Skip to main content
Log in

A stretchable, asymmetric, coaxial fiber-shaped supercapacitor for wearable electronics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fiber-shaped supercapacitors (FSCs), owing to their high-power density and feasibility to be integrated into woven clothes, have drawn tremendous attentions as a key device for flexible energy storage. However, how to store more energy while withstanding various types of mechanical deformation is still a challenge for FSCs. Here, based on a magnetron sputtering method, different pseudocapacitive materials are conformally coated on self-supported carbon nanotube aligned films. This fabrication approach enables a stretchable, asymmetric, coaxial fiber-shaped supercapacitors with high performance. The asymmetric electrode configuration that consists of CNT@NiO@MnOx cathode and CNT@Fe2O3 anode successfully extends the FSC’s electrochemical window to 1.8 V in an aqueous electrolyte. As a result, a high specific capacitance of 10.4 F·cm−3 is achieved at a current density of 30 mA·cm−3 corresponding to a high energy density of 4.7 mWh·cm−3. The mechanical stability of the stretchable FSC is demonstrated with a sustainable performance under strains up to 75% and a capacitance retention of 95% after 2,000 cycles under 75% strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Q.; Meng, Y. N.; Hu, C. G; Zhao, Y.; Shao, H. B.; Chen, N.; Qu, L. T. MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J. Power Sources2014, 247: 32–39.

    CAS  Google Scholar 

  2. Chen, T.; Qiu, L. B.; Yang, Z. B.; Cai, Z. B.; Ren, J.; Li, H. P.; Lin, H. J.; Sun, X. M.; Peng, H. S. An integrated “energy wire” for both photoelectric conversion and energy storage. Angew. Chem., Int. Ed.2012, 51: 11977–11980.

    CAS  Google Scholar 

  3. Dalton, A. B.; Collins, S.; Muñoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. P.; Coleman, J. N.; Kim, B. G.; Baughman, R. H. Super-tough carbon-nanotube fibres. Nature2003, 423: 703.

    CAS  Google Scholar 

  4. Fu, Y. P.; Wu, H. W.; Ye, S. Y.; Cai, X.; Yu, X.; Hou, S. C.; Kafafy, H.; Zou, D. C. Integrated power fiber for energy conversion and storage. Energy Environ. Sci.2013, 6: 805–812.

    CAS  Google Scholar 

  5. Kim, D.; Keum, K.; Lee, G.; Kim, D.; Lee, S. S.; Ha, J. S. Flexible, water-proof, wire-type supercapacitors integrated with wire-type UV/No2 sensors on textiles. Nano Energy2017, 35: 199–206.

    CAS  Google Scholar 

  6. Zhang, Q. C.; Xu, W. W.; Sun, J.; Pan, Z. H.; Zhao, J. X.; Wang, X. N.; Zhang, J.; Man, P.; Guo, J. B.; Zhou, Z. Y. et al. Constructing ultrahigh-capacity zinc-nickel-cobalt Oxide@Ni(OH)2 core-shell nanowire arrays for high-performance coaxial fiber-shaped asymmetric supercapacitors. Nano Lett.2017, 17: 7552–7560.

    CAS  Google Scholar 

  7. Fu, Y. P.; Cai, X.; Wu, H. W.; Lv, Z. B.; Hou, S. C.; Peng, M.; Yu, X.; Zou, D. C. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater.2012, 24: 5713–5718.

    CAS  Google Scholar 

  8. Lin, R.; Zhu, Z. H.; Yu, X.; Zhong, Y.; Wang, Z. L.; Tan, S. Z.; Zhao, C. X.; Mai, W. J. Facile synthesis of Tio2/Mn3O4 hierarchical structures for fiber-shaped flexible asymmetric supercapacitors with ultrahigh stability and tailorable performance. J. Mater. Chem. A2017, 5: 814–821.

    CAS  Google Scholar 

  9. Meng, Q. H.; Wu, H. P.; Meng, Y. N.; Xie, K.; Wei, Z. X.; Guo, Z. X. High-performance all-carbon yarn micro-supercapacitor for an integrated energy system. Adv. Mater.2014, 26: 4100–4106.

    CAS  Google Scholar 

  10. Wang, X. F.; Liu, B.; Liu, R.; Wang, Q. F.; Hou, X. J.; Chen, D.; Wang, R. M.; Shen, G. Z. Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem., Int. Ed.2014, 53: 1849–1853.

    CAS  Google Scholar 

  11. Zhang, Z. Y.; Xiao, F.; Wang, S. Hierarchically structured MnO2/graphene/carbon fiber and porous graphene hydrogel wrapped copper wire for fiber-based flexible all-solid-state asymmetric supercapacitors. J. Mater. Chem. A2015, 3: 11215–11223.

    CAS  Google Scholar 

  12. Zhou, Z. Y.; Zhang, Q. C.; Sun, J.; He, B.; Guo, J. B.; Li, Q. L.; Li, C. W.; Xie, L. Y.; Yao, Y. G. Metal-organic framework derived spindle-like carbon incorporated α-Fe2O3 grown on carbon nanotube fiber as anodes for high-performance wearable asymmetric super-capacitors. ACS Nano2018, 12: 9333–9341.

    CAS  Google Scholar 

  13. Hu, Y.; Cheng, H. H.; Zhao, F.; Chen, N.; Jiang, L.; Feng, Z. H.; Qu, L. T. All-in-one graphene fiber supercapacitor. Nanoscale2014, 6: 6448–6451.

    CAS  Google Scholar 

  14. Yu, J. L.; Lu, W. B.; Smith, J. P.; Booksh, K. S.; Meng, L. H.; Huang, Y. D.; Li, Q. W.; Byun, J. H.; Oh, Y.; Yan, Y. S. et al. A high performance stretchable asymmetric fiber-shaped supercapacitor with a core-sheath helical structure. Adv. Energy Mater.2017, 7: 1600976.

    Google Scholar 

  15. Sun, J. F.; Huang, Y.; Fu, C. X.; Wang, Z. Y.; Huang, Y.; Zhu, M. S.; Zhi, C. Y.; Hu, H. High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy2016, 27: 230–237.

    CAS  Google Scholar 

  16. Xu, P.; Wei, B. Q.; Cao, Z. Y.; Zheng, J.; Gong, K.; Li, F. X.; Yu, J. Y.; Li, Q. W.; Lu, W. B.; Byun, J. H. et al. Stretchable wire-shaped asymmetric supercapacitors based on pristine and MnO2 coated carbon nanotube fibers. ACS Nano2015, 9: 6088–6096.

    CAS  Google Scholar 

  17. Chen, X. L.; Qiu, L. B.; Ren, J.; Guan, G. Z.; Lin, H. J.; Zhang, Z. T.; Chen, P. N.; Wang, Y. G.; Peng, H. S. Novel electric double-layer capacitor with a coaxial fiber structure. Adv. Mater.2013, 25: 6436–6441.

    CAS  Google Scholar 

  18. Yang, Z. B.; Deng, J.; Chen, X. L.; Ren, J.; Peng, H. S. A highly stretchable, fiber-shaped supercapacitor. Angew. Chem., Int. Ed.2013, 52: 13453–13457.

    CAS  Google Scholar 

  19. Zhang, Z. T.; Deng, J.; Li, X. Y.; Yang, Z. B.; He, S. S.; Chen, X. L.; Guan, G. Z.; Ren, J.; Peng, H. S. Superelastic supercapacitors with high performances during stretching. Adv. Mater.2015, 27: 356–362.

    CAS  Google Scholar 

  20. Harrison, D.; Qiu, F. L.; Fyson, J.; Xu, Y. M.; Evans, P.; Southee, D. A coaxial single fibre supercapacitor for energy storage. Phys. Chem. Chem. Phys.2013, 15: 12215–12219.

    CAS  Google Scholar 

  21. Qiu, Y. C.; Li, G. Z.; Hou, Y.; Pan, Z. H.; Li, H. F.; Li, W. F.; Liu, M. N.; Ye, F. M.; Yang, X. W.; Zhang, Y. G. Vertically aligned carbon nanotubes on carbon nanofibers: A hierarchical three-dimensional carbon nanostructure for high-energy flexible supercapacitors. Chem. Mater.2015, 27: 1194–1200.

    CAS  Google Scholar 

  22. Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev.2018, 118: 9233–9280.

    CAS  Google Scholar 

  23. Xu, H. H.; Hu, X. L.; Sun, Y. M.; Yang, H. L.; Liu, X. X.; Huang, Y. H. Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res.2015, 8: 1148–1158.

    CAS  Google Scholar 

  24. Zhang, Y. B.; Wang, B.; Liu, F.; Cheng, J. P.; Zhang, X. W.; Zhang, L. Full synergistic contribution of electrodeposited three-dimensional NiCo2O4@MnO2 nanosheet networks electrode for asymmetric supercapacitors. Nano Energy2016, 27: 627–637.

    CAS  Google Scholar 

  25. Zhang, Q. C.; Wang, X. N.; Pan, Z. H.; Sun, J.; Zhao, J. X.; Zhang, J.; Zhang, C. X.; Tang, L.; Luo, J.; Song, B. et al. Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density. Nano Lett.2017, 17: 2719–2726.

    CAS  Google Scholar 

  26. Zeng, Y. X.; Han, Y.; Zhao, Y. T.; Zeng, Y.; Yu, M. H.; Liu, Y. J.; Tang, H. L.; Tong, Y. X.; Lu, X. H. Advanced Ti-Doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv. Energy Materi.2015, 5: 1402176.

    Google Scholar 

  27. Tang, X.; Jia, R. Y.; Zhai, T.; Xia, H. Hierarchical Fe3O4@Fe2O3 core-shell nanorod arrays as high-performance anodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces2015, 7: 27518–27525.

    CAS  Google Scholar 

  28. Lu, X. H.; Zeng, Y. X.; Yu, M. H.; Zhai, T.; Liang, C. L.; Xie, S. L.; Balogun, M. S.; Tong, Y. X. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater.2014, 26: 3148–3155.

    CAS  Google Scholar 

  29. Li, Y.; Xu, J.; Feng, T.; Yao, Q. F.; Xie, J. P.; Xia, H. Fe2O3 nano-needles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors. Adv.Funct. Mater.2017, 27: 1606728.

    Google Scholar 

  30. Ray, A.; Roy, A.; Saha, S.; Ghosh, M.; Chowdhury, S. R.; Maiyalagan, T.; Bhattacharya, S. K.; Das, S. Electrochemical energy storage properties of Ni-Mn-oxide electrodes for advance asymmetric supercapacitor application. Langmuir2019, 35: 8257–8267.

    CAS  Google Scholar 

  31. Wei, W. F.; Cui, X. W.; Chen, W. X.; Ivey, D. G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721.

    CAS  Google Scholar 

  32. Wei, C. Z.; Cheng, C.; Ma, L.; Liu, M. N.; Kong, D. C.; Du, W. M.; Pang, H. Mesoporous hybrid NiOx-MnOx nanoprisms for flexible solid-state asymmetric supercapacitors. Dalton Trans.2016, 45: 10789–10797.

    CAS  Google Scholar 

  33. Karmakar, S.; Behera, D. J. C. I. Small polaron hopping conduction in NiMnO3/NiMn2O4 nano-cotton and its emerging energy application with MWCNT. Ceram. Int.2019, 45: 13052–13066.

    CAS  Google Scholar 

  34. Nguyen, T.; Boudard, M.; Rapenne, L.; Carmezim, M. J.; Montemor, M. F. Morphological changes and electrochemical response of mixed nickel manganese oxides as charge storage electrodes. J. Mater. Chem. A2015, 3: 10875–10882.

    CAS  Google Scholar 

  35. Le, V. T.; Kim, H.; Ghosh, A.; Kim, J.; Chang, J.; Vu, Q. A.; Pham, D. T.; Lee, J. H.; Kim, S. W.; Lee, Y. H. Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano2013, 7: 5940–5947.

    CAS  Google Scholar 

  36. Bae, J.; Song, M. K.; Park, Y. J.; Kim, J. M.; Liu, M. L.; Wang, Z. L. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem., Int. Ed.2011, 50: 1683–1687.

    CAS  Google Scholar 

  37. Ma, S. C.; Wu, Y.; Wang, J. W.; Zhang, Y. L.; Zhang, Y. T.; Yan, X. X.; Wei, Y.; Liu, P.; Wang, J. P.; Jiang, K. L. et al. Reversibility of noble metal-catalyzed aprotic Li-O2 batteries. Nano Lett.2015, 15: 8084–8090.

    CAS  Google Scholar 

  38. Kelly, P. J.; Arnell, R. D. Magnetron sputtering: A review of recent developments and applications. Vacuum2000, 56: 159–172.

    CAS  Google Scholar 

  39. Jiang, K. L.; Wang, J. P.; Li, Q. Q.; Liu, L.; Liu, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater.2011, 23: 1154–1161.

    CAS  Google Scholar 

  40. Zhang, X.; Jiang, K.; Feng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T.; Li, Q.; Fan, S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater.2006, 18: 1505–1510.

    CAS  Google Scholar 

  41. Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. J. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science1999, 283: 512–514.

    CAS  Google Scholar 

  42. Chastain, J.; King, Jr., R. C. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, 1992.

    Google Scholar 

  43. Shalvoy, R. B.; Reucroft, P. J.; Davis, B. H. Characterization of coprecipitated nickel on silica methanation catalysts by x-ray photoelectron spectroscopy. J. Catal.1979, 56: 336–348.

    CAS  Google Scholar 

  44. Oku, M.; Hirokawa, K. X-ray photoelectron spectroscopy of Co3O4, Fe3O4, Mn3O4, and related compounds. J. Electron Spectrosc. Relat. Phenom.1976, 8: 475–481.

    CAS  Google Scholar 

  45. Mathieu, H. J.; Landolt, D. An investigation of thin oxide films thermally grown in situ on Fe-24 Cr and Fe-24 Cr-11Mo by auger electron spectroscopy and X-ray photoelectron spectroscopy. Corros. Sci.1986, 26: 547–559.

    CAS  Google Scholar 

  46. Choi, C.; Sim, H. J.; Spinks, G. M.; Lepró, X.; Baughman, R. H.; Kim, S. J. Elastomeric and dynamic MnO2/CNT core-shell structure coiled yarn supercapacitor. Adv. Energy Mater.2016, 6: 1502119.

    Google Scholar 

  47. Li, H. F.; Liu, Z. X.; Liang, G. J.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Tang, Z. J.; Wang, Y. K. et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano2018, 12: 3140–3148.

    CAS  Google Scholar 

  48. Wu, C. H.; Ma, J. S.; Lu, C. H. Synthesis and characterization of nickel-manganese oxide via the hydrothermal route for electrochemical capacitors. Curr. Appl. Phys.2012, 12: 1190–1194.

    Google Scholar 

  49. Kim, H.; Popov, B. N. Synthesis and characterization of MnO2-based mixed oxides as supercapacitors. J. Electrochem. Soc.2003, 150, D56–D62.

    CAS  Google Scholar 

  50. Lee, K. K.; Deng, S.; Fan, H. M.; Mhaisalkar, S.; Tan, H. R.; Tok, E. S.; Loh, K. P.; Chin, W. S.; Sow, C. H. α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. Nanoscale2012, 4: 2958–2961.

    CAS  Google Scholar 

  51. Low, Q. X.; Ho, G. W. Facile structural tuning and compositing of iron oxide-graphene anode towards enhanced supacapacitive performance. Nano Energy2014, 5: 28–35.

    CAS  Google Scholar 

  52. Cheng, X. P.; Gui, X. C.; Lin, Z. Q.; Zheng, Y. J.; Liu, M.; Zhan, R. Z.; Zhu, Y.; Tang, Z. K. Three-dimensional α-Fe2O3/carbon nanotube sponges as flexible supercapacitor electrodes. J. Mater. Chem. A2015, 3: 20927–20934.

    CAS  Google Scholar 

  53. Gund, G. S.; Dubal, D. P.; Chodankar, N. R.; Cho, J. Y.; Gomez-Romero, P.; Park, C.; Lokhande, C. D. Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel. Sci. Rep.2015, 5: 12454.

    Google Scholar 

  54. Choi, C.; Kim, S. H.; Sim, H. J.; Lee, J. A.; Choi, A. Y.; Kim, Y. T.; Lepró, X.; Spinks, G. M.; Baughman, R. H.; Kim, S. J. Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors. Sci. Rep.2015, 5: 9387.

    CAS  Google Scholar 

  55. Zhao, Y. M.; Dong, D. S.; Wang, Y.; Gong, S.; An, T. C.; Yap, L. W.; Cheng, W. L. Highly stretchable fiber-shaped supercapacitors based on ultrathin gold nanowires with double-helix winding design. ACS Appl. Mater. Interfaces2018, 10: 42612–42620.

    CAS  Google Scholar 

  56. Pan, Z. H.; Yang, J.; Li, L. H.; Gao, X. R.; Kang, L. X.; Zhang, Y. F.; Zhang, Q. C.; Kou, Z. K.; Zhang, T.; Wei, L. et al. All-in-one stretchable coaxial-fiber strain sensor integrated with high-performing supercapacitor. Energy Storage Mater.2020, 25: 124–130.

    Google Scholar 

  57. Yu, J. L.; Lu, W. B.; Smith, J. P.; Booksh, K. S.; Meng, L. H.; Huang, Y. D.; Li, Q. W.; Byun, J. H.; Oh, Y.; Yan, Y. S. et al. A high performance stretchable asymmetric fiber-shaped supercapacitor with a core-sheath helical structure. Adv. Energy Mater.2017, 7: 1600976.

    Google Scholar 

  58. Zhang, Y.; Bai, W. Y.; Cheng, X. L.; Ren, J.; Weng, W.; Chen, P. N.; Fang, X.; Zhang, Z. T.; Peng, H. S. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem., Int. Ed.2014, 53: 14564–14568.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2016YFB0100100), the National Natural Science Foundation of China (Nos. 21433013, U1832218, and 21975140).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Wu or Yuegang Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Wang, G., Zhao, Y. et al. A stretchable, asymmetric, coaxial fiber-shaped supercapacitor for wearable electronics. Nano Res. 13, 1686–1692 (2020). https://doi.org/10.1007/s12274-020-2793-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2793-x

Keywords

Navigation