Skip to main content
Log in

A strategy for accurate detection of glucose in human serum and whole blood based on an upconversion nanoparticles-polydopamine nanosystem

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The accurate detection of blood glucose is of critical importance in the diagnosis and management of diabetes and its complications. Herein, we report a novel strategy based on an upconversion nanoparticles-polydopamine (UCNPs-PDA) nanosystem for the accurate detection of glucose in human serum and whole blood through a simple blending of test samples with ligand-free UCNPs, dopamine, and glucose oxidase (GOx). Owing to the high affinity of lanthanide ions exposed on the surface of ligand-free UCNPs, dopamine monomers could spontaneously attach to the UCNPs and further polymerize to form a PDA shell, resulting in a remarkable upconversion luminescence (UCL) quenching (97.4%) of UCNPs under 980-nm excitation. Such UCL quenching can be effectively inhibited by H2O2 produced from the GOx/glucose enzymatic reaction, thus enabling the detection of H2O2 or glucose based on the UCL quenching/inhibition bioassay. Owing to the highly sensitive UCL response and background-free interference of the UCNPs-PDA nanosystem, we achieved a sensitive, selective, and high-throughput bioassay for glucose in human serum and whole blood, thereby revealing the great potential of the UCNPs-PDA nanosystem for the accurate detection of blood glucose or other H2O2-generated biomolecules in clinical bioassays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heller, A.; Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 2008, 108, 2482–2505.

    Article  Google Scholar 

  2. Harris, M. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 1979, 28, 1039–1057.

    Article  Google Scholar 

  3. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37, S81–S90.

    Article  Google Scholar 

  4. Alberti, K. G. M. M.; Zimmet, P. Z.; Consultation, W. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet. Med. 1998, 15, 539–553.

    Article  Google Scholar 

  5. Xiong, Y. M.; Zhang, Y. Y.; Rong, P. F.; Yang, J.; Wang, W.; Liu, D. B. A high-throughput colorimetric assay for glucose detection based on glucose oxidase-catalyzed enlargement of gold nanoparticles. Nanoscale 2015, 7, 15584–15588.

    Article  Google Scholar 

  6. Clarke, S. E.; Foster, J. R. A history of blood glucose meters and their role in self-monitoring of diabetes mellitus. Br. J. Biomed. Sci. 2012, 69, 83–93.

    Article  Google Scholar 

  7. Trajanoski, Z.; Brunner, G. A.; Gfrerer, R. J.; Wach, P.; Pieber, T. R. Accuracy of home blood glucose meters during hypoglycemia. Diabetes Care 1996, 19, 1412–1415.

    Article  Google Scholar 

  8. Liu, Q. Y.; Yang, Y. T.; Li, H.; Zhu, R. R.; Shao, Q.; Yang, S. G.; Xu, J. J. NiO nanoparticles modified with 5,10,15,20-tetrakis(4-carboxylpheyl)- porphyrin: Promising peroxidase mimetics for H2O2 and glucose detection. Biosens. Bioelectron. 2015, 64, 147–153.

    Article  Google Scholar 

  9. Zhang, J. X.; Tu, L. P.; Zhao, S.; Liu, G. H.; Wang, Y. Y.; Wang, Y.; Yue, Z. Fluorescent gold nanoclusters based photoelectrochemical sensors for detection of H2O2 and glucose. Biosens. Bioelectron. 2015, 67, 296–302.

    Article  Google Scholar 

  10. Lu, L. F.; Li, Y. Y.; Zhang, M.; Shi, G. Y. Visual fluorescence detection of H2O2 and glucose based on “molecular beacon”-hosted Hoechst dyes. Analyst 2015, 140, 3642–3647.

    Article  Google Scholar 

  11. Liu, B. W.; Sun, Z. Y.; Huang, P. J. J.; Liu, J. W. Hydrogen peroxide displacing DNA from nanoceria: Mechanism and detection of glucose in serum. J. Am. Chem. Soc. 2015, 137, 1290–1295.

    Article  Google Scholar 

  12. Wang, D.; Wang, R. H.; Liu, L. J.; Qu, Y.; Wang, G. F.; Li, Y. D. Down-shifting luminescence of water soluble NaYF4:Eu3+@Ag core-shell nanocrystals for fluorescence turn-on detection of glucose. Sci. China Mater. 2017, 60, 68–74.

    Article  Google Scholar 

  13. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446.

    Article  Google Scholar 

  14. Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775.

    Article  Google Scholar 

  15. Zheng, W.; Huang, P.; Tu, D. T.; Ma, E.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 2015, 44, 1379–1415.

    Article  Google Scholar 

  16. Wang, J. W.; Tanner, P. A. Upconversion for white light generation by a single compound. J. Am. Chem. Soc. 2010, 132, 947–949.

    Article  Google Scholar 

  17. Zhou, B.; Shi, B. Y.; Jin, D. Y.; Liu, X. G. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924–936.

    Article  Google Scholar 

  18. Su, Q. Q.; Feng, W.; Yang, D. P.; Li, F. Y. Resonance energy transfer in upconversion nanoplatforms for selective biodetection. Acc. Chem. Res. 2017, 50, 32–40.

    Article  Google Scholar 

  19. Tsang, M. K.; Ye, W. W.; Wang, G. J.; Li, J. M.; Yang, M.; Hao, J. H. Ultrasensitive detection of ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system. ACS Nano 2016, 10, 598–605.

    Article  Google Scholar 

  20. Liu, Y. Y.; Zhang, J. W.; Zuo, C. J.; Zhang, Z.; Ni, D. L.; Zhang, C.; Wang, J.; Zhang, H.; Yao, Z. W.; Bu, W. B. Upconversion nano-photosensitizer targeting into mitochondria for cancer apoptosis induction and cyt c fluorescence monitoring. Nano Res. 2016, 9, 3257–3266.

    Article  Google Scholar 

  21. Xu, W.; Zhu, Y. S.; Chen, X.; Wang, J.; Tao, L.; Xu, S.; Liu, T.; Song, H. W. A novel strategy for improving upconversion luminescence of NaYF4:Yb,Er nanocrystals by coupling with hybrids of silver plasmon nanostructures and poly(methyl methacrylate) photonic crystals. Nano Res. 2013, 6, 795–807.

    Article  Google Scholar 

  22. Huang, P.; Tu, D. T.; Zheng, W.; Zhou, S. Y.; Chen, Z.; Chen, X. Y. Inorganic lanthanide nanoprobes for background-free luminescent bioassays. Sci. China Mater. 2015, 58, 156–177.

    Article  Google Scholar 

  23. Luo, W. Q.; Liu, Y. S.; Chen, X. Y. Lanthanide-doped semiconductor nanocrystals: Electronic structures and optical properties. Sci. China Mater. 2015, 58, 819–850.

    Article  Google Scholar 

  24. Lu, S.; Tu, D. T.; Li, X. J.; Li, R. F.; Chen, X. Y. A facile “ship-in-a-bottle” approach to construct nanorattles based on upconverting lanthanide-doped fluorides. Nano Res. 2016, 9, 187–197.

    Article  Google Scholar 

  25. Liu, J. L.; Lu, L. L.; Li, A. Q.; Tang, J.; Wang, S. G.; Xu, S. Y.; Wang, L. Y. Simultaneous detection of hydrogen peroxide and glucose in human serum with upconversion luminescence. Biosens. Bioelectron. 2015, 68, 204–209.

    Article  Google Scholar 

  26. Yuan, J.; Cen, Y.; Kong, X. J.; Wu, S.; Liu, C. L.; Yu, R. Q.; Chu, X. MnO2-nanosheet-modified upconversion nanosystem for sensitive turn-on fluorescence detection of H2O2 and glucose in blood. ACS Appl. Mater. Interfaces 2015, 7, 10548–10555.

    Article  Google Scholar 

  27. Wu, S.; Kong, X. J.; Cen, Y.; Yuan, J.; Yu, R. Q.; Chu, X. Fabrication of a LRET-based upconverting hybrid nanocomposite for turn-on sensing of H2O2 and glucose. Nanoscale 2016, 8, 8939–8946.

    Article  Google Scholar 

  28. Zhang, C. L.; Yuan, Y. X.; Zhang, S. M.; Wang, Y. H.; Liu, Z. H. Biosensing platform based on fluorescence resonance energy transfer from upconverting nanocrystals to graphene oxide. Angew. Chem., Int. Ed. 2011, 50, 6851–6854.

    Article  Google Scholar 

  29. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.

    Article  Google Scholar 

  30. Ku, S. H.; Park, C. B. Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials 2010, 31, 9431–9437.

    Article  Google Scholar 

  31. Kang, S. M.; You, I.; Cho, W. K.; Shon, H. K.; Lee, T. G.; Choi, I. S.; Karp, J. M.; Lee, H. One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. Angew. Chem., Int. Ed. 2010, 49, 9401–9404.

    Article  Google Scholar 

  32. Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.

    Article  Google Scholar 

  33. Swan, G. A. Chemical structure of melanins. Ann. N. Y. Acad. Sci. 1963, 100, 1005–1019.

    Article  Google Scholar 

  34. Qiang, W. B.; Li, W.; Li, X. Q.; Chen, X.; Xu, D. K. Bioinspired polydopamine nanospheres: A superquencher for fluorescence sensing of biomolecules. Chem. Sci. 2014, 5, 3018–3024.

    Article  Google Scholar 

  35. Tu, D. T.; Liu, Y. S.; Zhu, H. M.; Li, R. F.; Liu, L. Q.; Chen, X. Y. Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals. Angew. Chem., Int. Ed. 2013, 52, 1128–1133.

    Article  Google Scholar 

  36. Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 2011, 11, 835–840.

    Article  Google Scholar 

  37. Krämer, K. W.; Biner, D.; Frei, G.; Güdel, H. U.; Hehlen, M. P.; Lüthi, S. R. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 2004, 16, 1244–1251.

    Article  Google Scholar 

  38. Huang, P.; Zheng, W.; Zhou, S. Y.; Tu, D. T.; Chen, Z.; Zhu, H. M.; Li, R. F.; Ma, E.; Huang, M. D.; Chen, X. Y. Lanthanide-doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers. Angew. Chem., Int. Ed. 2014, 53, 1252–1257.

    Article  Google Scholar 

  39. Wong, C. M.; Wong, K. H.; Chen, X. D. Glucose oxidase: Natural occurrence, function, properties and industrial applications. Appl. Microbiol. Biotechnol. 2008, 78, 927–938.

    Article  Google Scholar 

  40. Shan, C. S.; Yang, H. F.; Song, J. F.; Han, D. X.; Ivaska, A.; Niu, L. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem. 2009, 81, 2378–2382.

    Article  Google Scholar 

  41. Zheng W.; Zhou S. Y.; Xu J.; Liu Y. S.; Huang P.; Liu Y.; Chen X. Y. Ultrasensitive luminescent in vitro detection for tumor markers based on inorganic lanthanide nano-bioprobes. Adv. Sci. 2016, 3, 1600197.

    Article  Google Scholar 

  42. Wang, M.; Chen, Z.; Zheng, W.; Zhu, H. M.; Lu, S.; Ma, E.; Tu, D. T.; Zhou, S. Y.; Huang, M. D.; Chen, X. Y. Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy. Nanoscale 2014, 6, 8274–8282.

    Article  Google Scholar 

  43. Chen, H. Y.; Fang, A. J.; He, L.; Zhang, Y. Y.; Yao, S. Z. Sensitive fluorescent detection of H2O2 and glucose in human serum based on inner filter effect of squaric acidiron(III) on the fluorescence of upconversion nanoparticle. Talanta 2017, 164, 580–587.

    Article  Google Scholar 

  44. Xiao, Y.; Zeng, L. Y.; Xia, T.; Wu, Z. J.; Liu, Z. H. Construction of an upconversion nanoprobe with few-atom silver nanoclusters as the energy acceptor. Angew. Chem., Int. Ed. 2015, 54, 5323–5327.

    Article  Google Scholar 

  45. Li, Z.; Liang, T.; Lv, S. W.; Zhuang, Q. G.; Liu, Z. H. A rationally designed upconversion nanoprobe for in vivo detection of hydroxyl radical. J. Am. Chem. Soc. 2015, 137, 11179–11185.

    Article  Google Scholar 

  46. Achatz, D. E.; Meier, R. J.; Fischer, L. H.; Wolfbeis, O. S. Luminescent sensing of oxygen using a quenchable probe and upconverting nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 260–263.

    Article  Google Scholar 

  47. Gorris, H. H.; Wolfbeis, O. S. Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew. Chem., Int. Ed. 2013, 52, 3584–3600.

    Article  Google Scholar 

  48. Lin, J. H.; Yu, C. J.; Yang, Y. C.; Tseng, W. L. Formation of fluorescent polydopamine dots from hydroxyl radicalinduced degradation of polydopamine nanoparticles. Phys. Chem. Chem. Phys. 2015, 17, 15124–15130.

    Article  Google Scholar 

  49. Shah, V. P.; Midha, K. K.; Findlay, J. W. A.; Hill, H. M.; Hulse, J. D.; McGilveray, I. J.; McKay, G.; Miller, K. J.; Patnaik, R. N.; Powell, M. L. et al. Bioanalytical method validation-a revisit with a decade of progress. Pharm. Res. 2000, 17, 1551–1557.

    Article  Google Scholar 

  50. Wang, M.; Li, M.; Yang, M. Y.; Zhang, X. M.; Yu, A. Y.; Zhu, Y.; Qiu, P. H.; Mao, C. B. NIR-induced highly sensitive detection of latent fingermarks by NaYF4: Yb, Er upconversion nanoparticles in a dry powder state. Nano Res. 2015, 8, 1800–1810.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Basic Research Program of China (973 Program) (No. 2014CB845605), the National Natural Science Foundation of China (NSFC) (Nos. U1305244, 21325104, 51402294 and 21501180), the CAS/SAFEA International Partnership Program for Creative Research Teams, Strategic Priority Research Program of the CAS (Nos. XDA09030307 and XDB20000000), the Youth Innovation Promotion Association (No. 2016277) and the Chunmiao Project of Haixi Institute of the CAS (No. CMZX-2016-002), and the Natural Science Foundation of Fujian Province (Nos. 2015J05116, 2017J05095, 2017J01105 and 2017I0018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zheng or Xueyuan Chen.

Electronic supplementary material

12274_2017_1721_MOESM1_ESM.pdf

A strategy for accurate detection of glucose in human serum and whole blood based on an upconversion nanoparticles-polydopamine nanosystem

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Tu, D., Zheng, W. et al. A strategy for accurate detection of glucose in human serum and whole blood based on an upconversion nanoparticles-polydopamine nanosystem. Nano Res. 11, 3164–3174 (2018). https://doi.org/10.1007/s12274-017-1721-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1721-1

Keywords

Navigation