Skip to main content
Log in

Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Stretchable and flexible supercapacitors are highly desired due to their many potential applications in wearable devices. However, it is challenging to fabricate supercapacitors that can withstand large tensile strain while maintaining high performance. Herein, we report an ultra-stretchable wire-shaped supercapacitor based on carbon nanotube@graphene@MnO2 fibers wound around a superelastic core fiber. The supercapacitor can sustain tensile strain up to 850%, which is the highest value reported for this type of device to date, while maintaining stable electrochemical performance. The energy density of the supercapacitor is 3.37 mWh·cm–3 at a power density of 54.0 mW·cm–3. The results show that 82% of the specific capacitance is retained after 1,000 stretch–release cycles with strains of 700%, demonstrating the superior durability of the elastic supercapacitor and showcasing its potential application in ultra-stretchable flexible electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

    Article  Google Scholar 

  2. Yang, Y. B.; Yang, X. D.; Tan, Y. N.; Yuan, Q. Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res. 2017, 10, 1560–1583.

    Article  Google Scholar 

  3. Bae, J.; Song, M. K.; Park, Y. J.; Kim, J. M.; Liu, M. L.; Wang, Z. L. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem., Int. Ed. 2011, 50, 1683–1687.

    Article  Google Scholar 

  4. Zou, D. C.; Lv, Z. B.; Cai, X.; Hou, S. C. Macro/microfiber-shaped electronic devices. Nano Energy 2012, 1, 273–281.

    Article  Google Scholar 

  5. Li, P. X.; Shi, E. Z.; Yang, Y. B.; Shang, Y. Y.; Peng, Q. Y.; Wu, S. T.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Yuan, Q. et al. Carbon nanotube-polypyrrole core–shell sponge and its application as highly compressible supercapacitor electrode. Nano Res. 2014, 7, 209–218.

    Article  Google Scholar 

  6. Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D.-H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 2016, 28, 4203–4218.

    Article  Google Scholar 

  7. Xiao, X.; Li, T. Q.; Yang, P. H.; Gao, Y.; Jin, H. Y.; Ni, W. J.; Zhan, W. H.; Zhang, X. H.; Cao, Y. Z.; Zhong, J. W. et al. Fiber-based all-solid-state flexible supercapacitors for selfpowered systems. ACS Nano 2012, 6, 9200–9206.

    Article  Google Scholar 

  8. Yu, Z. N.; Thomas, J. Energy storing electrical cables: Integrating energy storage and electrical conduction. Adv. Mater. 2014, 26, 4279–4285.

    Article  Google Scholar 

  9. Liu, L. L.; Niu, Z. Q.; Chen, J. Design and integration of flexible planar micro-supercapacitors. Nano Res. 2017, 10, 1524–1544.

    Article  Google Scholar 

  10. Yu, D. S.; Qian, Q. H.; Wei, L.; Jiang, W. C.; Goh, K. L.; Wei, J.; Zhang, J.; Chen, Y. Emergence of fiber supercapacitors. Chem. Soc. Rev. 2015, 44, 647–662.

    Article  Google Scholar 

  11. Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26, 5310–5336.

    Article  Google Scholar 

  12. Zhao, X. L.; Zheng, B. N.; Huang, T. Q.; Gao, C. Graphene-based single fiber supercapacitor with a coaxial structure. Nanoscale 2015, 7, 9399–9404.

    Article  Google Scholar 

  13. Zhang, Y.; Bai, W. Y.; Cheng, X. L.; Ren, J.; Weng, W.; Chen, P. N.; Fang, X.; Zhang, Z. T.; Peng, H. S. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem., Int. Ed. 2014, 53, 14564–14568.

    Article  Google Scholar 

  14. Xu, H. H.; Hu, X. L.; Sun, Y. M.; Yang, H. L.; Liu, X. X.; Huang, Y. H. Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res. 2015, 8, 1148–1158.

    Article  Google Scholar 

  15. Chen, X. L.; Qiu, L. B.; Ren, J.; Guan, G. Z.; Lin, H. J.; Zhang, Z. T.; Chen, P. N.; Wang, Y. G.; Peng, H. S. Novel electric double-layer capacitor with a coaxial fiber structure. Adv. Mater. 2013, 25, 6436–6441.

    Article  Google Scholar 

  16. Wen, L.; Li, F.; Cheng, H.-M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices. Adv. Mater. 2016, 28, 4306–4337.

    Article  Google Scholar 

  17. Chen, S. H.; Ma, W. J.; Cheng, Y. H.; Weng, Z.; Sun, B.; Wang, L.; Chen, W. P.; Li, F.; Zhu, M. F.; Cheng, H.-M. Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors. Nano Energy 2015, 15, 642–653.

    Article  Google Scholar 

  18. Lu, X. F.; Li, G. R.; Tong, Y. X. A review of negative electrode materials for electrochemical supercapacitors. Sci. China Technol. Sci. 2015, 58, 1799–1808.

    Article  Google Scholar 

  19. Xu, P.; Gu, T. L.; Cao, Z. Y.; Wei, B. Q.; Yu, J. Y.; Li, F. X.; Byun, J. H.; Lu, W. B.; Li, Q. W.; Chou, T. W. Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv. Energy Mater. 2014, 4, 1300759.

    Article  Google Scholar 

  20. Meng, Y. N.; Zhao, Y.; Hu, C. G.; Cheng, H. H.; Hu, Y.; Zhang, Z. P.; Shi, G. Q.; Qu, L. T. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 2013, 25, 2326–2331.

    Article  Google Scholar 

  21. Zhang, Z. T.; Deng, J.; Li, X. Y.; Yang, Z. B.; He, S. S.; Chen, X. L.; Guan, G. Z.; Ren, J.; Peng, H. S. Superelastic supercapacitors with high performances during stretching. Adv. Mater. 2015, 27, 356–362.

    Article  Google Scholar 

  22. Sun, J. F.; Huang, Y.; Fu, C. X.; Wang, Z. Y.; Huang, Y.; Zhu, M. S.; Zhi, C. Y.; Hu, H. High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 2016, 27, 230–237.

    Article  Google Scholar 

  23. Jin, H. Y.; Zhou, L. M.; Mak, C. L.; Huang, H. T.; Tang, W. M.; Chan, H. L. W. High-performance fiber-shaped supercapacitors using carbon fiber thread (CFT)@polyanilne and functionalized CFT electrodes for wearable/stretchable electronics. Nano Energy 2015, 11, 662–670.

    Article  Google Scholar 

  24. Tang, Q. Q.; Chen, M. M.; Wang, G. C.; Bao, H.; Saha, P. A facile prestrain-stick-release assembly of stretchable supercapacitors based on highly stretchable and sticky hydrogel electrolyte. J. Power Sources 2015, 284, 400–408.

    Article  Google Scholar 

  25. Chen, T.; Xue, Y. H.; Roy, A. K.; Dai, L. M. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 2014, 8, 1039–1046.

    Article  Google Scholar 

  26. Yang, Z. B.; Deng, J.; Chen, X. L.; Ren, J.; Peng, H. S. A highly stretchable, fiber-shaped supercapacitor. Angew. Chem., Int. Ed. 2013, 52, 13453–13457.

    Article  Google Scholar 

  27. Cui, H.-W.; Suganuma, K.; Uchida, H. Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping-drying method. Nano Res. 2015, 8, 1604–1614.

    Article  Google Scholar 

  28. Zheng, Y. M.; Bai, H.; Huang, Z. B.; Tian, X. L.; Nie, F.-Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional water collection on wetted spider silk. Nature 2010, 463, 640–643.

    Article  Google Scholar 

  29. Yang, Z. B.; Ren, J.; Zhang, Z. T.; Chen, X. L.; Guan, G. Z.; Qin, L. B.; Zhang, Y.; Peng, H. S. Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 2015, 115, 5159–5223.

    Article  Google Scholar 

  30. Choi, C.; Kim, S. H.; Sim, H. J.; Lee, J. A.; Choi, A. Y.; Kim, Y. T.; Lepró, X.; Spinks, G. M.; Baughman, R. H.; Kim, S. J. Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors. Sci. Rep. 2015, 5, 9387.

    Article  Google Scholar 

  31. Yu, J. L.; Wang, L. Y.; Lai, X. H.; Pei, S. P.; Zhuang, Z. B.; Meng, L. H.; Huang, Y. D.; Li, Q. W.; Lu, W. B.; Byun, J. H. et al. A durability study of carbon nanotube fiber based stretchable electronic devices under cyclic deformation. Carbon 2015, 94, 352–361.

    Article  Google Scholar 

  32. Ramachandran, R.; Chen, S.-M.; Kumar, G. G. An overview of electrochemical energy storage devices of various electrodes and morphological studies of supercapacitors. Int. J. Electrochem. Sci. 2015, 10, 10355–10388.

    Google Scholar 

  33. Yu, G. H.; Hu, L. B.; Vosgueritchian, M.; Wang, H. L.; Xie, X.; McDonough, J. R.; Cui, X.; Cui, Y.; Bao, Z. N. Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett. 2011, 11, 2905–2911.

    Article  Google Scholar 

  34. Choi, C.; Lee, J. A.; Choi, A. Y.; Kim, Y. T.; Lepró, X.; Lima, M. D.; Baughman, R. H.; Kim, S. J. Flexible supercapacitor made of carbon nanotube yarn with internal pores. Adv. Mater. 2014, 26, 2059–2065.

    Article  Google Scholar 

  35. Liu, K.; Sun, Y. H.; Chen, L.; Feng, C.; Feng, X. F.; Jiang, K. L.; Zhao, Y. G.; Fan, S. S. Controlled growth of superaligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 2008, 8, 700–705.

    Article  Google Scholar 

  36. Zhang, Y. Y.; Zou, G. F.; Doorn, S. K.; Htoon, H.; Stan, L.; Hawley, M. E.; Sheehan, C. J.; Zhu, Y. T.; Jia, Q. X. Tailoring the morphology of carbon nanotube arrays: From spinnable forests to undulating foams. ACS Nano 2009, 3, 2157–2162.

    Article  Google Scholar 

  37. Zhang, X. B.; Jiang, K. L.; Teng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T. H.; Li, Q. Q.; Fan, S. S. Spinning and processing continuous yarns from 4-inch wafer scale superaligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505–1510.

    Article  Google Scholar 

  38. Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–876.

    Article  Google Scholar 

  39. Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73.

    Article  Google Scholar 

  40. Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z. Z.; Tour, J. M. Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 2010, 4, 2059–2069.

    Article  Google Scholar 

  41. Fang, X.; Yang, Z. B.; Qiu, L. B.; Sun, H.; Pan, S. W.; Deng, J.; Luo, Y. F.; Peng, H. S. Core-sheath carbon nanostructured fibers for efficient wire-shaped dye-sensitized solar cells. Adv. Mater. 2014, 26, 1694–1698.

    Article  Google Scholar 

  42. Chen, T.; Wang, S. T.; Yang, Z. B.; Feng, Q. Y.; Sun, X. M.; Li, L.; Wang, Z. S.; Peng, H. S. Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angew. Chem., Int. Ed. 2011, 50, 1815–1819.

    Article  Google Scholar 

  43. Dong, X. C.; Wang, X. W.; Wang, L.; Song, H.; Li, X. G.; Wang, L. H.; Chan-Park, M. B.; Li, C. M.; Chen, P. Synthesis of a MnO2-graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode. Carbon 2012, 50, 4865–4870.

    Article  Google Scholar 

  44. Hsu, Y. K.; Chen, Y. C.; Lin, Y. G.; Chen, L. C.; Chen, K. H. Reversible phase transformation of MnO2 nanosheets in an electrochemical capacitor investigated by in situ Raman spectroscopy. Chem. Commun. 2011, 47, 1252–1254.

    Article  Google Scholar 

  45. Lin, X.-D.; Uzayisenga, V.; Li, J.-F.; Fang, P.-P.; Wu, D.-Y.; Ren, B.; Tian, Z.-Q. Synthesis of ultrathin and compact Au@MnO2 nanoparticles for shell-isolated nanoparticleenhanced Raman spectroscopy (SHINERS). J. Raman Spectr. 2012, 43, 40–45.

    Article  Google Scholar 

  46. Wang, G. M.; Wang, H. Y.; Lu, X. H.; Ling, Y. C.; Yu, M. H.; Zhai, T.; Tong, Y. X.; Li, Y. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 2014, 26, 2676–2682.

    Article  Google Scholar 

  47. Yu, D. S.; Zhai, S. L.; Jiang, W. C.; Goh, K.; Wei, L.; Chen, X. D.; Jiang, R. R.; Chen, Y. Transforming pristine carbon fiber tows into high performance solid-state fiber supercapacitors. Adv. Mater. 2015, 27, 4895–4901.

    Article  Google Scholar 

  48. Di Fabio, A.; Giorgi, A.; Mastragostino, M.; Soavi, F. Carbon-poly(3-methylthiophene) hybrid supercapacitors. J. Electrochem. Soc. 2001, 148, A845–A850.

    Article  Google Scholar 

  49. Wu, M.-S.; Huang, C.-Y.; Lin, K.-H. Electrophoretic deposition of nickel oxide electrode for high-rate electrochemical capacitors. J. Power Sources 2009, 186, 557–564.

    Article  Google Scholar 

  50. Fan, Z. J.; Yan, J.; Wei, T.; Zhi, L. J.; Ning, G. Q.; Li, T. Y.; Wei, F. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 2011, 21, 2366–2375.

    Article  Google Scholar 

  51. Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Wang, Z. F.; Xue, Q.; Xie, X. M.; Zhi, C. Y. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 2015, 6, 10310.

    Article  Google Scholar 

  52. Yang, P. H.; Xiao, X.; Li, Y. Z.; Ding, Y.; Qiang, P. F.; Tan, X. H.; Mai, W. J.; Lin, Z. Y.; Wu, W. Z.; Li, T. Q. et al. Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 2013, 7, 2617–2626.

    Article  Google Scholar 

  53. Le, V. T.; Kim, H.; Ghosh, A.; Kim, J.; Chang, J.; Vu, Q. A.; Pham, D. T.; Lee, J. H.; Kim, S. W.; Lee, Y. H. Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 2013, 7, 5940–5947.

    Article  Google Scholar 

  54. Wang, W. J.; Hao, Q. L.; Lei, W.; Xia, X. F.; Wang, X. Graphene/SnO2/polypyrrole ternary nanocomposites as supercapacitor electrode materials. RSC Adv. 2012, 2, 10268–10274.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51422204, 51372132, and 51672153) and the National Basic Research Program of China (Nos. 2016YFA0200103 and 2013CB228506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingying Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, C., Jian, M. et al. Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber. Nano Res. 11, 2347–2356 (2018). https://doi.org/10.1007/s12274-017-1782-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1782-1

Keywords

Navigation