Skip to main content
Log in

Metal-polyphenol-network coated CaCO3 as pH-responsive nanocarriers to enable effective intratumoral penetration and reversal of multidrug resistance for augmented cancer treatments

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Construction of multifunctional stimuli-responsive nanotherapeutics enabling improved intratumoral penetration of therapeutics and reversal of multiple-drug resistance (MDR) is potent to achieve effective cancer treatment. Herein, we report a general method to synthesize pH-dissociable calcium carbonate (CaCO3) hollow nanoparticles with amorphous CaCO3 as the template, gallic acid (GA) as the organic ligand, and ferrous ions as the metallic center via a one-pot coordination reaction. The obtained GA–Fe@CaCO3 exhibits high loading efficiencies to both oxidized cisplatin prodrug and doxorubicin, yielding drug loaded GA–Fe@CaCO3 nanotherapeutics featured in pH-responsive size shrinkage, drug release, and Fenton catalytic activity. Compared to nonresponsive GA–Fe@silica nanoparticles prepared with silica nanoparticles as the template, such GA–Fe@CaCO3 confers significantly improved intratumoral penetration capacity. Moreover, both types of drug-loaded GA–Fe@CaCO3 nanotherapeutics exhibit synergistic therapeutic efficacies to corresponding MDR cancer cells because of the GA–Fe mediated intracellular oxidative stress amplification that could reduce the efflux of engulfed drugs by impairing the mitochondrial-mediated production of adenosine triphosphate (ATP). As a result, it is found that the doxorubicin loaded GA–Fe@CaCO3 exhibits superior therapeutic effect towards doxorubicin-resistant 4T1 breast tumors via combined chemodynamic and chemo-therapies. This work highlights the preparation of pH-dissociable CaCO3-based nanotherapeutics to enable effective tumor penetration for enhanced treatment of drug-resistant tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release 2015, 200, 138–157.

    Article  CAS  Google Scholar 

  2. Bor, G.; Mat Azmi, I. D.; Yaghmur, A. Nanomedicines for cancer therapy: Current status, challenges and future prospects. Ther. Deliv. 2019, 10, 113–132.

    Article  CAS  Google Scholar 

  3. Zhang, R. X.; Wong, H. L.; Xue, H. Y.; Eoh, J. Y.; Wu, X. Y. Nanomedicine of synergistic drug combinations for cancer therapy-Strategies and perspectives. J. Control. Release 2016, 240, 489–503.

    Article  CAS  Google Scholar 

  4. Theocharis, A. D.; Skandalis, S. S.; Gialeli, C.; Karamanos, N. K. Extracellular matrix structure. Adv. Drug Deliver. Rev. 2016, 97, 4–27.

    Article  CAS  Google Scholar 

  5. Heldin, C. H.; Rubin, K.; Pietras, K.; Östman, A. High interstitial fluid pressure—an obstacle in cancer therapy. Nat. Rev. Cancer 2004, 4, 806–813.

    Article  CAS  Google Scholar 

  6. Böckelmann, L. C.; Schumacher, U. Targeting tumor interstitial fluid pressure: Will it yield novel successful therapies for solid tumors? Expert Opin. Ther. Targets 2019, 23, 1005–1014.

    Article  Google Scholar 

  7. Chen, Q.; Wang, C.; Zhang, X. D.; Chen, G. J.; Hu, Q. Y.; Li, H. J.; Wang, J. Q.; Wen, D.; Zhang, Y. Q.; Lu, Y. F. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 2019, 14, 89–97.

    Article  CAS  Google Scholar 

  8. Minchinton, A. I.; Tannock, I. F. Drug penetration in solid tumours. Nat. Rev. Cancer 2006, 6, 583–592.

    Article  CAS  Google Scholar 

  9. Zhou, Q.; Shao, S. Q.; Wang, J. Q.; Xu, C. H.; Xiang, J. J.; Piao, Y.; Zhou, Z. X.; Yu, Q. S.; Tang, J. B.; Liu, X. R. et al. Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 2019, 14, 799–809.

    Article  CAS  Google Scholar 

  10. Sun, Y. Tumor microenvironment and cancer therapy resistance. Cancer Lett. 2016, 380, 205–215.

    Article  CAS  Google Scholar 

  11. Wang, H. M.; Feng, Z. Q. Q.; Wu, D. D.; Fritzsching, K. J.; Rigney, M.; Zhou, J.; Jiang, Y. J.; Schmidt-Rohr, K.; Xu, B. Enzyme-regulated supramolecular assemblies of cholesterol conjugates against drugresistant ovarian cancer cells. J. Am. Chem. Soc. 2016, 138, 10758–10761.

    Article  CAS  Google Scholar 

  12. Wang, S.; Huang, P.; Chen, X. Y. Stimuli-responsive programmed specific targeting in nanomedicine. ACS Nano 2016, 10, 2991–2994.

    Article  CAS  Google Scholar 

  13. Li, F. Y.; Lu, J. X.; Kong, X. Q.; Hyeon, T.; Ling, D. S. Dynamic nanoparticle assemblies for biomedical applications. Adv. Mater. 2017, 29, 1605897.

    Article  Google Scholar 

  14. Sun, Q. X.; Ojha, T.; Kiessling, F.; Lammers, T.; Shi, Y. Enhancing tumor penetration of nanomedicines. Biomacromolecules 2017, 18, 1449–1459.

    Article  CAS  Google Scholar 

  15. Li, H. J.; Du, J. Z.; Du, X. J.; Xu, C. F.; Sun, C. Y.; Wang, H. X.; Cao, Z. T.; Yang, X. Z.; Zhu, Y. H.; Nie, S. M. et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl. Acad. Sci. USA 2016, 113, 4164–4169.

    Article  CAS  Google Scholar 

  16. Markman, J. L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J. Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliver. Rev. 2013, 65, 1866–1879.

    Article  CAS  Google Scholar 

  17. Mou, Q. B.; Ma, Y.; Ding, F.; Gao, X. H.; Yan, D. Y.; Zhu, X. Y.; Zhang, C. Two-in-one chemogene assembled from drug-integrated antisense oligonucleotides to reverse chemoresistance. J. Am. Chem. Soc. 2019, 141, 6955–6966.

    Article  CAS  Google Scholar 

  18. Szakács, G.; Paterson, J. K.; Ludwig, J. A.; Booth-Genthe, C.; Gottesman, M. M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 2006, 5, 219–234.

    Article  Google Scholar 

  19. Gottesman, M. M.; Fojo, T.; Bates, S. E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer 2002, 2, 48–58.

    Article  CAS  Google Scholar 

  20. Wang, H.; Gao, Z.; Liu, X. Y.; Agarwal, P.; Zhao, S. T.; Conroy, D. W.; Ji, G.; Yu, J. H.; Jaroniec, C. P.; Liu, Z. G. et al. Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nat. Commun. 2018, 9, 562.

    Article  Google Scholar 

  21. Zhang, C.; Bu, W. B.; Ni, D. L.; Zhang, S. J.; Li, Q.; Yao, Z. W.; Zhang, J. W.; Yao, H. L.; Wang, Z.; Shi, J. L. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew. Chem., Int. Ed. 2016, 55, 2101–2106.

    Article  CAS  Google Scholar 

  22. Tang, Z. M.; Liu, Y. Y.; He, M. Y.; Bu, W. B. Chemodynamic therapy: Tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew. Chem., Int. Ed. 2019, 58, 946–956.

    Article  CAS  Google Scholar 

  23. Liu, Y.; Zhen, W. Y.; Wang, Y. H.; Liu, J. H.; Jin, L. H.; Zhang, T. Q.; Zhang, S. T.; Zhao, Y.; Song, S. Y.; Li, C. Y. et al. One-dimensional Fe2P acts as a fenton agent in response to nir ii light and ultrasound for deep tumor synergetic theranostics. Angew. Chem., Int. Ed. 2019, 58, 2407–2412.

    Article  CAS  Google Scholar 

  24. Xue, C. C.; Li, M. H.; Zhao, Y.; Zhou, J.; Hu, Y.; Cai, K. Y.; Zhao, Y. L.; Yu, S. H.; Luo, Z. Tumor microenvironment-activatable Fedoxorubicin preloaded amorphous CaCO3 nanoformulation triggers ferroptosis in target tumor cells. Sci. Adv. 2020, 6, eaax1346.

    Article  Google Scholar 

  25. Brookes, P. S.; Yoon, Y.; Robotham, J. L.; Anders, M. W.; Sheu, S. S. Calcium, ATP, and ROS: A mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol. 2004, 287, C817–C833.

    Article  CAS  Google Scholar 

  26. Dong, Z. L.; Feng, L. Z.; Zhu, W. W.; Sun, X. Q.; Gao, M.; Zhao, H.; Chao, Y.; Liu, Z. CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomaterials 2016, 110, 60–70.

    Article  CAS  Google Scholar 

  27. Zhao, Y.; Luo, Z.; Li, M. H.; Qu, Q. Y.; Ma, X.; Yu, S. H.; Zhao, Y. L. A preloaded amorphous calcium carbonate/doxorubicin@silica nanoreactor for pH-responsive delivery of an anticancer drug. Angew. Chem., Int. Ed. 2015, 54, 919–922

    Article  CAS  Google Scholar 

  28. Dong, Z. L.; Feng, L. Z.; Chao, Y.; Hao, Y.; Chen, M. C.; Gong, F.; Han, X.; Zhang, R.; Cheng, L.; Liu, Z. Amplification of tumor oxidative stresses with liposomal fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Lett. 2018, 19, 805–815.

    Article  Google Scholar 

  29. Wang, H. R.; Zhu, W. W.; Feng, L. Z.; Chen, Q.; Chao, Y.; Dong, Z. L.; Liu, Z. Nanoscale covalent organic polymers as a biodegradable nanomedicine for chemotherapy-enhanced photodynamic therapy of cancer. Nano Res. 2018, 11, 3244–3257.

    Article  CAS  Google Scholar 

  30. Vyas, S.; Zaganjor, E.; Haigis, M. C. Mitochondria and cancer. Cell 2016, 166, 555–566.

    Article  CAS  Google Scholar 

  31. Feng, L. Z.; Dong, Z. L.; Tao, D. L.; Zhang, Y. C.; Liu, Z. The acidic tumor microenvironment: A target for smart cancer nano-theranostics. Natl. Sci. Rev. 2017, 5, 269–286.

    Article  Google Scholar 

  32. Wong, C.; Stylianopoulos, T.; Cui, J.; Martin, J.; Chauhan, V. P.; Jiang, W.; Popović, Z.; Jain, R. K.; Bawendi, M. G.; Fukumura, D. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. USA 2011, 108, 2426–2431.

    Article  CAS  Google Scholar 

  33. Dreher, M. R.; Liu, W. G.; Michelich, C. R.; Dewhirst, M. W.; Yuan, F.; Chilkoti, A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl. Cancer Inst. 2006, 98, 335–344.

    Article  CAS  Google Scholar 

  34. Alexis, F.; Pridgen, E.; Molnar, L. K.; Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharmaceutics 2008, 5, 505–515.

    Article  CAS  Google Scholar 

  35. Zhang, Y. N.; Poon, W.; Tavares, A. J.; McGilvray, I. D.; Chan, W. C. W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release 2016, 240, 332–348.

    Article  CAS  Google Scholar 

  36. Pan, L. M.; He, Q. J.; Liu, J. N.; Chen, Y.; Ma, M.; Zhang, L. L.; Shi, J. L. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc. 2012, 134, 5722–5725.

    Article  CAS  Google Scholar 

  37. Feng, L. Z.; Gao, M.; Tao, D. L.; Chen, Q.; Wang, H. R.; Dong, Z. L.; Chen, M. W.; Liu, Z. Cisplatin-prodrug-constructed liposomes as a versatile theranostic nanoplatform for bimodal imaging guided combination cancer therapy. Adv. Funct. Mater. 2016, 26, 2207–2217.

    Article  CAS  Google Scholar 

  38. Dong, Z. L.; Gong, H.; Gao, M.; Zhu, W. W.; Sun, X. Q.; Feng, L. Z.; Fu, T. T.; Li, Y. G.; Liu, Z. Polydopamine nanoparticles as a versatile molecular loading platform to enable imaging-guided cancer combination therapy. Theranostics 2016, 6, 1031–1042.

    Article  CAS  Google Scholar 

  39. Chen, Q.; Feng, L. Z.; Liu, J. J.; Zhu, W. W.; Dong, Z. L.; Wu, Y. F.; Liu, Z. Intelligent albumin–MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 2016, 28, 7129–7136.

    Article  CAS  Google Scholar 

  40. Liu, J. J.; Wang, H. R.; Yi, X.; Chao, Y.; Geng, Y. H.; Xu, L. G.; Yang, K.; Liu, Z. pH-sensitive dissociable nanoscale coordination polymers with drug loading for synergistically enhanced chemoradiotherapy. Adv. Funct. Mater. 2017, 27, 1703832.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51802209), the National Research Programs from Ministry of Science and Technology (MOST) of China (No. 2016YFA0201200), the Natural Science Foundation of Jiangsu Province (No. BK20180848), the China Postdoctoral Science Foundation (No. 2018T110545), the Collaborative Innovation Center of Suzhou Nano Science and Technology, and the 111 Program from the Ministry of Education of China. We also thank the website of BioRender.com for its assistance in the creation of schematic figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangzhu Feng.

Electronic Supplementary Material

12274_2020_2972_MOESM1_ESM.pdf

Metal-polyphenol-network coated CaCO3 as pH-responsive nanocarriers to enable effective intratumoral penetration and reversal of multidrug resistance for augmented cancer treatments

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Hao, Y., Li, Q. et al. Metal-polyphenol-network coated CaCO3 as pH-responsive nanocarriers to enable effective intratumoral penetration and reversal of multidrug resistance for augmented cancer treatments. Nano Res. 13, 3057–3067 (2020). https://doi.org/10.1007/s12274-020-2972-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2972-9

Keywords

Navigation