Skip to main content
Log in

Cobalt tungsten phosphide with tunable W-doping as highly efficient electrocatalysts for hydrogen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

It has been of interest in seeking electrocatalysts that could exercise equally high-efficient and durable hydrogen evolution upon nonselective electrolytes in both acidic and alkaline environments. Herein, we report a facile strategy to fabricate cobalt tungsten phosphides (CoxW2−xP2/C) hollow polyhedrons with tunable composition based on metal-organic frameworks (MOFs) template method. By the deliberate control of W doping, the synthesized catalyst with the composition of Co0.9W1.1P2/C is found to be able to achieve a current density of 10 mA·cm−2 at overpotentials of 35 and 54 mV in acidic and alkaline media, respectively. This combined electrochemical property stands atop the state-of-the-art electrocatalyst counterparts. To unveil the peculiar behavior of the structure, density functional theory (DFT) calculation was implemented and reveals that the surface W-doping facilitates the optimization of hydrogen absorption free energy (ΔGH*) as well as the thermodynamic and kinetics barriers for water dissociation, which is coupled with the hollow structure of Co-W phosphides, leading to the prominent HER catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, G. Q.; Rui, K.; Dou, S. X.; Sun, W. P. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv. Funct. Mater. 2018, 28, 1803291.

    Article  CAS  Google Scholar 

  2. Gong, M.; Wang, D. Y.; Chen, C. C.; Hwang, B. J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.

    Article  CAS  Google Scholar 

  3. Xu, Y.; Tu, W. G.; Zhang, B. W.; Yin, S. M.; Huang, Y. Z.; Kraft, M.; Xu, R. Nickel nanoparticles encapsulated in few-layer nitrogen-doped graphene derived from metal-organic frameworks as efficient bifunctional electrocatalysts for overall water splitting. Adv. Mater. 2017, 29, 1605957.

    Article  CAS  Google Scholar 

  4. Tu, W. G.; Xu, Y.; Wang, J. J.; Zhang, B. W.; Zhou, T. H.; Yin, S. M.; Wu, S. Y.; Li, C. M.; Huang, Y. Z.; Zhou, Y. et al. Investigating the role of tunable nitrogen vacancies in graphitic carbon nitride nanosheets for efficient visible-light-driven H2 evolution and CO2 reduction. ACS Sustainable Chem. Eng. 2017, 5, 7260–7268.

    Article  CAS  Google Scholar 

  5. Zhang, Y. Q.; Xia, X. H.; Cao, X.; Zhang, B. W.; Tiep, N. H.; He, H. Y.; Chen, S.; Huang, Y. Z.; Fan, H. J. Ultrafine metal nanoparticles/ N-doped porous carbon hybrids coated on carbon fibers as flexible and binder-free water splitting catalysts. Adv. Energy Mater. 2017, 7, 1700220.

    Article  CAS  Google Scholar 

  6. Chen, Z. L.; Wu, R. B.; Liu, Y.; Ha, Y.; Guo, Y. H.; Sun, D. L.; Liu, M.; Fang, F. Ultrafine co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv. Mater. 2018, 30, 1802011.

    Article  CAS  Google Scholar 

  7. Zhang, X.; Yu, X. L.; Zhang, L. J.; Zhou, F.; Liang, Y. Y.; Wang, R. H. Molybdenum phosphide/carbon nanotube hybrids as pH-universal electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2018, 28, 1706523.

    Article  CAS  Google Scholar 

  8. Wang, R.; Dong, X. Y.; Du, J.; Zhao, J. Y.; Zang, S. Q. MOF-derived bifunctional Cu3P nanoparticles coated by a N, P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv. Mater. 2018, 30, 1703711.

    Article  CAS  Google Scholar 

  9. Chen, G. B.; Wang, T.; Zhang, J.; Liu, P.; Sun, H. J.; Zhuang, X. D.; Chen, M. W.; Feng, X. L. Accelerated hydrogen evolution kinetics on nife-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv. Mater. 2018, 30, 1706279.

    Article  CAS  Google Scholar 

  10. Ahn, W.; Park, M. G.; Lee, D. U.; Seo, M. H.; Jiang, G. P.; Cano, Z. P.; Hassan, F. M.; Chen, Z. W. Hollow multivoid nanocuboids derived from ternary Ni-Co-Fe prussian blue analog for dual-electrocatalysis of oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 2018, 28, 1802129.

    Article  CAS  Google Scholar 

  11. Zhang, B. W.; Yang, G.; Li, C. J.; Huang, K.; Wu, J. S.; Hao, S. J.; Feng, J. Y.; Peng, D. D.; Huang, Y. Z. Phase controllable fabrication of zinc cobalt sulfide hollow polyhedra as high-performance electrocatalysts for the hydrogen evolution reaction. Nanoscale 2018, 10, 1774–1778.

    Article  CAS  Google Scholar 

  12. Xiao, J.; Zhang, Z. Y.; Zhang, Y.; Lv, Q. Y.; Jing, F.; Chi, K.; Wang, S. Large-scale printing synthesis of transition metal phosphides encapsulated in N, P co-doped carbon as highly efficient hydrogen evolution cathodes. Nano Energy 2018, 51, 223–230.

    Article  CAS  Google Scholar 

  13. Ge, Y. C.; Dong, P.; Craig, S. R.; Ajayan, P. M.; Ye, M. X.; Shen, J. F. Transforming nickel hydroxide into 3D Prussian blue analogue array to obtain Ni2P/Fe2P for efficient hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1800484.

    Article  CAS  Google Scholar 

  14. Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

    Article  CAS  Google Scholar 

  15. Ouyang, C. B.; Wang, X.; Wang, S. Y. Phosphorus-doped CoS2 nanosheet arrays as ultra-efficient electrocatalysts for the hydrogen evolution reaction. Chem. Commun. 2015, 51, 14160–14163.

    Article  CAS  Google Scholar 

  16. Fu, Q.; Wu, T.; Fu, G.; Gao, T. L.; Han, J. C.; Yao, T.; Zhang, Y. M.; Zhong, W. W.; Wang, X. J.; Song, B. Skutterudite-type ternary Co1−xNixP3 nanoneedle array electrocatalysts for enhanced hydrogen and oxygen evolution. ACS Energy Lett. 2018, 3, 1744–1752.

    Article  CAS  Google Scholar 

  17. Jiang, H.; Gu, J. X.; Zheng, X. S.; Liu, M.; Qiu, X. Q.; Wang, L. B.; Li, W. Z.; Chen, Z. F.; Ji, X. B.; Li, J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 2019, 12, 322–333.

    Article  CAS  Google Scholar 

  18. Gao, K.; Wang, B.; Tao, L.; Cunning, B. V.; Zhang, Z. P.; Wang, S. Y.; Ruoff, R. S.; Qu, L. T. Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: Mono-doping and Co-doping. Adv. Mater. 2019, 31, 1805121.

    Article  CAS  Google Scholar 

  19. Guan, C.; Xiao, W.; Wu, H. J.; Liu, X. M.; Zang, W. J.; Zhang, H.; Ding, J.; Feng, Y. P.; Pennycook, S. J.; Wang, J. Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy 2018, 48, 73–80.

    Article  CAS  Google Scholar 

  20. Wang, T.; Jin, R. M.; Wu, X. Q.; Zheng, J.; Li, X. G.; Ostrikov, K. A highly efficient Ni-Mo bimetallic hydrogen evolution catalyst derived from a molybdate incorporated Ni-MOF. J. Mater. Chem. A 2018, 6, 9228–9235.

    Article  CAS  Google Scholar 

  21. Chen, Y. J.; Dong, C. Q.; Zhang, J.; Zhang, C.; Zhang, Z. H. Hierarchically porous Mo-doped Ni-Fe oxide nanowires efficiently catalyzing oxygen/hydrogen evolution reactions. J. Mater. Chem. A 2018, 6, 8430–8440.

    Article  CAS  Google Scholar 

  22. Guo, Y. P.; Dong, Z. P.; Cui, Z. K.; Zhang, X. J.; Ma, J. T. Promoting effect of W doped in electrodeposited Co-P catalysts for hydrogen generation from alkaline NaBH4 solution. Int. J. Hydrogen Energy 2012, 37, 1577–1583.

    Article  CAS  Google Scholar 

  23. Jin, Z. Y.; Li, P. P.; Huang, X.; Zeng, G. F.; Jin, Y.; Zheng, B. Z.; Xiao, D. Three-dimensional amorphous tungsten-doped nickel phosphide microsphere as an efficient electrocatalyst for hydrogen evolution. J. Mater. Chem. A 2014, 2, 18593–18599.

    Article  CAS  Google Scholar 

  24. Bhat, K. S.; Nagaraja, H. S. Effect of isoelectronic tungsten doping on molybdenum selenide nanostructures and their graphene hybrids for supercapacitors. Electrochim. Acta 2019, 302, 459–471.

    Article  CAS  Google Scholar 

  25. Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

    Article  CAS  Google Scholar 

  26. Ma, Y. Y.; Wu, C. X.; Feng, X. J.; Tan, H. Q.; Yan, L. K.; Liu, Y.; Kang, Z. H.; Wang, E. B.; Li, Y. G. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ. Sci. 2017, 10, 788–798.

    Article  CAS  Google Scholar 

  27. Wang, X. D.; Chen, H. Y.; Xu, Y. F.; Liao, J. F.; Chen, B. X.; Rao, H. S.; Kuang, D. B.; Su, C. Y. Self-supported NiMoP2 nanowires on carbon cloth as an efficient and durable electrocatalyst for overall water splitting. J. Mater. Chem. A 2017, 5, 7191–7199.

    Article  CAS  Google Scholar 

  28. Weng, B. C.; Grice, C. R.; Meng, W. W.; Guan, L.; Xu, F. H.; Yu, Y.; Wang, C. L.; Zhao, D. W.; Yan, Y. F. Metal-organic framework-derived CoWP@C composite nanowire electrocatalyst for efficient water splitting. ACS Energy Lett. 2018, 3, 1434–1442.

    Article  CAS  Google Scholar 

  29. Chen, Z. L.; Ha, Y.; Jia, H. X.; Yan, X. X.; Chen, M.; Liu, M.; Wu, R. B. Oriented transformation of Co-LDH into 2D/3D ZIF-67 to achieve Co-N-C hybrids for efficient overall water splitting. Adv. Energy Mater. 2019, 9, 1803918.

    Article  CAS  Google Scholar 

  30. Lu, Q. P.; Wang, A. L.; Cheng, H. F.; Gong, Y.; Yun, Q. B.; Yang, N. L.; Li, B.; Chen, B.; Zhang, Q. H.; Zong, Y. et al. Synthesis of hierarchical 4H/fcc ru nanotubes for highly efficient hydrogen evolution in alkaline media. Small 2018, 14, 1801090.

    Article  CAS  Google Scholar 

  31. Lu, X. F.; Yu, L.; Lou, X. W. D. Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Sci. Adv. 2019, 5, eaav6009.

    Article  CAS  Google Scholar 

  32. Zhang, B. W.; Hao, S. J.; Xiao, D. R.; Wu, J. S.; Huang, Y. Z. Templated formation of porous Mn2O3 octahedra from Mn-MIL-100 for lithium-ion battery anode materials. Mater. Des. 2016, 98, 319–323.

    Article  CAS  Google Scholar 

  33. Zhu, P. P.; Zhang, Z.; Hao, S. J.; Zhang, B. W.; Zhao, P. F.; Yu, J.; Cai, J. X.; Huang, Y. Z.; Yang, Z. Y. Multi-channel FeP@C octahedra anchored on reduced graphene oxide nanosheet with efficient performance for lithium-ion batteries. Carbon 2018, 139, 477–485.

    Article  CAS  Google Scholar 

  34. Zhang, B. W.; Li, C. J.; Yang, G.; Huang, K.; Wu, J. S.; Li, Z.; Cao, X.; Peng, D. D.; Hao, S. J.; Huang, Y. Z. Nanostructured CuO/C hollow Shell@3D copper dendrites as a highly efficient electrocatalyst for oxygen evolution reaction. ACS Appl. Mater. Interfaces 2018, 10, 23807–23812.

    Article  CAS  Google Scholar 

  35. Hao, S. J.; Ouyang, B.; Li, C. J.; Zhang, B. W.; Feng, J. Y.; Wu, J. S.; Srinivasan, M.; Huang, Y. Z. Hollow mesoporous Co(PO3)2@carbon polyhedra as high performance anode materials for lithium ion batteries. J. Phys. Chem. C 2019, 123, 8599–8606.

    Article  CAS  Google Scholar 

  36. Zhang, H.; Liu, X. M.; Wu, Y.; Guan, C.; Cheetham, A. K.; Wang, J. MOF-derived nanohybrids for electrocatalysis and energy storage: Current status and perspectives. Chem. Commun. 2018, 54, 5268–5288.

    Article  CAS  Google Scholar 

  37. Zhang, M. D.; Dai, Q. B.; Zheng, H. G.; Chen, M. D.; Dai, L. M. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-Air batteries and water splitting. Adv. Mater. 2018, 30, 1705431.

    Article  CAS  Google Scholar 

  38. Gao, R. S.; Tang, J.; Yu, X. L.; Tang, S.; Ozawa, K.; Sasaki, T.; Qin, L. C. In situ synthesis of MOF-derived carbon shells for silicon anode with improved lithium-ion storage. Nano Energy 2020, 70, 104444.

    Article  CAS  Google Scholar 

  39. Yang, Q. J.; Wang, Q. S.; Long, Y.; Wang, F.; Wu, L. L.; Pan, J.; Han, J.; Lei, Y.; Shi, W. D.; Song, S. Y. In situ formation of Co9S8 quantum dots in MOF-derived ternary metal layered double hydroxide nanoarrays for high-performance hybrid supercapacitors. Adv. Energy Mater. 2020, 10, 1903193.

    Article  CAS  Google Scholar 

  40. Li, F.; Wang, C. R.; Han, X. C.; Feng, X. Q.; Qu, Y. Q.; Liu, J.; Chen, W. L.; Zhao, L. P.; Song, X. F.; Zhu, H. et al. Confinement effect of mesopores: In situ synthesis of cationic tungsten-vacancies for a highly ordered mesoporous tungsten phosphide electrocatalyst. ACS Appl. Mater. Interfaces 2020, 12, 22741–22750.

    Article  CAS  Google Scholar 

  41. Huang, K.; Zhang, B. W.; Wu, J. S.; Zhang, T. Y.; Peng, D. D.; Cao, X.; Zhang, Z.; Li, Z.; Huang, Y. Z. Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst. J. Mater. Chem. A 2020, 8, 11938–11947.

    Article  CAS  Google Scholar 

  42. Peng, D. D.; Zhang, B. W.; Wu, J. S.; Huang, K.; Cao, X.; Lu, Y.; Zhang, Y.; Li, C. J.; Huang, Y. Z. Growth of lattice coherent Co9S8/Co3O4 nanoheterostructure for maximizing the catalysis of Co-based composites. ChemCatChem, 2020, 12, 2431–2435.

    Article  CAS  Google Scholar 

  43. Hu, J.; Zhao, X.; Chen, W.; Zheng, S. L.; Chen, Z. Mechanistic study of monolayer NiP2 (100) toward solar hydrogen production. Sol. RRL 2020, 4, 1900360.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation for Young Scientists of China (No. 51901018), China Postdoctoral Science Foundation (No. 2019M660456), the National Natural Science Foundation of China (Nos. 51771027 and 21676216), Young Elite Scientists Sponsorship Program by China Association for Science and Technology (YESS, 2019QNRC001), the Fundamental Research Funds for the Central Universities (No. FRF-MP-19-001), National Key Research and Development Program of China (No. 2017YFB0702100) and Singapore MOE AcRF Tier 1 grant M4011528.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Hu, Junsheng Wu or Yizhong Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Li, C., Hu, J. et al. Cobalt tungsten phosphide with tunable W-doping as highly efficient electrocatalysts for hydrogen evolution reaction. Nano Res. 14, 4073–4078 (2021). https://doi.org/10.1007/s12274-021-3342-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3342-y

Keywords

Navigation