Skip to main content
Log in

Nanoscale covalent organic polymers as a biodegradable nanomedicine for chemotherapy-enhanced photodynamic therapy of cancer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, covalent-organic polymers (COPs), which covalently cross-link different types of organic molecules to form organic network structures, have received significant attention in various fields. However, the design of COPs that allows them to act as therapeutic agents remains to be explored. In the present study, a new class of COPs was fabricated by cross-linking the photosensitizer meso-tetra(p-hydroxyphenyl) porphine (THPP) to a chemotherapeutic pro-drug, cis-platinum (IV); the latter also acts as a reduction-responsive linker. After further conjugation with polyethylene glycol (PEG) in this one-pot reaction, we obtained THPP-Pt-PEG COPs, which can be stored in a lyophilized form and occur as stable nanoparticles in aqueous solution. The THPP-Pt-PEG COPs are effective in killing cancer cells through photodynamic treatment, and exhibited reduction-responsive degradation/drug release behaviors. Upon intravenous injection, the COPs, with a long blood circulation time, showed efficient tumor accumulation. Interestingly, we revealed that after injection of THPP-Pt-PEG COPs, tumors on mice exhibited greatly improved vascular perfusion and largely relieved tumor hypoxia, which favored subsequent photodynamic treatment. Hence, the combined chemo-photodynamic therapy of the COPs offers a remarkably improved therapeutic outcome compared to that with mono-therapies. This work presents a COP-based nanomedicine with high drug loading, lyophilizable formulation, prolonged blood half-life, efficient tumor passive homing, inherent biodegradability, and multiple therapeutic functions to achieve enhanced cancer combination therapy, with promise for clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Delplace, V.; Couvreur, P.; Nicolas, J. Recent trends in the design of anticancer polymer prodrug nanocarriers. Polym. Chem. 2014, 5, 1529–1544.

    Article  Google Scholar 

  2. Sahay, G.; Alakhova, D. Y.; Kabanov, A. V. Endocytosis of nanomedicines. J. Control. Release 2010, 145, 182–195.

    Article  Google Scholar 

  3. Yin, Q.; Shen, J. N.; Zhang, Z. W.; Yu, H. J.; Li, Y. P. Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor. Adv. Drug. Deliv. Rev. 2013, 65, 1699–1715.

    Article  Google Scholar 

  4. Yang, L.; Meng, L.; Zhang, X. B.; Chen, Y.; Zhu, G. Z.; Liu, H. P.; Xiong, X. L.; Sefah, K.; Tan, W. H. Engineering polymeric aptamers for selective cytotoxicity. J. Am. Chem. Soc. 2011, 133, 13380–13386.

    Article  Google Scholar 

  5. Wei, X.; Wang, Y.; Xiong, X.; Guo, X.; Zhang, L.; Zhang, X. B.; Zhou, S. B. Codelivery of a p–p stacked dual anticancer drug combination with nanocarriers for overcoming multidrug resistance and tumor metastasis. Adv. Funct.Mater. 2016, 26, 8266–8280.

    Article  Google Scholar 

  6. Wang, J.; Yang, G.; Guo, X.; Tang, Z. M.; Zhong, Z. D.; Zhou, S. B. Redox-responsive polyanhydride micelles for cancer therapy. Biomaterials 2014, 35, 3080–3090.

    Article  Google Scholar 

  7. Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126, 187–204.

    Article  Google Scholar 

  8. Li, B.; Xu, H.; Li, Z.; Yao, M. F.; Xie, M.; Shen, H. J.; Shen, S.; Wang, X. S.; Jin, Y. Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies. Int. J. Nanomed. 2012, 7, 187–197.

    Google Scholar 

  9. Oh, J. K.; Lee, D. I.; Park, J. M. Biopolymer-based microgels/ nanogels for drug delivery applications. Prog. Polym. Sci. 2009, 34, 1261–1282.

    Article  Google Scholar 

  10. Cao, Z. Q.; Yu, Q. M.; Xue, H.; Cheng, G.; Jiang, S. Y. Nanoparticles for drug delivery prepared from amphiphilic plga zwitterionic block copolymers with sharp contrast in polarity between two blocks. Angew. Chem., Int. Ed. 2010, 49, 3771–3776.

    Article  Google Scholar 

  11. Poland, C. A.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W. A. H.; Seaton, A.; Stone, V.; Brown, S.; MacNee, W.; Donaldson, K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 2008, 3, 423–428.

    Article  Google Scholar 

  12. Griset, A. P.; Walpole, J.; Liu, R.; Gaffey, A.; Colson, Y. L.; Grinstaff, M. W. Expansile nanoparticles: Synthesis, characterization, and in vivo efficacy of an acid-responsive polymeric drug delivery system. J. Am. Chem. Soc. 2009, 131, 2469–2471.

    Article  Google Scholar 

  13. Hakkarainen, M.; Höglund, A.; Odelius, K.; Albertsson, A.-C. Tuning the release rate of acidic degradation products through macromolecular design of caprolactone-based copolymers. J. Am. Soc. Chem. 2007, 129, 6308–6312.

    Article  Google Scholar 

  14. Joshi, H. M.; Bhumkar, D. R.; Joshi, K.; Pokharkar, V.; Sastry, M. Gold nanopartncles as carriers for efficient transmucosal insulin delivery. Langmuir 2006, 22, 300–305.

    Article  Google Scholar 

  15. Dovydenko, I.; Tarassov, I.; Venyaminova, A.; Entelis, N. Method of carrier-free delivery of therapeutic RNA importable into human mitochondria: Lipophilic conjugates with cleavable bonds. Biomaterials 2016, 76, 408–417.

    Article  Google Scholar 

  16. Hou, W. X.; Zhao, X.; Qian, X. Q.; Pan, F.; Zhang, C. L.; Yang, Y. M.; de la Fuente, J. M.; Cui, D. X. Ph-sensitive self-assembling nanoparticles for tumor near-infrared fluorescence imaging and chemo-photodynamic combination therapy. Nanoscale 2016, 8, 104–116.

    Article  Google Scholar 

  17. Khan, W.; Farah, S.; Nyska, A.; Domb, A. J. Carrier free rapamycin loaded drug eluting stent: In vitro and in vivo evaluation. J. Control. Release 2013, 168, 70–76.

    Article  Google Scholar 

  18. Chen, F.; Zhao, Y. Y.; Pan, Y. M.; Xue, X. D.; Zhang, X.; Kumar, A.; Liang, X. J. Synergistically enhanced therapeutic effect of a carrier-free hcpt/dox nanodrug on breast cancer cells through improved cellular drug accumulation. Mol. Pharm. 2015, 12, 2237–2244.

    Article  Google Scholar 

  19. Zhang, R. Y.; Xing, R. R.; Jiao, T. F.; Ma, K.; Chen, C. J.; Ma, G. H.; Yan, X. H. Carrier-free, chemophotodynamic dual nanodrugs via self-assembly for synergistic antitumor therapy. ACS Appl. Mater. Interfaces 2016, 8, 13262–13269.

    Article  Google Scholar 

  20. Li, W.; Yang, Y. L.; Wang, C.; Liu, Z.; Zhang, X. J.; An, F. F.; Diao, X. J.; Hao, X. J.; Zhang, X. H. Carrier-free, functionalized drug nanoparticles for targeted drug delivery. Chem. Commun. 2012, 48, 8120–8122.

    Article  Google Scholar 

  21. Zhou, M. J.; Zhang, X. J.; Yang, Y. L.; Liu, Z.; Tian, B. S.; Jie, J. S.; Zhang, X. H. Carrier-free functionalized multidrug nanorods for synergistic cancer therapy. Biomaterials 2013, 34, 8960–8967.

    Article  Google Scholar 

  22. Diao, X. J.; Li, W.; Yu, J.; Wang, X. J.; Zhang, X. J.; Yang, Y. L.; An, F. F.; Liu, Z.; Zhang, X. H. Carrier-free, water dispersible and highly luminescent dye nanoparticles for targeted cell imaging. Nanoscale 2012, 4, 5373–5377.

    Article  Google Scholar 

  23. Hu, M. X.; Huang, P.; Wang, Y.; Su, Y.; Zhou, L. Z.; Zhu, X. Y.; Yan, D. Y. Synergistic combination chemotherapy of camptothecin and floxuridine through self-assembly of amphiphilic drug-drug conjugate. Bioconjugate Chem. 2015, 26, 2497–2506.

    Article  Google Scholar 

  24. Huang, P.; Wang, D. L.; Su, Y.; Huang, W.; Zhou, Y. F.; Cui, D. X.; Zhu, X. Y.; Yan, D. Y. Combination of small molecule prodrug and nanodrug delivery: Amphiphilic drug-drug conjugate for cancer therapy. J. Am. Chem. Soc. 2014, 136, 11748–11756.

    Article  Google Scholar 

  25. Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2012, 42, 548–568.

    Article  Google Scholar 

  26. Feng, X.; Ding, X. S.; Jiang, D. L. Covalent organic frameworks. Chem. Soc. Rev. 2012, 41, 6010–6022.

    Article  Google Scholar 

  27. Day, N. U.; Wamser, C. C.; Walter, M. G. Porphyrin polymers and organic frameworks. Polymer Int. 2015, 64, 833–857.

    Article  Google Scholar 

  28. Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387.

    Article  Google Scholar 

  29. Paszko, E.; Ehrhardt, C.; Senge, M. O.; Kelleher, D. P.; Reynolds, J. V. Nanodrug applications in photodynamic therapy. Photodiagn. Photodyn. Ther. 2011, 8, 14–29.

    Article  Google Scholar 

  30. Konan, Y. N.; Berton, M.; Gurny, R.; Allémann, E. Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur. J. Pharm. Sci. 2003, 18, 241–249.

    Article  Google Scholar 

  31. Liu, J. J.; Yang, Y.; Zhu, W. W.; Yi, X.; Dong, Z. L.; Xu, X. N.; Chen, M. W.; Yang, K.; Lu, G.; Jiang, L. X. et al. Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials 2016, 97, 1–9.

    Article  Google Scholar 

  32. Yang, Y.; Liu, J. J.; Liang, C.; Feng, L. Z.; Fu, T. T.; Dong, Z. L.; Chao, Y.; Li, Y. G.; Lu, G.; Chen, M. W. et al. Nanoscale metal–organic particles with rapid clearance for magnetic resonance imaging-guided photothermal therapy. ACS Nano 2016, 10, 2774–2781.

    Article  Google Scholar 

  33. Liu, J. J.; Wang, C.; Wang, X. J.; Wang, X.; Cheng, L.; Li, Y. G.; Liu, Z. Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy. Adv. Funct. Mater. 2015, 25, 384–392.

    Article  Google Scholar 

  34. Fang, Q. R.; Wang, J. H.; Gu, S.; Kaspar, R. B.; Zhuang, Z. B.; Zheng, J.; Guo, H. X.; Qiu, S. L.; Yan, Y. S. 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J. Am. Chem. Soc. 2015, 137, 8352–8355.

    Article  Google Scholar 

  35. Bai, L. Y.; Phua, S. Z. F.; Lim, W. Q.; Jana, A.; Luo, Z.; Tham, H. J. P.; Zhao, L. Z.; Gao, Q.; Zhao, Y. L. Nanoscale covalent organic frameworks as smart carriers for drug delivery. Chem. Commun. 2016, 52, 4128–4131.

    Article  Google Scholar 

  36. Vyas, V. S.; Vishwakarma, M.; Moudrakovski, I.; Haase, F.; Savasci, G.; Ochsenfeld, C.; Spatz, J. P.; Lotsch, B. V. Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery. Adv. Mater. 2016, 28, 8749–8754.

    Article  Google Scholar 

  37. Wang, S. Z.; Gao, R. M.; Zhou, F. M.; Selke, M. Nanomaterials and singlet oxygen photosensitizers: Potential applications in photodynamic therapy. J. Mater. Chem. 2004, 14, 487–493.

    Article  Google Scholar 

  38. Rieter, W. J.; Pott, K. M.; Taylor, K. M. L.; Lin, W. B. Nanoscale coordination polymers for platinum-based anticancer drug delivery. J. Am. Chem. Soc. 2008, 130, 11584–11585.

    Article  Google Scholar 

  39. Zhu, Z.; Tang, Z. W.; Phillips, J. A.; Yang, R. H.; Wang, H.; Tan, W. H. Regulation of singlet oxygen generation using single-walled carbon nanotubes. J. Am. Chem. Soc. 2008, 130, 10856–10857.

    Article  Google Scholar 

  40. Yang, J.; Liu, W. W.; Sui, M. H.; Tang, J. B.; Shen, Y. Q. Platinum (IV)-coordinate polymers as intracellular reductionresponsive backbone-type conjugates for cancer drug delivery. Biomaterials 2011, 32, 9136–9143.

    Article  Google Scholar 

  41. Feng, L. Z.; Gao, M.; Tao, D. L.; Chen, Q.; Wang, H. R.; Dong, Z. L.; Chen, M. W.; Liu, Z. Cisplatin-prodrugconstructed liposomes as a versatile theranostic nanoplatform for bimodal imaging guided combination cancer therapy. Adv. Funct.Mater. 2016, 26, 2207–2217.

    Article  Google Scholar 

  42. Wilson, W. R.; Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 2011, 11, 393–410.

    Article  Google Scholar 

  43. Brown, J. M.; Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 2004, 4, 437–447.

    Article  Google Scholar 

  44. Bertout, J. A.; Patel, S. A.; Simon, M. C. The impact of O2 availability on human cancer. Nat. Rev. Cancer 2008, 8, 967–975.

    Article  Google Scholar 

  45. Harris, A. L. Hypoxia-a key regulatory factor in tumour growth. Nat. Rev. Cancer 2002, 2, 38–47.

    Article  Google Scholar 

  46. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1995, 1, 27–30.

    Article  Google Scholar 

  47. Zhong, X. S.; Liu, L. Z.; Skinner, H. D.; Cao, Z. X.; Ding, M.; Jiang, B. H. Mechanism of vascular endothelial growth factor expression mediated by cisplatin in human ovarian cancer cells. Biochem. Biophys. Res. Commun. 2007, 358, 92–98.

    Article  Google Scholar 

  48. Olson, T. A.; Mohanraj, D.; Carson, L. F.; Ramakrishnan, S. Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Res. 1994, 54, 276–280.

    Google Scholar 

  49. Gong, H.; Chao, Y.; Xiang, J.; Han, X.; Song, G. S.; Feng, L. Z.; Liu, J. J.; Yang, G. B.; Chen, Q.; Liu, Z. Hyaluronidase to enhance nanoparticle-based photodynamic tumor therapy. Nano Lett. 2016, 16, 2512–2521.

    Article  Google Scholar 

  50. Li, Q.; Tian, Y. T.; Li, D. D.; Sun, J. F.; Shi, D. L.; Fang, L.; Gao, Y.; Liu, H. Y. The effect of lipocisplatin on cisplatin efficacy and nephrotoxicity in malignant breast cancer treatment. Biomaterials 2014, 35, 6462–6472.

    Article  Google Scholar 

Download references

Acknowledgements

This article was partially supported by the National Basic Research Programs of China (No. 2016YFA0201200), the National Natural Science Foundation of China (No. 51525203), Collaborative Innovation Center of Suzhou Nano Science and Technology, and a Project Funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuang Liu.

Electronic supplementary material

12274_2017_1858_MOESM1_ESM.pdf

Nanoscale covalent organic polymers as a biodegradable nanomedicine for chemotherapy-enhanced photodynamic therapy of cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhu, W., Feng, L. et al. Nanoscale covalent organic polymers as a biodegradable nanomedicine for chemotherapy-enhanced photodynamic therapy of cancer. Nano Res. 11, 3244–3257 (2018). https://doi.org/10.1007/s12274-017-1858-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1858-y

Keywords

Navigation