nanocrystals with high performance for oxygen reduction reaction and their enhanced stability by trace Au. Nano Energy 2017, 33, 65–71.

    Article  CAS  Google Scholar 

  56. Sriphathoorat, R.; Wang, K.; Luo, S. P.; Tang, M.; Du, H. Y.; Du, X. W.; Shen, P. K. Well-defined PtNiCo core-shell nanodendrites with enhanced catalytic performance for methanol oxidation. J. Mater. Chem. A 2016, 4, 18015–18021.

    Article  CAS  Google Scholar 

  57. Luo, S. P.; Shen, P. K. Concave platinum-copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis. ACS Nano 2017, 11, 11946–11953.

    Article  CAS  Google Scholar 

  58. Bhalothia, D.; Fan, Y. J.; Lai, Y. C.; Yang, Y. T.; Yang, Y. W.; Lee, C. H.; Chen, T. Y. Conformational effects of Pt-shells on nanostructures and corresponding oxygen reduction reaction activity of Au-cluster-decorated NiOx@Pt nanocatalysts. Nanomaterials 2019, 9, 1003.

    Article  CAS  Google Scholar 

  59. Wang, X.; Zhang, L. J.; Gong, H. Y.; Zhu, Y. L.; Zhao, H. H.; Fu, Y. Dealloyed PtAuCu electrocatalyst to improve the activity and stability towards both oxygen reduction and methanol oxidation reactions. Electrochim. Acta 2016, 212, 277–285.

    Article  CAS  Google Scholar 

  60. Li, J. J.; Zhu, B. L.; Wang, G. C.; Liu, Z. F.; Huang, W. P.; Zhang, S. M. Enhanced CO catalytic oxidation over an Au-Pt alloy supported on TiO2 nanotubes: Investigation of the hydroxyl and Au/Pt ratio influences. Catal. Sci. Technol. 2018, 8, 6109–6122.

    Article  CAS  Google Scholar 

  61. Chen, H. M.; Peng, H. C.; Liu, R. S.; Hu, S. F.; Jang, L. Y. Local structural characterization of Au/Pt bimetallic nanoparticles. Chem. Phys. Lett. 2006, 420, 484–488.

    Article  CAS  Google Scholar 

  62. Chen, D.; Luo, L. M.; Zhang, R. H.; Hu, Q. Y.; Yang, C. Y.; Zhou, X. W.; Chen, S. N.; Dai, Z. X. Highly monodispersed ternary hollow PtPdAu alloy nanocatalysts with enhanced activity toward methanol oxidation. J. Electroanal. Chem. 2018, 812, 90–95.

    Article  CAS  Google Scholar 

  63. Liao, M. Y.; Li, W. P.; Xi, X. P.; Luo, C. L.; Gui, S. L.; Jiang, C.; Mai, Z. H.; Chen, B. H. Highly active Aucore@Ptcluster catalyst for formic acid electrooxidation. J. Electroanal. Chem. 2017, 791, 124–130.

    Article  CAS  Google Scholar 

  64. Patra, S.; Das, J.; Yang, H. Selective deposition of Pt on Au nanoparticles using hydrogen presorbed into Au nanoparticles during NaBH4 treatment. Electrochim. Acta 2009, 54, 3441–3445.

    Article  CAS  Google Scholar 

  65. Ma, L.; Ding, S. J.; Yang, D. J. Preparation of bimetallic Au/Pt nanotriangles with tunable plasmonic properties and improved photocatalytic activity. Dalton Trans. 2018, 47, 16969–16976.

    Article  CAS  Google Scholar 

  66. Zhao, Z. L.; Zhang, L. Y.; Bao, S. J.; Li, C. M. One-pot synthesis of small and uniform Au@PtCu core-alloy shell nanoparticles as an efficient electrocatalyst for direct methanol fuel cells. Appl. Catal. B Environ. 2015, 174–175, 361–366.

    Article  Google Scholar 

  67. Kuang, W. T.; Jiang, Z. L.; Li, H.; Zhang, J. X.; Zhou, L. N.; Li, Y. J. Self-supported composition-tunable Au/PtPd core/shell tri-metallic nanowires for boosting alcohol electrooxidation and suzuki coupling. ChemElectroChem 2018, 5, 3901–3905.

    Article  CAS  Google Scholar 

  68. Ercolano, G.; Farina, F.; Stievano, L.; Jones, D. J.; Rozière, J.; Cavaliere, S. Preparation of Ni@Pt core@shell conformal nanofibre oxygen reduction electrocatalysts via microwave-assisted galvanic displacement. Catal. Sci. Technol. 2019, 9, 6920–6928.

    Article  CAS  Google Scholar 

  69. Carraro, C.; Maboudian, R.; Magagnin, L. Metallization and nanostructuring of semiconductor surfaces by galvanic displacement processes. Surf. Sci. Rep. 2007, 62, 499–525.

    Article  CAS  Google Scholar 

  70. Koenigsmann, C.; Santulli, A. C.; Gong, K. P.; Vukmirovic, M. B.; Zhou, W. P.; Sutter, E.; Wong, S. S.; Adzic, R. R. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd-Pt core-shell nanowire catalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2011, 133, 9783–9795.

    Article  CAS  Google Scholar 

  71. Liu, M. M.; Lu, Y. Z.; Chen, W. Pdag nanorings supported on graphene nanosheets: Highly methanol-tolerant cathode electrocatalyst for alkaline fuel cells. Adv. Funct. Mater. 2013, 23, 1289–1296.

    Article  CAS  Google Scholar 

  72. Gowthaman, N. S. K.; Sinduja, B.; Shankar, S.; John, S. A. Displacement reduction routed Au-Pt bimetallic nanoparticles: A highly durable electrocatalyst for methanol oxidation and oxygen reduction. Sustain. Energy Fuels 2018, 2, 1588–1599.

    Article  CAS  Google Scholar 

  73. Higuchi, E.; Hayashi, K.; Chiku, M.; Inoue, H. Simple preparation of Au nanoparticles and their application to Au core/Pt shell catalysts for oxygen reduction reaction. Electrocatalysis 2012, 3, 274–283.

    Article  CAS  Google Scholar 

  74. Londono-Calderon, A.; Campos-Roldan, C. A.; González-Huerta, R. G.; Hernandez-Pichardo, M. L.; del Angel, P.; Yacaman, M. J. Influence of the architecture of Au-Ag-Pt nanoparticles on the electrocatalytic activity for hydrogen evolution reaction. Int. J. Hydrogen Energy 2017, 42, 30208–30215.

    Article  CAS  Google Scholar 

  75. Sui, N.; Yue, R. P.; Wang, Y. K.; Bai, Q.; An, R. H.; Xiao, H. L.; Wang, L. N.; Liu, M. H.; Yu, W. W. Boosting methanol oxidation reaction with Au@AgPt yolk-shell nanoparticles. J. Alloys Compd. 2019, 790, 792–798.

    Article  CAS  Google Scholar 

  76. Zhang, K.; Xu, H.; Yan, B.; Wang, J.; Du, Y. K.; Liu, Q. Y. Superior ethylene glycol oxidation electrocatalysis enabled by hollow PdNi nanospheres. Electrochim. Acta 2018, 268, 383–391.

    Article  CAS  Google Scholar 

  77. Sohn, Y.; Jung, N.; Lee, M. J.; Lee, S.; Nahm, K. S.; Kim, P.; Yoo, S. J. Preparation of porous PtAuCu@Pt core-shell catalyst for application to oxygen reduction. J. Ind. Eng. Chem. 2019, 79, 210–216.

    Article  CAS  Google Scholar 

  78. Zhang, J. M.; Chaker, M.; Ma, D. L. Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications. J. Colloid Interface Sci. 2017, 489, 138–149.

    Article  CAS  Google Scholar 

  79. Morales-Guio, C. G.; Hu, X. L. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc. Chem. Res. 2014, 47, 2671–2681.

    Article  CAS  Google Scholar 

  80. Guo, S. J.; Dong, S. J.; Wang, E. K. Three-Dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 2010, 4, 547–555.

    Article  CAS  Google Scholar 

  81. Peng, Y.; Li, L. D.; Tao, R.; Tan, L. Y.; Qiu, M. N.; Guo, L. One-pot synthesis of Au@Pt star-like nanocrystals and their enhanced electrocatalytic performance for formic acid and ethanol oxidation. Nano Res. 2018, 11, 3222-

    Article  CAS  Google Scholar 

  82. Zhang, Y. H.; Lu, C. C.; Zhao, G. L.; Wang, Z. H. Facile synthesis of gold-platinum dendritic nanostructures with enhanced electrocatalytic performance for the methanol oxidation reaction. RSC Adv. 2016, 6, 51569–51574.

    Article  CAS  Google Scholar 

  83. Yang, Z. Y.; Liu, X. L.; Zheng, X. H.; Zheng, J. B. Synthesis of Au@Pt nanoflowers supported on graphene oxide for enhanced electrochemical sensing of dopamine. J. Electroanal. Chem. 2018, 817, 48–54.

    Article  CAS  Google Scholar 

  84. Chen, H. Y.; Wang, A. J.; Zhang, L.; Yuan, J. H.; Zhang, Q. L.; Feng, J. J. One-pot wet-chemical synthesis of uniform AuPtPd nanodendrites as efficient electrocatalyst for boosting hydrogen evolution and oxygen reduction reactions. Int. J. Hydrogen Energy 2018, 43, 22187–22194.

    Article  CAS  Google Scholar 

  85. Dutta, S.; Ray, C.; Sasmal, A. K.; Negishi, Y.; Pal, T. Fabrication of dog-bone shaped Au NRcore-Pt/Pdshell trimetallic nanoparticle-decorated reduced graphene oxide nanosheets for excellent electrocatalysis. J. Mater. Chem. A 2016, 4, 3765–3776.

    Article  CAS  Google Scholar 

  86. Yang, J. H.; Shao, T.; Luo, C.; Li, J. L.; He, S. J.; Meng, B. W.; Zhang, Q. K.; Zhang, D. X.; Xue, Z. H.; Zhou, X. B. Simple synthesis of the Au-GQDs@AgPt Yolk-shell nanostructures electrocatalyst for enhancing the methanol oxidation. J. Alloys Compd. 2020, 834, 155056.

    Article  CAS  Google Scholar 

  87. Chaudhari, N. K.; Hong, Y. J.; Kim, B.; Choi, S. I.; Lee, K. Pt-Cu based nanocrystals as promising catalysts for various electrocatalytic reactions. J. Mater. Chem. A 2019, 7, 17183–17203.

    Article  CAS  Google Scholar 

  88. Qin, Y. D.; Han, X. Y.; Gadipelli, S.; Guo, J.; Wu, S. J.; Kang, L. Q.; Callison, J.; Guo, Z. X. In situ synthesized low-PtCo@porous carbon catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A 2019, 7, 6543–6551.

    Article  CAS  Google Scholar 

  89. Yao, X. Z.; Wei, Y. P.; Wang, Z. X.; Gan, L. Revealing the role of surface composition on the particle mobility and coalescence of carbon-supported Pt alloy fuel cell catalysts by in situ heating (S)TEM. ACS Catal. 2020, 10, 7381–7388.

    Article  CAS  Google Scholar 

  90. Lu, X. X.; Tang, W. X.; Du, S. C.; Wen, L. Y.; Weng, J. F.; Ding, Y.; Willis, W. S.; Suib, S. L.; Gao, P. X. Ion-exchange loading promoted stability of platinum catalysts supported on layered protonated titanate-derived titania nanoarrays. ACS Appl. Mater. Interfaces 2019, 11, 21515–21525.

    Article  CAS  Google Scholar 

  91. Cheng, Y.; Shen, P. K.; Jiang, S. P. Enhanced activity and stability of core-shell structured PtRuNix electrocatalysts for direct methanol fuel cells. Int. J. Hydrogen Energy 2016, 41, 1935–1943.

    Article  CAS  Google Scholar 

  92. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

    Article  CAS  Google Scholar 

  93. Zhu, H.; Cai, Y. Z.; Wang, F. H.; Gao, P.; Cao, J. D. Scalable preparation of the chemically ordered Pt-Fe-Au nanocatalysts with high catalytic reactivity and stability for oxygen reduction reactions. ACS Appl. Mater. Interfaces 2018, 10, 22156–22166.

    Article  CAS  Google Scholar 

  94. Lu, L. J.; Peng, L. S.; Li, L.; Li, J.; Huang, X.; Wei, Z. D. Improved hydrogen oxidation reaction under alkaline conditions by Au-Pt alloy nanoparticles. J. Energy Chem. 2020, 40, 52–56.

    Article  Google Scholar 

  95. Wang, J. S.; Shi, R. R.; Guo, X.; Xi, J. Y.; Zhao, J. H.; Song, C. Y.; Wang, L. C.; Zhang, J. J. Highly active Pt-on-Au catalysts for methanol oxidation in alkaline media involving a synergistic interaction between Pt and Au. Electrochim. Acta 2014, 123, 309–316.

    Article  CAS  Google Scholar 

  96. Chen, L.; Kuai, L.; Yu, X.; Li, W. Z.; Geng, B. Y. Advanced catalytic performance of Au-Pt double-walled nanotubes and their fabrication through galvanic replacement reaction. Chem.—Eur. J. 2013, 19, 11753–11758.

    Article  CAS  Google Scholar 

  97. Chen, L. X.; Liu, L.; Feng, J. J.; Wang, Z. G.; Wang, A. J. Oligonucleotide-assisted successive coreduction synthesis of dendritic platinum-gold core-shell alloy nanocrystals with improved electrocatalytic performance for methanol oxidation. J. Power Sources 2016, 302, 140–145.

    Article  CAS  Google Scholar 

  98. Koscher, G.; Kordesch, K. Can refillable alkaline methanol-air systems replace metal-air cells?. J. Power Sources 2004, 136, 215–219.

    Article  CAS  Google Scholar 

  99. Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y. J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142–1147.

    Article  CAS  Google Scholar 

  100. Zhang, J. M.; Qu, X. M.; Han, Y.; Shen, L. F.; Yin, S. H.; Li, G.; Jiang, Y. X.; Sun, S. G. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance. Appl. Catal. B Environ. 2020, 263, 118345.

    Article  CAS  Google Scholar 

  101. Ma, S. Y.; Li, H. H.; Hu, B. C.; Cheng, X.; Fu, Q. Q.; Yu, S. H. Synthesis of low Pt-based quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity. J. Am. Chem. Soc. 2017, 139, 5890–5895.

    Article  CAS  Google Scholar 

  102. Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

    Article  CAS  Google Scholar 

  103. Gong, L. Y.; Yang, Z. Y.; Li, K.; Xing, W.; Liu, C. P.; Ge, J. J. Recent development of methanol electrooxidation catalysts for direct methanol fuel cell. J. Energy Chem. 2018, 27, 1618–1628.

    Article  Google Scholar 

  104. Feng, Q. C.; Zhao, S.; He, D. S.; Tian, S. B.; Gu, L.; Wen, X. D.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc. 2018, 140, 2773–2776.

    Article  CAS  Google Scholar 

  105. Kakati, N.; Maiti, J.; Lee, S. H.; Jee, S. H.; Viswanathan, B.; Yoon, Y. S. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt-Ru?. Chem. Rev. 2014, 114, 12397–12429.

    Article  CAS  Google Scholar 

  106. Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.; Wang, H. J.; Wilkinson, D. P. A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 2006, 155, 95–110.

    Article  CAS  Google Scholar 

  107. Luo, B.; Zhao, F. L.; Xie, Z. X.; Yuan, Q.; Yang, F.; Yang, X. T.; Li, C. Z.; Zhou, Z. Y. Polyhedron-assembled ternary PtCuCo nanochains: Integrated functions enhance the electrocatalytic performance of methanol oxidation at elevated temperature. ACS Appl. Mater. Interfaces 2019, 11, 32282–32290.

    Article  CAS  Google Scholar 

  108. Hamnett, A. Mechanism and electrocatalysis in the direct methanol fuel cell. Catal. Today 1997, 38, 445–457.

    Article  CAS  Google Scholar 

  109. Du, J. N.; You, S. J.; Li, X. R.; Tang, B.; Jiang, B. J.; Yu, Y.; Cai, Z.; Ren, N. Q.; Zou, J. L. In situ crystallization of active NiOOH/CoOOH heterostructures with hydroxide ion adsorption sites on velutipes-like CoSe/NiSe nanorods as catalysts for oxygen evolution and cocatalysts for methanol oxidation. ACS Appl. Mater. Interfaces 2020, 12, 686–697.

    Article  CAS  Google Scholar 

  110. Lee, M. J.; Kang, J. S.; Kang, Y. S.; Chung, D. Y.; Shin, H.; Ahn, C. Y.; Park, S.; Kim, M. J.; Kim, S.; Lee, K. S. et al. Understanding the bifunctional effect for removal of CO poisoning: Blend of a platinum nanocatalyst and hydrous ruthenium oxide as a model system. ACS Catal. 2016, 6, 2398–2407.

    Article  CAS  Google Scholar 

  111. Lee, E.; Kim, S.; Jang, J. H.; Park, H. U.; Matin, A.; Kim, Y. T.; Kwon, Y. U. Effects of particle proximity and composition of Pt-M (M = Mn, Fe, Co) nanoparticles on electrocatalysis in methanol oxidation reaction. J. Power Sources 2015, 294, 75–81.

    Article  CAS  Google Scholar 

  112. Zhang, W. Y.; Yang, Y.; Huang, B. L.; Lv, F.; Wang, K.; Li, N.; Luo, M. C.; Chao, Y. G.; Li, Y. J.; Sun, Y. J. et al. Ultrathin PtNiM (M = Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials. Adv. Mater. 2019, 31, 1805833.

    Article  Google Scholar 

  113. Song, P. P.; Lei, Y. J.; Hu, X. B.; Wang, C.; Wang, J. L.; Tang, Y. P. Rapid one-step synthesis of carbon-supported platinum-copper nanoparticles with enhanced electrocatalytic activity via microwave-assisted heating. J. Colloid Interface Sci. 2020, 574, 421–429.

    Article  CAS  Google Scholar 

  114. Tan, C. H.; Sun, Y. H.; Zheng, J. Z.; Wang, D.; Li, Z. Y.; Zeng, H. J.; Guo, J.; Jing, L. Q.; Jiang, L. A self-supporting bimetallic Au@Pt core-shell nanoparticle electrocatalyst for the synergistic enhancement of methanol oxidation. Sci. Rep. 2017, 7, 6347.

    Article  Google Scholar 

  115. Bi, Q. Y.; Du, X. L.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions. J. Am. Chem. Soc. 2012, 134, 8926–8933.

    Article  CAS  Google Scholar 

  116. Ishida, T.; Haruta, M. Gold catalysts: Towards sustainable chemistry. Angew. Chem., Int. Ed. 2007, 46, 7154–7156.

    Article  CAS  Google Scholar 

  117. Wang, C. J.; Zhao, Y. L.; Xu, H.; Li, Y. F.; Wei, Y. C.; Liu, J.; Zhao, Z. Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2 with H2O. Appl. Catal. B Environ. 2020, 263, 118314.

    Article  CAS  Google Scholar 

  118. Yao, S. Y.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W. Q.; Ye, Y. F.; Lin, L. L.; Wen, X. D.; Liu, P.; Chen, B. B. et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 2017, 357, 389–393.

    Article  CAS  Google Scholar 

  119. Hu, X.; Zou, J. S.; Gao, H. C.; Kang, X. W. Trimetallic Ru@AuPt core-shell nanostructures: The effect of microstrain on CO adsorption and electrocatalytic activity of formic acid oxidation. J. Colloid Interface Sci. 2020, 570, 72–79.

    Article  CAS  Google Scholar 

  120. Cameron, D.; Holliday, R.; Thompson, D. Gold’s future role in fuel cell systems. J. Power Sources 2003, 118, 298–303.

    Article  CAS  Google Scholar 

  121. Jiang, J. C.; Lei, J.; Hu, Y. J.; Bi, W.; Xu, N.; Li, Y. F.; Chen, X. L.; Jiang, H.; Li, C. Z. Electron transfer effect from Au to Pt in Au-Pt/TiO2 towards efficient catalytic activity in CO oxidation at low temperature. Appl. Surf. Sci. 2020, 521, 146447.

    Article  CAS  Google Scholar 

  122. Feng, X. Q.; Meng, D.; Yang, Y.; Tan, Z. Y.; Liang, J. H.; Xiao, C. Au/SBA-15 catalyst prepared by ozone treatment and importance of negatively charged gold in CO oxidation by DRIFTS. Chemosphere 2020, 250, 126274.

    Article  CAS  Google Scholar 

  123. Wang, K.; Liu, X. Y.; Tang, X. Y.; Jin, X.; Yang, W. J.; Wang, J. C.; Li, J.; Zhang, X. L.; Liu, B. D. In situ grown monolithic Au/TiO2 catalysts on flexible Ti mesh for efficient low-temperature CO oxidation. Adv. Mater. Technol. 2020, 5, 2000115.

    Article  CAS  Google Scholar 

  124. Xi, Y. J.; Heyden, A. Preferential oxidation of CO in hydrogen at nonmetal active sites with high activity and selectivity. ACS Catal. 2020, 10, 5362–5370.

    Article  CAS  Google Scholar 

  125. Luo, J.; Maye, M. M.; Kariuki, N. N.; Wang, L. Y.; Njoki, P.; Lin, Y.; Schadt, M.; Naslund, H. R.; Zhong, C. J. Electrocatalytic oxidation of methanol: Carbon-supported gold-platinum nanoparticle catalysts prepared by two-phase protocol. Catal. Today 2005, 99, 291–297.

    Article  CAS  Google Scholar 

  126. Hu, Y. J.; Zhang, H.; Wu, P.; Zhang, H.; Zhou, B.; Cai, C. X. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Phys. Chem. Chem. Phys. 2011, 13, 4083–4094.

    Article  CAS  Google Scholar 

  127. Kube, S. A.; Xing, W. T.; Kalidindi, A.; Sohn, S.; Datye, A.; Amram, D.; Schuh, C. A.; Schroers, J. Combinatorial study of thermal stability in ternary nanocrystalline alloys. Acta Mater. 2020, 188, 40–48.

    Article  CAS  Google Scholar 

  128. Cabello, G.; Davoglio, R. A.; Marco, J. F.; Cuesta, A. Probing electronic and atomic ensembles effects on PtAu3 nanoparticles with CO adsorption and electrooxidation. J. Electroanal. Chem. 2020, 870, 114233.

    Article  CAS  Google Scholar 

  129. You, G. J.; Jiang, J.; Li, M.; Li, L.; Tang, D. Y.; Zhang, J.; Zeng, X. C.; He, R. X. PtPd(111) surface versus PtAu(111) surface: Which one is more active for methanol oxidation?. ACS Catal. 2018, 8, 132–143.

    Article  CAS  Google Scholar 

  130. Thota, A.; Boga, K.; Narayan, R.; Bojja, S.; Rao, C. R. K. Synthesis of star shaped electroactive, LEB state aniline oligomer and its high performing Pt and Pt-Au nanocatalyst for MOR. Int. J. Hydrogen Energy 2019, 44, 11066–11078.

    Article  CAS  Google Scholar 

  131. Podlovchenko, B. I.; Maksimov, Y. M. Peculiarities in the electrocatalytic behavior of ultralow platinum deposits on gold synthesized by galvanic displacement. J. Electroanal. Chem. 2015, 756, 140–146.

    Article  CAS  Google Scholar 

  132. Ren, F. F.; Zhai, C. Y.; Zhu, M. S.; Wang, C. Q.; Wang, H. W.; Bin, D.; Guo, J.; Yang, P.; Du, Y. K. Facile synthesis of PtAu nanoparticles supported on polydopamine reduced and modified graphene oxide as a highly active catalyst for methanol oxidation. Electrochim. Acta 2015, 153, 175–183.

    Article  CAS  Google Scholar 

  133. Sugioka, D.; Kameyama, T.; Kuwabata, S.; Yamamoto, T.; Torimoto, T. Formation of a Pt-decorated Au nanoparticle monolayer floating on an ionic liquid by the ionic liquid/metal sputtering method and tunable electrocatalytic activities of the resulting monolayer. ACS Appl. Mater. Interfaces 2016, 8, 10874–10883.

    Article  CAS  Google Scholar 

  134. Ilayaraja, N.; Prabu, N.; Lakshminarasimhan, N.; Murugan, P.; Jeyakumar, D. Au-Pt graded nano-alloy formation and its manifestation in small organics oxidation reaction. J. Mater. Chem. A 2013, 1, 4048–4056.

    Article  CAS  Google Scholar 

  135. Luo, J.; Njoki, P. N.; Lin, Y.; Mott, D.; Wang, L. Y.; Zhong, C. J. Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction. Langmuir 2006, 22, 2892–2898.

    Article  CAS  Google Scholar 

  136. Shi, H. X.; Liao, F.; Zhu, W. X.; Shao, C. R.; Shao, M. W. Effective PtAu nanowire network catalysts with ultralow Pt content for formic acid oxidation and methanol oxidation. Int. J. Hydrogen Energy 2020, 45, 16071–16079.

    Article  CAS  Google Scholar 

  137. Wolf, M.; Caro, J.; Feldhoff, A.; Steinbach, F.; Schulz-Ruhtenberg, M.; Lange, K. Laser directed dynamic hydrogen template deposition of porous Pt@Ag networks. Electrochim. Acta 2017, 252, 430–437.

    Article  CAS  Google Scholar 

  138. He, L. L.; Zheng, J. N.; Song, P.; Zhong, S. X.; Wang, A. J.; Chen, Z. J.; Feng, J. J. Facile synthesis of platinum-gold alloyed string-bead nanochain networks with the assistance of allantoin and their enhanced electrocatalytic performance for oxygen reduction and methanol oxidation reactions. J. Power Sources 2015, 276, 357–364.

    Article  CAS  Google Scholar 

  139. Wang, Z.; Huang, L.; Tian, Z. Q.; Shen, P. K. The controllable growth of PtCuRh rhombic dodecahedral nanoframes as efficient catalysts for alcohol electrochemical oxidation. J. Mater. Chem. A 2019, 7, 18619–18625.

    Article  CAS  Google Scholar 

  140. Yoo, S.; Cho, S.; Kim, D.; Ih, S.; Lee, S.; Zhang, L. Q.; Li, H.; Lee, J. Y.; Liu, L. C.; Park, S. 3D PtAu nanoframe superstructure as a high-performance carbon-free electrocatalyst. Nanoscale 2019, 11, 2840–2847.

    Article  CAS  Google Scholar 

  141. Banerjee, I.; Kumaran, V.; Santhanam, V. Synthesis and characterization of Au@Pt nanoparticles with ultrathin platinum overlayers. J. Phys. Chem. C 2015, 119, 5982–5987.

    Article  CAS  Google Scholar 

  142. Peng, L. Y.; Gan, L.; Wei, Y. P.; Yang, H.; Li, J.; Du, H. D.; Kang, F. Y. Pt submonolayers on au nanoparticles: Coverage-dependent atomic structures and electrocatalytic stability on methanol oxidation. J. Phys. Chem. C 2016, 120, 28664–28671.

    Article  CAS  Google Scholar 

  143. Wang, X. D.; Sun, M. J.; Guo, Y.; Hu, J. Y.; Zhu, M. S. Three dimensional Pt island-on-Au architectures coupled with graphite carbon nitride nanosheets for effective photo-accelerated methanol electro-oxidation. J. Colloid Interface Sci. 2020, 558, 38–46.

    Article  Google Scholar 

  144. Xie, Y. X.; Li, Z. S.; Liu, Y.; Ye, Y. X.; Zou, X. H.; Lin, S. Plasmon enhanced bifunctional electro-photo catalytic properties of Pt-Au/graphene composites for methanol oxidation and oxygen reduction reaction. Appl. Surf. Sci. 2020, 508, 145161.

    Article  CAS  Google Scholar 

  145. Feng, Y. Y.; Song, G. H.; Zhang, Q.; Hu, H. S.; Feng, M. Y.; Wang, J. Y.; Kong, D. S. Catalytic performance of non-alloyed bimetallic PtAu electrocatalysts for methanol oxidation reaction. Int. J. Hydrogen Energy 2017, 42, 30109–30118.

    Article  CAS  Google Scholar 

  146. Zhong, W. H.; Liu, Y. X.; Zhang, D. J. Theoretical study of methanol oxidation on the PtAu(111) bimetallic surface: CO pathway vs non-CO pathway. J. Phys. Chem. C 2012, 116, 2994–3000.

    Article  CAS  Google Scholar 

  147. Hong, W.; Wang, J.; Wang, E. K. Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic activity for methanol electrooxidation. Small 2014, 10, 3262–3265.

    Article  CAS  Google Scholar 

  148. Wang, C. Q.; Ren, F. F.; Zhai, C. Y.; Zhang, K.; Yang, B. B.; Bin, D.; Wang, H. W.; Yang, P.; Du, Y. K. Au-Cu-Pt ternary catalyst fabricated by electrodeposition and galvanic replacement with superior methanol electrooxidation activity. RSC Adv. 2014, 4, 57600–57607.

    Article  CAS  Google Scholar 

  149. Fu, Q. Q.; Li, H. H.; Ma, S. Y.; Hu, B. C.; Yu, S. H. A mixed-solvent route to unique PtAuCu ternary nanotubes templated from Cu nanowires as efficient dual electrocatalysts. Sci. China Mater. 2016, 59, 112–121.

    Article  CAS  Google Scholar 

  150. Li, Z. R. Li, J. J.; Wang, Z. H. Synthesis of Au@PtAuAg yolk-shell nanoalloy as an electrocatalyst for methanol oxidation reaction. Int. J. Electrochem. Sci. 2019, 14, 3291–3300.

    Article  CAS  Google Scholar 

  151. Huan, T. N.; Shinde, D. V.; Kim, S.; Han, S. H.; Artero, V.; Chung, H. Forest of Pt-Au-Ag tri-metallic nanodendrites as an efficient electrocatalyst for methanol oxidation reaction. RSC Adv. 2015, 5, 6940–6944.

    Article  CAS  Google Scholar 

  152. Thongthai, K.; Pakawanit, P.; Chanlek, N.; Kim, J. H.; Ananta, S.; Srisombat, L. Ag/Au/Pt trimetallic nanoparticles with defects: Preparation, characterization, and electrocatalytic activity in methanol oxidation. Nanotechnology 2017, 28, 375602.

    Article  Google Scholar 

  153. Bi, J. L.; Gao, P. F.; Wang, B.; Yu, X. J.; Kong, C. C.; Xu, L.; Zhang, X. J.; Yang, S. C. Intrinsic insight on localized surface plasmon resonance enhanced methanol electro-oxidation over a Au@AgPt hollow urchin-like nanostructure. J. Mater. Chem. A 2020, 8, 6638–6646.

    Article  CAS  Google Scholar 

  154. Cai, X. L.; Liu, C. H.; Liu, J.; Lu, Y.; Zhong, Y. N.; Nie, K. Q.; Xu, J. L.; Gao, X.; Sun, X. H.; Wang, S. D. Synergistic effects in CNTs-PdAu/Pt trimetallic nanoparticles with high electrocatalytic activity and stability. Nano-Micro Lett. 2017, 9, 48.

    Article  Google Scholar 

  155. Chen, T. W.; Huang, W. F.; Kang, J. X.; Zhang, D. F.; Guo, L. Cycling potential engineering surface configuration of sandwich Au@Ni@PtNiAu for superior catalytic durability. Nano Energy 2018, 52, 22–28.

    Article  CAS  Google Scholar 

  156. Zhang, H. X.; Okawa, Y.; Kato, M.; Sasaki, Y.; Uosaki, K. Construction of Pt-Ni nanocomposites from Pt-Ni multinuclear complexes on gold(111) surface and their electrocatalytic activity for methanol oxidation. J. Electroanal. Chem. 2016, 781, 41–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangxi Science and Technology Project (Nos. AA17204083 and AB16380030), the link project of the National Natural Science Foundation of China and Fujian Province (No. U1705252), and the Natural Science Foundation of Guangdong Province (No. 2015A030312007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Kang Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, W., Ali, A. & Shen, P.K. Recent development of Au arched Pt nanomaterials as promising electrocatalysts for methanol oxidation reaction. Nano Res. 15, 18–37 (2022). https://doi.org/10.1007/s12274-021-3461-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3461-5

Keywords

Navigation