Skip to main content
Log in

Fabrication of magnetically recyclable yolk-shell Fe3O4@TiO2 nanosheet/Ag/g-C3N4 microspheres for enhanced photocatalytic degradation of organic pollutants

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Herein, we report the fabrication of Fe3O4@TiO2 nanosheet/Ag/g-C3N4 (Fe3O4@ns-TiO2/Ag/g-C3N4) composite photocatalysts with well-designed hierarchical yolk-shell structure. To endow the composites with fascinating features, multiple functional components are perfectly integrated into the definite structure. The photodegradation experiments of organic pollutants revealed a significant enhancement in photocatalytic activity of developed composites as compared to P25, which is mainly due to the synergetic interaction of the tailored three-dimensional (3D) yolk-shell porous nanostructure, extended sunlight response range, and retarded the recombination probability of photogenerated electrons-holes. More importantly, the hybrid samples exhibited superior magnetic properties due to the magnetic component. The excellent magnetic recyclability and reusability of the photocatalysts are verified by the magnetic hysteresis loop and cyclic photocatalytic degradation experiments, which is significant for the green and sustainable applications of photocatalysts. Considering its remarkable photocatalytic performance and expectant magnetic recyclability, the composite photocatalysts are expected to be a promising candidate to dispose of future environmental issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo, J. M.; Zhang, S. Q.; Sun, M.; Yang, L. X.; Luo, S. L.; Crittenden, J. C. A critical review on energy conversion and environmental remediation of photocatalysts with remodeling crystal lattice, surface, and interface. ACS Nano 2019, 13, 9811–9840.

    Article  CAS  Google Scholar 

  2. Ravelli, D.; Dondi, D.; Fagnoni, M.; Albini, A. Photocatalysis. A multi-faceted concept for green chemistry. Chem. Soc. Rev. 2009, 38, 1999–2011.

    Article  CAS  Google Scholar 

  3. Xu, C. P.; Ravi Anusuyadevi, P.; Aymonier, C.; Luque, R.; Marre, S. Nanostructured materials for photocatalysis. Chem. Soc. Rev. 2019, 48, 3868–3902.

    Article  CAS  Google Scholar 

  4. Zarrin, S.; Heshmatpour, F. Photocatalytic activity of TiO2/Nb2O5/PANI and TiO2/Nb2O5/RGO as new nanocomposites for degradation of organic pollutants. J. Hazard. Mater. 2018, 351, 147–159.

    Article  CAS  Google Scholar 

  5. Guo, Q.; Zhou, C. Y.; Ma, Z. B.; Yang, X. M. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. 2019, 31, 1901997.

    Article  CAS  Google Scholar 

  6. Anwer, H.; Mahmood, A.; Lee, J.; Kim, K. H.; Park, J. W.; Yip, A. C. K. Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges. Nano Res. 2019, 12, 955–972.

    Article  CAS  Google Scholar 

  7. Yi, L. C.; Ci, S. Q.; Luo, S. L.; Shao, P.; Hou, Y.; Wen, Z. H. Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination. Nano Energy 2017, 41, 600–608.

    Article  CAS  Google Scholar 

  8. Liu, L. F.; Zhang, J. L.; Tan, X. N.; Zhang, B. X.; Shi, J. B.; Cheng, X. Y.; Tan, D. X.; Han, B. X.; Zheng, L. R.; Zhang, F. Y. Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. Nano Res. 2020, 13, 983–988.

    Article  CAS  Google Scholar 

  9. Jalvo, B.; Faraldos, M.; Bahamonde, A.; Rosal, R. Antimicrobial and antibiofilm efficacy of self-cleaning surfaces functionalized by TiO2 photocatalytic nanoparticles against Staphylococcus aureus and Pseudomonas putida. J. Hazard. Mater. 2017, 340, 160–170.

    Article  CAS  Google Scholar 

  10. Yao, P.; Yu, S. H.; Shen, H. F.; Yang, J.; Min, L. F.; Yang, Z. J.; Zhu, X. S. A TiO2-SnS2 nanocomposite as a novel matrix for the development of an enzymatic electrochemical glucose biosensor. New J. Chem. 2019, 43, 16748–16752.

    Article  CAS  Google Scholar 

  11. Sang, L. X.; Zhao, Y. X.; Burda, C. TiO2 nanoparticles as functional building blocks. Chem. Rev. 2014, 114, 9283–9318.

    Article  CAS  Google Scholar 

  12. Hsieh, P. Y.; Chiu, Y. H.; Lai, T. H.; Fang, M. J.; Wang, Y. T.; Hsu, Y. J. TiO2 Nanowire-supported sulfide hybrid photocatalysts for durable solar hydrogen production. ACS Appl. Mater. Interfaces 2019, 11, 3006–3015.

    Article  CAS  Google Scholar 

  13. Zhang, M.; Shang, Q. G.; Wan, Y. Q.; Cheng, Q. R.; Liao, G. Y.; Pan, Z. Q. Self-template synthesis of double-shell TiO2@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation. Appl. Catal. B: Environ. 2019, 241, 149–158.

    Article  CAS  Google Scholar 

  14. Ge, M. Z.; Li, Q. S.; Cao, C. Y.; Huang, J. Y.; Li, S. H.; Zhang, S. N.; Chen, Z.; Zhang, K. Q.; Al-Deyab, S. S.; Lai, Y. K. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv. Sci. 2017, 4, 1600152.

    Article  Google Scholar 

  15. Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.

    Article  Google Scholar 

  16. Eskandarloo, H.; Zaferani, M.; Kierulf, A.; Abbaspourrad, A. Shape-controlled fabrication of TiO2 hollow shells toward photo-catalytic application. Appl. Catal. B: Environ. 2018, 227, 519–529.

    Article  CAS  Google Scholar 

  17. Joo, J. B.; Lee, I.; Dahl, M.; Moon, G. D.; Zaera, F.; Yin, Y. D. Controllable synthesis of mesoporous TiO2 hollow shells: Toward an efficient photocatalyst. Adv. Funct. Mater. 2013, 23, 4246–4254.

    Article  CAS  Google Scholar 

  18. Xiao, M.; Wang, Z. L.; Lyu, M.; Luo, B.; Wang, S. C.; Liu, G.; Cheng, H. M.; Wang, L. Z. Hollow nanostructures for photocatalysis: Advantages and challenges. Adv. Mater. 2019, 31, 1801369.

    Article  Google Scholar 

  19. Xiao, Y. G.; Sun, X. D.; Li, L. Y.; Chen, J. R.; Zhao, S. D.; Jiang, C. G.; Yang, L. Y.; Cheng, L.; Cao, S. S. Simultaneous formation of a C/N-TiO2 hollow photocatalyst with efficient photocatalytic performance and recyclability. Chin. J. Catal. 2019, 40, 765–775.

    Article  CAS  Google Scholar 

  20. Zhang, S. H.; Li, H. H.; Wang, S. Y.; Liu, Y.; Chen, H.; Lu, Z. X. Bacteria-Assisted Synthesis of Nanosheet-assembled TiO2 hierarchical architectures for constructing TiO2-based composites for photocatalytic and electrocatalytic applications. ACS Appl. Mater. Interfaces 2019, 11, 37004–37012.

    Article  CAS  Google Scholar 

  21. Yang, R. W.; Cai, J. H.; Lv, K. L.; Wu, X. F.; Wang, W. G.; Xu, Z. H.; Li, M.; Li, Q.; Xu, W. Q. Fabrication of TiO2 hollow microspheres assembly from nanosheets (TiO2-HMSs-NSs) with enhanced photoelectric conversion efficiency in DSSCs and photocatalytic activity. Appl. Catal. B: Environ. 2017, 210, 184–193.

    Article  CAS  Google Scholar 

  22. Zhang, C.; Zhou, Y. M.; Zhang, Y. W.; Zhao, S.; Fang, J. S.; Sheng, X. L.; Zhang, T.; Zhang, H. X. Double-shelled TiO2 hollow spheres assembled with TiO2 nanosheets. Chem. Eur. J. 2017, 23, 4336–4343.

    Article  CAS  Google Scholar 

  23. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.

    Article  CAS  Google Scholar 

  24. Fu, A.; Chen, X.; Tong, L. H.; Wang, D. F.; Liu, L. Q.; Ye, J. H. Remarkable visible-light photocatalytic activity enhancement over Au/p-type TiO2 promoted by efficient interfacial charge transfer. ACS Appl. Mater. Interfaces 2019, 11, 24154–24163.

    Article  CAS  Google Scholar 

  25. Zhang, Y. H.; Li, Q.; Gao, Q.; Wan, S. Y.; Yao, P.; Zhu, X. S. Preparation of Ag/β-cyclodextrin co-doped TiO2 floating photocatalytic membrane for dynamic adsorption and photoactivity under visible light. Appl. Catal. B: Environ. 2020, 267, 118715.

    Article  CAS  Google Scholar 

  26. Jiang, Z. Y.; Sun, W.; Miao, W. K.; Yuan, Z. M.; Yang, G. H.; Kong, F. G.; Yan, T. J.; Chen, J. C.; Huang, B. B.; An, C. H. et al. Living atomically dispersed Cu ultrathin TiO2 nanosheet CO2 reduction photocatalyst. Adv. Sci. 2019, 6, 1900289.

    Article  Google Scholar 

  27. Liao, G. F.; Fang, J. S.; Li, Q.; Li, S. H.; Xu, Z. S.; Fang, B. Z. Ag-based nanocomposites: Synthesis and applications in catalysis. Nanoscale 2019, 11, 7062–7096.

    Article  CAS  Google Scholar 

  28. Ma, J.; Gao, S.W. Plasmon-induced electron-hole separation at the Ag/TiO2(110) interface. ACS Nano 2019, 13, 13658–13667.

    Article  CAS  Google Scholar 

  29. Cacciato, G.; Bayle, M.; Pugliara, A.; Bonafos, C.; Zimbone, M.; Privitera, V.; Grimaldi, M. G.; Carles, R. Enhancing carrier generation in TiO2 by a synergistic effect between Plasmon resonance in Ag nanoparticles and optical interference. Nanoscale 2015, 7, 13468–13476.

    Article  CAS  Google Scholar 

  30. Gu, Y.; Jiao, Y. Q.; Zhou, X. G.; Wu, A. P.; Buhe, B.; Fu, H. G. Strongly coupled Ag/TiO2 heterojunctions for effective and stable photothermal catalytic reduction of 4-nitrophenol. Nano Res. 2018, 11, 126–141.

    Article  CAS  Google Scholar 

  31. Hou, H. L.; Gao, F. M.; Wang, L.; Shang, M. H.; Yang, Z. B.; Zheng, J. J.; Yang, W. Y. Superior thoroughly mesoporous ternary hybrid photocatalysts of TiO2/WO3/g-C3N4 nanofibers for visible-light-driven hydrogen evolution. J. Mater. Chem. A 2016, 4, 6276–6281.

    Article  CAS  Google Scholar 

  32. Wang, L. F.; Liu, S. H.; Wang, Z.; Zhou, Y. L.; Qin, Y.; Wang, Z. L. Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress. ACS Nano 2016, 10, 2636–2643.

    Article  CAS  Google Scholar 

  33. Li, Q.; Xia, Y.; Yang, C.; Lv, K. L.; Lei, M.; Li, M. Building a direct Z-scheme heterojunction photocatalyst by ZnIn2S4 nanosheets and TiO2 hollowspheres for highly-efficient artificial photosynthesis. Chem. Eng. J. 2018, 349, 287–296.

    Article  CAS  Google Scholar 

  34. Zhang, Y. W.; Xu, J. S.; Mei, J.; Sarina, S.; Wu, Z. Y.; Liao, T.; Yan, C.; Sun, Z. Q. Strongly interfacial-coupled 2D-2D TiO2/g-C3N4 heterostructure for enhanced visible-light induced synthesis and conversion. J. Hazard. Mater. 2020, 394, 122529.

    Article  CAS  Google Scholar 

  35. Tang, S. F.; Yin, X. P.; Wang, G. Y.; Lu, X. L.; Lu, T. B. Single titanium-oxide species implanted in 2D g-C3N4 matrix as a highly efficient visible-light CO2 reduction photocatalyst. Nano Res. 2019, 12, 457–462.

    Article  CAS  Google Scholar 

  36. Wang, W.; Fang, J. J.; Shao, S. F.; Lai, M.; Lu, C. H. Compact and uniform TiO2@g-C3N4 core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics. Appl. Catal. B: Environ. 2017, 217, 57–64.

    Article  CAS  Google Scholar 

  37. Wang, C. J.; Zhao, Y. L.; Xu, H.; Li, Y. F.; Wei, Y. C.; Liu, J.; Zhao, Z. Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2 with H2O. Appl. Catal. B: Environ. 2020, 263, 118314.

    Article  CAS  Google Scholar 

  38. Zou, Y. D.; Yang, B. B.; Liu, Y.; Ren, Y.; Ma, J. H.; Zhou, X. R.; Cheng, X. W.; Deng, Y. H. Controllable interface-induced co-assembly toward highly ordered mesoporous Pt@TiO2/g-C3N4 heterojunctions with enhanced photocatalytic performance. Adv. Funct. Mater. 2018, 28, 1806214.

    Article  Google Scholar 

  39. Yao, H. B.; Fan, M. H.; Wang, Y. J.; Luo, G. S.; Fei, W. Y. Magnetic titanium dioxide based nanomaterials: Synthesis, characteristics, and photocatalytic application in pollutant degradation. J. Mater. Chem. A 2015, 3, 17511–17524.

    Article  CAS  Google Scholar 

  40. Wang, D.; Astruc, D. Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev. 2014, 114, 6949–6985.

    Article  CAS  Google Scholar 

  41. Wu, L. H.; Mendoza-Garcia, A.; Li, Q.; Sun, S. H. Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev. 2016, 116, 10473–10512.

    Article  CAS  Google Scholar 

  42. Gawande, M. B.; Branco, P. S.; Varma, R. S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 2013, 42, 3371–3393.

    Article  CAS  Google Scholar 

  43. Wang, Y. Y.; Pan, F.; Dong, W. H.; Xu, L. L.; Wu, K.; Xu, G. Q.; Chen, W. Recyclable silver-decorated magnetic titania nanocomposite with enhanced visible-light photocatalytic activity. Appl. Catal. B: Environ. 2016, 189, 192–198.

    Article  CAS  Google Scholar 

  44. Chávez, A. M.; Solís, R. R.; Beltrán, F. J. Magnetic graphene TiO2-based photocatalyst for the removal of pollutants of emerging concern in water by simulated sunlight aided photocatalytic ozonation. Appl. Catal. B: Environ. 2020, 262, 118275.

    Article  Google Scholar 

  45. Cao, L. D.; Ma, D. K.; Zhou, Z. L.; Xu, C. L.; Cao, C.; Zhao, P. Y.; Huang, Q. L. Efficient photocatalytic degradation of herbicide glyphosate in water by magnetically separable and recyclable BiOBr/Fe3O4 nanocomposites under visible light irradiation. Chem. Eng. J. 2019, 368, 212–222.

    Article  CAS  Google Scholar 

  46. Liu, J.; Sun, Z. K.; Deng, Y. H.; Zou, Y.; Li, C. Y.; Guo, X. H.; Xiong, L. Q.; Gao, Y.; Li, F. Y.; Zhao, D. Y. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem., Int. Ed. 2009, 48, 5875–5879.

    Article  CAS  Google Scholar 

  47. Li, W.; Deng, Y. H.; Wu, Z. X.; Qian, X. F.; Yang, J. P.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Y. Hydrothermal etching assisted crystallization: A facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. J. Am. Chem. Soc. 2011, 133, 15830–15833.

    Article  CAS  Google Scholar 

  48. Wei, K.; Li, K. X.; Yan, L. S.; Luo, S. L.; Guo, H. Q.; Dai, Y. H.; Luo, X. B. One-step fabrication of g-C3N4 nanosheets/TiO2 hollow microspheres heterojunctions with atomic level hybridization and their application in the multi-component synergistic photocatalytic systems. Appl. Catal. B: Environ. 2018, 222, 88–98.

    Article  CAS  Google Scholar 

  49. Xu, J.; Huang, J.; Wang, Z. P.; Zhu, Y. F. Enhanced visible-light photocatalytic degradation and disinfection performance of oxidized nanoporous g-C3N4 via decoration with graphene oxide quantum dots. Chin. J. Catal. 2020, 41, 474–484.

    Article  CAS  Google Scholar 

  50. Dvoranová, D.; Barbieriková, Z.; Brezová, V. Radical intermediates in photoinduced reactions on TiO2 (an EPR spin trapping study). Molecules 2014, 19, 17279–17304.

    Article  Google Scholar 

  51. Li, H. L.; Gao, Y.; Wu, X. Y.; Lee, P. H.; Shih, K. Fabrication of heterostructured g-C3N4/Ag-TiO2 hybrid photocatalyst with enhanced performance in photocatalytic conversion of CO2 under simulated sunlight irradiation. Appl. Surf. Sci. 2017, 402, 198–207.

    Article  CAS  Google Scholar 

  52. Lei, J. Y.; Chen, B.; Lv, W. J.; Zhou, L.; Wang, L. Z.; Liu, Y. D.; Zhang, J. L. An inverse opal TiO2/g-C3N4 composite with a heterojunction for enhanced visible light-driven photocatalytic activity. Dalton Trans. 2019, 48, 3486–3495.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Jiangsu Agriculture Science and Technology Innovation Fund (JASTIF) (No. CX (18)2025), National Natural Science Foundation of China (No. 31871881), S&T Support Program of Jiangsu Province (No. BE2017623), the National First-class Discipline Program of Food Science and Technology (No. JUFSTR20180303), and the Distinguished Professor Program of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouping Wang.

Electronic Supplementary Material

12274_2020_3237_MOESM1_ESM.pdf

Fabrication of magnetically recyclable yolk-shell Fe3O4@TiO2 nanosheet/Ag/g-C3N4 microspheres for enhanced photocatalytic degradation of organic pollutants

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Yue, L., Khan, I.M. et al. Fabrication of magnetically recyclable yolk-shell Fe3O4@TiO2 nanosheet/Ag/g-C3N4 microspheres for enhanced photocatalytic degradation of organic pollutants. Nano Res. 14, 2363–2371 (2021). https://doi.org/10.1007/s12274-020-3237-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3237-3

Keywords

Navigation