Skip to main content
Log in

Pt3Ag alloy wavy nanowires as highly effective electrocatalysts for ethanol oxidation reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Direct ethanol fuel cell (DEFC) has received tremendous research interests because of the more convenient storage and transportation of ethanol vs. compressed hydrogen. However, the electrocatalytic ethanol oxidation reaction typically requires precious metal catalysts and is plagued with relatively high over potential and low mass activity. Here we report the synthesis of Pt3Ag alloy wavy nanowires via a particle attachment mechanism in a facile solvothermal process. Transmission microscopy studies and elemental analyses show highly wavy nanowire structures with an average diameter of 4.6 ± 1.0 nm and uniform Pt3Ag alloy formation. Electrocatalytic studies demonstrate that the resulting alloy nanowires can function as highly effective electrocatalysts for ethanol oxidation reactions (EOR) with ultrahigh specific activity of 28.0 mA/cm2 and mass activity of 6.1 A/mg, far exceeding that of the commercial Pt/carbon samples (1.10 A/mg). The improved electrocatalytic activity may be partly attributed to partial electron transfer from Ag to Pt in the Pt3Ag alloy, which weakens CO binding and the CO poisoning effect. The one-dimensional nanowire morphology also contributes to favorable charge transport properties that are critical for extracting charge from catalytic active sites to external circuits. The chronoamperometry studies demonstrate considerably improved stability for long term operation compared with the commercial Pt/C samples, making the Pt3Ag wavy nanowires an attractive electrocatalyst for EOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joghee, P.; Malik, J. N.; Pylypenko, S.; O’Hayre, R. A review on direct methanol fuel cells—In the perspective of energy and sustainability. MRS Energy Sustain.2015, 2, E3.

    Article  Google Scholar 

  2. Yu, E. H.; Krewer, U.; Scott, K. Principles and materials aspects of direct alkaline alcohol fuel cells. Energies2010, 3, 1499–1528.

    Article  CAS  Google Scholar 

  3. Lei, M.; Wang, J.; Li, J. R.; Wang, Y. G.; Tang, H. L.; Wang, W. J. Emerging methanol-tolerant AlN nanowire oxygen reduction electro-catalyst for alkaline direct methanol fuel cell. Sci. Rep.2014, 4, 6013.

    Article  CAS  Google Scholar 

  4. Yuan, Y.; Wang, J. C.; Adimi, S.; Shen, H. J.; Thomas, T.; Ma, R. G.; Attfield, J. P.; Yang, M. H. Zirconium nitride catalysts surpass platinum for oxygen reduction. Nat. Mater.2020, 19, 282–286.

    Article  CAS  Google Scholar 

  5. Wang, D. W.; Su, D. S. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci.2014, 7, 576–591.

    Article  Google Scholar 

  6. Wang, Y.; Li, L.; Hu, L.; Zhuang, L.; Lu, J. T.; Xu, B. Q. A feasibility analysis for alkaline membrane direct methanol fuel cell: Thermo-dynamic disadvantages versus kinetic advantages. Electrochem. Commun.2003, 5, 662–666.

    Article  CAS  Google Scholar 

  7. Cifrain, M.; Kordesch, K. V. Advances, aging mechanism and lifetime in AFCs with circulating electrolytes. J. Power Sources2004, 127, 234–242.

    Article  CAS  Google Scholar 

  8. Zhang, B. W.; Yang, H. L.; Wang, Y. X.; Dou, S. X.; Liu, H. K. A comprehensive review on controlling surface composition of Pt-based bimetallic electrocatalysts. Adv. Energy Mater.2018, 8, 1703597.

    Article  Google Scholar 

  9. Zhang, L. L.; Chang, Q. W.; Chen, H. M.; Shao, M. H. Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy2016, 29, 198–219.

    Article  CAS  Google Scholar 

  10. Xu, C. X.; Wang, L.; Mu, X. L.; Ding, Y. Nanoporous PtRu alloys for electrocatalysis. Langmuir2010, 26, 7437–7443.

    Article  CAS  Google Scholar 

  11. Zhao, S. L.; Yin, H. J.; Du, L.; Yin, G. P.; Tang, Z. Y.; Liu, S. Q. Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. J. Mater. Chem. A2014, 2, 3719–3724.

    Article  CAS  Google Scholar 

  12. Jiang, Q.; Jiang, L. H.; Wang, S. L.; Qi, J.; Sun, G. Q. A highly active PtNi/C electrocatalyst for methanol electro-oxidation in alkaline media. Catal. Commun.2010, 12, 67–70.

    Article  CAS  Google Scholar 

  13. Huang, W. J.; Ma, X. Y.; Wang, H.; Feng, R. F.; Zhou, J. G.; Duchesne, P. N.; Zhang, P.; Chen, F. J.; Han, N.; Zhao, F. P. et al. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv. Mater.2017, 29, 1703057.

    Article  Google Scholar 

  14. Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nat. Commun.2015, 6, 10035.

    Article  CAS  Google Scholar 

  15. Zhao, X.; Zhang, H. T.; Yan, Y.; Cao, J. H.; Li, X. Q.; Zhou, S. M.; Peng, Z. M.; Zeng, J. Engineering the electrical conductivity of lamellar silver-doped cobalt(II) selenide nanobelts for enhanced oxygen evolution. Angew. Chem., Int. Ed.2017, 56, 328–332.

    Article  CAS  Google Scholar 

  16. Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc.2014, 136, 14107–14113.

    Article  CAS  Google Scholar 

  17. Shang, C. S.; Guo, Y. X.; Wang, E. K. Integration of two-dimensional morphology and porous surfaces to boost methanol electrooxidation performances of PtAg alloy nanomaterials. Nano Res.2018, 11, 6375–6383.

    Article  CAS  Google Scholar 

  18. Yang, J.; Ying, J. Y. Nanocomposites of Ag2S and noble metals. Angew. Chem., Int. Ed.2011, 50, 4637–4643.

    Article  CAS  Google Scholar 

  19. Monyoncho, E. A.; Steinmann, S. N.; Sautet, P.; Baranova, E. A.; Michel, C. Computational screening for selective catalysts: Cleaving the C–C bond during ethanol electro-oxidation reaction. Electrochim. Acta2018, 274, 274–278.

    Article  CAS  Google Scholar 

  20. Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science2016, 354, 1414–1419.

    Article  CAS  Google Scholar 

  21. Li, M. F.; Duanmu, K.; Wan, C. Z.; Cheng, T.; Zhang, L.; Dai, S.; Chen, W. X.; Zhao, Z. P.; Li, P.; Fei, H. L. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal.2019, 2, 495–503.

    Article  CAS  Google Scholar 

  22. Fu, X. Y.; Zhao, Z. P.; Wan, C. Z.; Wang, Y. L.; Fan, Z.; Song, F.; Cao, B. C.; Li, M. F.; Xue, W.; Huang, Y. et al. Ultrathin wavy Rh nanowires as highly effective electrocatalysts for methanol oxidation reaction with ultrahigh ECSA. Nano Res.2019, 12, 211–215.

    Article  CAS  Google Scholar 

  23. Huang, X. Q.; Zhao, Z. P.; Chen, Y.; Chiu, C. Y.; Ruan, L. Y.; Liu, Y.; Li, M. F.; Duan, X. F.; Huang, Y. High density catalytic hot spots in ultrafine wavy nanowires. Nano Lett.2014, 14, 3887–3894.

    Article  CAS  Google Scholar 

  24. Jiang, X.; Fu, G. T.; Wu, X.; Liu, Y.; Zhang, M. Y.; Sun, D. M.; Xu, L.; Tang, Y. W. Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. Nano Res.2018, 11, 499–510.

    Article  CAS  Google Scholar 

  25. Jiang, X.; Liu, Y.; Wang, J. X.; Wang, Y. F.; Xiong, Y. X.; Liu, Q.; Li, N. X.; Zhou, J. C.; Fu, G. T.; Sun, D. M. et al. 1-Naphthol induced Pt3Ag nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells. Nano Res.2019, 12, 323–329.

    Article  CAS  Google Scholar 

  26. Khoa, N. T.; Van Thuan, D.; Kim, S. W.; Park, S.; Van Tam, T.; Choi, W. M.; Cho, S.; Kim, E. J.; Hahn, S. H. Facile fabrication of thermally reduced graphene oxide–platinum nanohybrids and their application in catalytic reduction and dye-sensitized solar cells. RSC Adv.2016, 6, 1535–1541.

    Article  CAS  Google Scholar 

  27. Liu, H.; Ye, F.; Yao, Q. F.; Cao, H. B.; Xie, J. P.; Lee, J. Y.; Yang, J. Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning. Sci. Rep.2014, 4, 3969.

    Article  Google Scholar 

  28. Mao, H. B.; Feng, J. Y.; Ma, X.; Wu, C.; Zhao, X. J. One-dimensional silver nanowires synthesized by self-seeding polyol process. J. Nanopart. Res.2012, 14, 887.

    Article  Google Scholar 

  29. Wang, W.; Wang, Z. Y.; Yang, M. M.; Zhong, C. J.; Liu, C. J. Highly active and stable Pt (111) catalysts synthesized by peptide assisted room temperature electron reduction for oxygen reduction reaction. Nano Energy2016, 25, 26–33.

    Article  CAS  Google Scholar 

  30. Daşdelen, Z.; Yıldız, Y.; Eriş, S.; Şen, F. Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybride material for methanol oxidation reaction. Appl. Catal. B: Environ.2017, 219, 511–516.

    Article  Google Scholar 

  31. Huang, J.; Liu, Y.; Xu, M. J.; Wan, C. Z.; Liu, H. T.; Li, M. F.; Huang, Z. H.; Duan, X. F.; Pan, X. Q.; Huang, Y. PtCuNi tetrahedra catalysts with tailored surfaces for efficient alcohol oxidation. Nano Lett.2019, 19, 5431–5436.

    Article  CAS  Google Scholar 

  32. Liu, T. Y.; Li, C. Z.; Yuan, Q. Facile synthesis of PtCu alloy/graphene oxide hybrids as improved electrocatalysts for alkaline fuel cells. ACS Omega2018, 3, 8724–8732.

    Article  CAS  Google Scholar 

  33. Ren, F. F.; Wang, H. W.; Zhai, C. Y.; Zhu, M. S.; Yue, R. R.; Du, Y. K.; Yang, P.; Xu, J. K.; Lu, W. S. Clean method for the synthesis of reduced graphene oxide-supported PtPd alloys with high electrocatalytic activity for ethanol oxidation in alkaline medium. ACS Appl. Mater. Interfaces2014, 6, 3607–3614.

    Article  CAS  Google Scholar 

  34. Yazdan-Abad, M. Z.; Noroozifar, M.; Alam, A. R. M.; Saravani, H. Palladium aerogel as a high-performance electrocatalyst for ethanol electro-oxidation in alkaline media. J. Mater. Chem. A2017, 5, 10244–10249.

    Article  Google Scholar 

  35. Chung, D. Y.; Lee, K. J.; Sung, Y. E. Methanol electro-oxidation on the Pt surface: Revisiting the cyclic voltammetry interpretation. J. Phys. Chem. C2016, 120, 9028–9035.

    Article  CAS  Google Scholar 

  36. Zhao, Y. Z.; Li, X. M.; Schechter, J. M.; Yang, Y. Revisiting the oxidation peak in the cathodic scan of the cyclic voltammogram of alcohol oxidation on noble metal electrodes. RSC Adv.2016, 6, 5384–5390.

    Article  CAS  Google Scholar 

  37. Hofstead-Duffy, A. M.; Chen, D. J.; Sun, S. G.; Tong, Y. J. Origin of the current peak of negative scan in the cyclic voltammetry of methanol electro-oxidation on Pt-based electrocatalysts: A revisit to the current ratio criterion. J. Mater. Chem.2012, 22, 5205–5208.

    Article  CAS  Google Scholar 

  38. Sulaiman, J. E.; Zhu, S. Q.; Xing, Z. L.; Chang, Q. W.; Shao, M. H. Pt–Ni octahedra as electrocatalysts for the ethanol electro-oxidation reaction. ACS Catal.2017, 7, 5134–5141.

    Article  CAS  Google Scholar 

  39. Zhang, Y. P.; Gao, F.; Song, P. P.; Wang, J.; Guo, J.; Shiraishi, Y.; Du, Y. K. Glycine-assisted fabrication of N-doped graphene-supported uniform multipetal PtAg nanoflowers for enhanced ethanol and ethylene glycol oxidation. ACS Sustain. Chem. Eng.2019, 7, 3176–3184.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X. F. D. acknowledges support from National Science Foundation award 1800580. Y. H. acknowledges support from Office of Naval Research grant N000141812155. X. Q. P. acknowledge the support from the National Science Foundation award DMR-1506535. HAADF imaging and EDS mapping were carried out using the JEOL Grand ARM in the Irvine Materials Research Institute at the University of California, Irvine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangfeng Duan or Yu Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Wan, C., Zhang, A. et al. Pt3Ag alloy wavy nanowires as highly effective electrocatalysts for ethanol oxidation reaction. Nano Res. 13, 1472–1478 (2020). https://doi.org/10.1007/s12274-020-2754-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2754-4

Keywords

Navigation