Skip to main content
Log in

Engineering porous architectures in multicomponent PdCuBP mesoporous nanospheres for electrocatalytic ethanol oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Porous features of mesoporous metal nanocrystals are critically important for their applications in catalysis, sorption, and biomedicine and bioimaging. However, precisely engineering porous architectures of mesoporous metals is still highly challenging. Herein, we report a facile soft-templating strategy to precisely engineer porous architectures of multicomponent PdCuBP mesoporous nanospheres (MSs) by using the surfactants with different amphiphilic features. Three kinds of MSs with distinct porous architectures, including three-dimensional (3D) opened/interconnected dendritic mesopores (dMSs), one-dimensional (1D) cylindered mesopores (cMSs), and zero-dimensional (0D) spherical mesopores (sMSs), are prepared. This surfactant-templating method is generally extended to regulate elemental compositions of multicomponent MSs. The resultant Pd-based MSs have been evaluated as the electrocatalysts for ethanol oxidation reaction (EOR). Our results show that quaternary PdCuBP dMSs display remarkably high catalytic activity and better stability for electrocatalytic EOR, compared to those of multicomponent MSs with other porous architectures and less elemental compositions. Mechanism studies reveal that PdCuBP dMSs combine multiple structural and compositional advantages, which kinetically accelerate the electron/mass transfers and also improve the tolerances to poisoning intermediates. We believe that the porous architecture engineering in mesoporous metal electrocatalysts will present a new way to design highly efficient electrocatalysts with desired porous systems and explore their relations towards (electro)catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, A. C.; Ostrom, C. Palladium-based nanomaterials: Synthesis and electrochemical applications. Chem. Rev. 2015, 115, 11999–12044.

    Article  CAS  Google Scholar 

  2. Chen, Y.; Fan, Z. X.; Zhang, Z. C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 2018, 118, 6409–6455.

    Article  CAS  Google Scholar 

  3. Chung, D. Y.; Yoo, J. M.; Sung, Y. E. Highly durable and active Pt-based nanoscale design for fuel-cell oxygen-reduction electrocatalysts. Adv. Mater. 2018, 30, 1704123.

    Article  CAS  Google Scholar 

  4. Rodrigues, T. S.; da Silva, A. G. M.; Camargo, P. H. C. Nanocatalysis by noble metal nanoparticles: Controlled synthesis for the optimization and understanding of activities. J. Mater. Chem. A 2019, 7, 5857–5874.

    Article  CAS  Google Scholar 

  5. Shao, Q.; Wang, P. T.; Huang, X. Q. Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv. Funct. Mater. 2019, 29, 1806419.

    Article  CAS  Google Scholar 

  6. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  7. Du, R.; Jin, X. Y.; Hübner, R.; Fan, X. L.; Hu, Y.; Eychmüller, A. Engineering self-supported noble metal foams toward electrocatalysis and beyond. Adv. Energy Mater. 2020, 10, 1901945.

    Article  CAS  Google Scholar 

  8. Fang, Z. W.; Li, P. P.; Yu, G. H. Gel electrocatalysts: An emerging material platform for electrochemical energy conversion. Adv. Mater. 2020, 32, 2003191.

    Article  CAS  Google Scholar 

  9. Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

    Article  CAS  Google Scholar 

  10. Wang, Y. Z.; Zhang, Z. Y.; Mao, Y. C.; Wang, X. D. Two-dimensional nonlayered materials for electrocatalysis. Energy Environ. Sci. 2020, 13, 3993–4016.

    Article  CAS  Google Scholar 

  11. Huang, W. J.; Kang, X. L.; Xu, C.; Zhou, J. H.; Deng, J.; Li, Y. G.; Cheng, S. 2D PdAg alloy nanodendrites for enhanced ethanol electroxidation. Adv. Mater. 2018, 30, 1706962.

    Article  CAS  Google Scholar 

  12. Li, C. Z.; Yuan, Q.; Ni, B.; He, T.; Zhang, S. M.; Long, Y.; Gu, L.; Wang, X. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun. 2018, 9, 3702.

    Article  CAS  Google Scholar 

  13. Lv, H.; Xu, D. D.; Sun, L. Z.; Henzie, J.; Suib, S. L.; Yamauchi, Y.; Liu, B. Ternary palladium-boron-phosphorus alloy mesoporous nanospheres for highly efficient electrocatalysis. ACS Nano 2019, 13, 12052–12061.

    Article  CAS  Google Scholar 

  14. Chen, L.; Lu, L. L.; Zhu, H. L.; Chen, Y. G.; Huang, Y.; Li, Y. D.; Wang, L. Y. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts. Nat. Commun. 2017, 8, 14136.

    Article  CAS  Google Scholar 

  15. Lv, H.; Sun, L. Z.; Xu, D. D.; Ma, Y. H.; Liu, B. When ternary PdCuP alloys meet ultrathin nanowires: Synergic boosting of catalytic performance in ethanol electrooxidation. Appl. Catal. B Environ. 2019, 253, 271–277.

    Article  CAS  Google Scholar 

  16. Lv, H.; Sun, L. Z.; Xu, D. D.; Liu, B. Ternary metal-metalloid-nonmetal alloy nanowires: A novel electrocatalyst for highly efficient ethanol oxidation electrocatalysis. Sci. Bull. 2020, 65, 1823–1831.

    Article  CAS  Google Scholar 

  17. Xu, H.; Shang, H. Y.; Wang, C.; Du, Y. K. Ultrafine Pt-based nanowires for advanced catalysis. Adv. Funct. Mater. 2020, 30, 2000793.

    Article  CAS  Google Scholar 

  18. Li, Y. J.; Guo, S. J. Noble metal-based 1D and 2D electrocatalytic nanomaterials: Recent progress, challenges and perspectives. Nano Today 2019, 28, 100774.

    Article  CAS  Google Scholar 

  19. Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.

    Article  CAS  Google Scholar 

  20. Wang, T. J.; Li, F. M.; Huang, H.; Yin, S. W.; Chen, P.; Jin, P. J.; Chen, Y. Porous Pd-PdO nanotubes for methanol electrooxidation. Adv. Funct. Mater. 2020, 30, 2000534.

    Article  CAS  Google Scholar 

  21. Li, K.; Li, X. X.; Huang, H. W.; Luo, L. H.; Li, X.; Yan, X. P.; Ma, C.; Si, R.; Yang, J. L.; Zeng, J. One-nanometer-thick PtNiRh trimetallic nanowires with enhanced oxygen reduction electrocatalysis in acid media: Integrating multiple advantages into one catalyst. J. Am. Chem. Soc. 2018, 140, 16159–16167.

    Article  CAS  Google Scholar 

  22. Li, C. L.; Iqbal, M.; Jiang, B.; Wang, Z. L.; Kim, J.; Nanjundan, A. K.; Whitten, A. E.; Wood, K.; Yamauchi, Y. Pore-tuning to boost the electrocatalytic activity of polymeric micelle-templated mesoporous Pd nanoparticles. Chem. Sci. 2019, 10, 4054–4061.

    Article  Google Scholar 

  23. Jiang, B.; Li, C. L.; Dag, Ö.; Abe, H.; Takei, T.; Imai, T.; Hossain, S. A.; Islam, T.; Wood, K.; Henzie, J. et al. Mesoporous metallic rhodium nanoparticles. Nat. Commun. 2017, 8, 15581.

    Article  CAS  Google Scholar 

  24. Chen, H.; Liang, X.; Liu, Y. P.; Ai, X.; Asefa, T.; Zou, X. X. Active site engineering in porous electrocatalysts. Adv. Mater. 2020, 32, 2002435.

    Article  Google Scholar 

  25. Ding, J.; Liu, Z.; Liu, X. R.; Liu, B.; Liu, J.; Deng, Y. D.; Han, X. P.; Hu, W. B.; Zhong, C. Tunable periodically ordered mesoporosity in palladium membranes enables exceptional enhancement of intrinsic electrocatalytic activity for formic acid oxidation. Angew. Chem., Int. Ed. 2020, 59, 5092–5101.

    Article  CAS  Google Scholar 

  26. Zu, L. H.; Zhang, W.; Qu, L. B.; Liu, L. L.; Li, W.; Yu, A. B.; Zhao, D. Y. Mesoporous materials for electrochemical energy storage and conversion. Adv. Energy Mater. 2020, 10, 2002152.

    Article  CAS  Google Scholar 

  27. Zhang, J. T.; Li, C. M. Nanoporous metals: Fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chem. Soc. Rev. 2012, 41, 7016–7031.

    Article  CAS  Google Scholar 

  28. Yamauchi, Y.; Kuroda, K. Rational design of mesoporous metals and related nanomaterials by a soft-template approach. Chem.—Asian. J. 2008, 3, 664–676.

    Article  CAS  Google Scholar 

  29. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712.

    Article  CAS  Google Scholar 

  30. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

    Article  CAS  Google Scholar 

  31. Yang, X. Y.; Lu, P. H.; Yu, L.; Pan, P. P.; Elzatahry, A. A.; Alghamdi, A.; Luo, W.; Cheng, X. W.; Deng, Y. H. An efficient emulsion-induced interface assembly approach for rational synthesis of mesoporous carbon spheres with versatile architectures. Adv. Funct. Mater. 2020, 30, 2002488.

    Article  CAS  Google Scholar 

  32. Peng, L.; Hung, C. T.; Wang, S. W.; Zhang, X. M.; Zhu, X. H.; Zhao, Z. W.; Wang, C. Y.; Tang, Y.; Li, W.; Zhao, D. Y. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 2019, 141, 7073–7080.

    Article  CAS  Google Scholar 

  33. Fang, J. X.; Zhang, L. L.; Li, J.; Lu, L.; Ma, C. S.; Cheng, S. D.; Li, Z. Y.; Xiong, Q. H.; You, H. J. A general soft-enveloping strategy in the templating synthesis of mesoporous metal nanostructures. Nat. Commun. 2018, 9, 521.

    Article  CAS  Google Scholar 

  34. Huang, X. Q.; Li, Y. J.; Chen, Y.; Zhou, E. B.; Xu, Y. X.; Zhou, H. L.; Duan, X. F.; Huang, Y. Palladium-based nanostructures with highly porous features and perpendicular pore channels as enhanced organic catalysts. Angew. Chem., Int. Ed. 2013, 52, 2520–2524.

    Article  CAS  Google Scholar 

  35. Wei, Q. L.; Xiong, F. Y.; Tan, S. S.; Huang, L.; Lan, E. H.; Dunn, B.; Mai, L. Q. Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage. Adv. Mater. 2017, 29, 1602300.

    Article  CAS  Google Scholar 

  36. Han, L.; Miyasaka, K.; Terasaki, O.; Che, S. N. Evolution of packing parameters in the structural changes of silica mesoporous crystals: Cage-type, 2D cylindrical, bicontinuous diamond and gyroid, and lamellar. J. Am. Chem. Soc. 2011, 133, 11524–11533.

    Article  CAS  Google Scholar 

  37. Guo, Y.; Chen, S.; Li, Y.; Wang, Y. W.; Zou, H. B.; Tong, X. L. Pore structure dependent activity and durability of mesoporous rhodium nanoparticles towards the methanol oxidation reaction. Chem. Commun. 2020, 56, 4448–4451.

    Article  CAS  Google Scholar 

  38. Kärger, J.; Valiullin, R. Mass transfer in mesoporous materials: The benefit of microscopic diffusion measurement. Chem. Soc. Rev. 2013, 42, 4172–4197.

    Article  CAS  Google Scholar 

  39. Xu, Y.; Yu, S. S.; Ren, T. L.; Li, C. J.; Yin, S. L.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. A quaternary metal-metalloid-nonmetal electrocatalyst: B, P-co-doping into PdRu nanospine assemblies boosts the electrocatalytic capability toward formic acid oxidation. J. Mater. Chem. A 2020, 8, 2424–2429.

    Article  CAS  Google Scholar 

  40. Lv, H.; Sun, L. Z.; Xu, D. D.; Henzie, J.; Yamauchi, Y.; Liu, B. Mesoporous palladium-boron alloy nanospheres. J. Mater. Chem. A 2019, 7, 24877–24883.

    Article  CAS  Google Scholar 

  41. Vo Doan, T. T.; Wang, J. B.; Poon, K. C.; Tan, D. C. L.; Khezri, B.; Webster, R. D.; Su, H. B.; Sato, H. Theoretical modelling and facile synthesis of a highly active boron-doped palladium catalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2016, 55, 6842–6847.

    Article  CAS  Google Scholar 

  42. Lv, H.; Sun, L. Z.; Zou, L.; Xu, D. D.; Yao, H. Q.; Liu, B. Size-dependent synthesis and catalytic activities of trimetallic PdAgCu mesoporous nanospheres in ethanol electrooxidation. Chem. Sci. 2019, 10, 1986–1993.

    Article  CAS  Google Scholar 

  43. Lv, H.; Lopes, A.; Xu, D. D.; Liu, B. Multimetallic hollow mesoporous nanospheres with synergistically structural and compositional effects for highly efficient ethanol electrooxidation. ACS Cent. Sci. 2018, 4, 1412–1419.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (Nos. BK20191366 and BK20180723), Priority Academic Program Development of Jiangsu Higher Education Institutions, National and Local Joint Engineering Research Center of Biomedical Functional Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongdong Xu or Ben Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, H., Wang, Y., Xu, D. et al. Engineering porous architectures in multicomponent PdCuBP mesoporous nanospheres for electrocatalytic ethanol oxidation. Nano Res. 14, 3274–3281 (2021). https://doi.org/10.1007/s12274-021-3301-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3301-7

Keywords

Navigation