Skip to main content
Log in

Sub-2.0-nm Ru and composition-tunable RuPt nanowire networks

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, the synthesis of ultrathin nanostructures has attracted increasing interest because of their unique structure and properties. In this work, we report the synthesis of sub-2.0-nm Ru and composition-tunable RuPt nanowire networks using an environmentally friendly aqueous method. The structures were characterized using transmission electron microscopy (TEM), high-resolution TEM, X-ray diffraction (XRD), and energy-dispersive X-ray (EDX) spectroscopy. Moreover, the combined utilization of sodium n-dodecyl sulfate and potassium fluoride was determined to play a key role in the formation of these ultrathin nanostructures. The electrocatalytic properties of the sub-2.0-nm RuPt nanowire networks were investigated for methanol oxidation in an acidic medium. The nanostructures displayed composition-dependent properties, and compared with commercial Ru50Pt50/C, the as-synthesized Ru56Pt44 ultrathin nanowire network exhibited enhanced stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zahmakiran, M.; Tonbul, Y.; Özkar, S. Ruthenium(0) nanoclusters stabilized by a nanozeolite framework: Isolable, reusable, and green catalyst for the hydrogenation of neat aromatics under mild conditions with the unprecedented catalytic activity and lifetime. J. Am. Chem. Soc. 2010, 132, 6541–6549.

    Article  Google Scholar 

  2. Anderson, R.; Griffin, K.; Johnston, P.; Alsters, P. L. Selective oxidation of alcohols to carbonyl compounds and carboxylic acids with platinum group metal catalysts. Adv. Synth. Catal. 2003, 345, 517–523.

    Article  Google Scholar 

  3. Fellay, C.; Dyson, P. J.; Laurenczy, G. A viable hydrogenstorage system based on selective formic acid decomposition with a ruthenium catalyst. Angew. Chem., Int. Ed. 2008, 47, 3966–3968.

    Article  Google Scholar 

  4. Xiao, C. X.; Cai, Z. P.; Wang, T.; Kou, Y.; Yan, N. Aqueousphase Fischer–Tropsch synthesis with a ruthenium nanocluster catalyst. Angew. Chem., Int. Ed. 2008, 47, 746–749.

    Article  Google Scholar 

  5. Osada, M.; Sato, T.; Watanabe, M.; Adschiri, T.; Arai, K. Low-temperature catalytic gasification of lignin and cellulose with a ruthenium catalyst in supercritical water. Energy Fuels 2004, 18, 327–333.

    Article  Google Scholar 

  6. Nishibayashi, Y.; Iwai, S.; Hidai, M. Bimetallic system for nitrogen fixation: Ruthenium-assisted protonation of coordinated N2 on tungsten with H2. Science 1998, 279, 540–542.

    Article  Google Scholar 

  7. Kowal, A.; Li, M.; Shao, M.; Sasaki, K.; Vukmirovic, M. B.; Zhang, J.; Marinkovic, N. S.; Liu, P.; Frenkel, A. I.; Adzic, R. R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat. Mater. 2009, 8, 325–330.

    Article  Google Scholar 

  8. Yin, A.-X.; Liu, W.-C.; Ke, J.; Zhu, W.; Gu, J.; Zhang, Y.-W.; Yan, C.-H. Ru nanocrystals with shape-dependent surface-enhanced Raman spectra and catalytic properties: Controlled synthesis and DFT calculations. J. Am. Chem. Soc. 2012, 134, 20479-20489.

    Article  Google Scholar 

  9. Nosheen, F.; Zhang, Z. C.; Xiang, G. L.; Xu, B.; Yang, Y.; Saleem, F.; Xu, X. B.; Zhang, J. C.; Wang, X. Threedimensional hierarchical Pt–Cu superstructures. Nano Res. 2015, 8, 832–838.

    Article  Google Scholar 

  10. Zheng, F. L.; Wong, W.-T.; Yung, K.-F. Facile design of Au@Pt core–shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.

    Article  Google Scholar 

  11. Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 2008, 7, 333–338.

    Article  Google Scholar 

  12. Zhang, Q.; Guo, X.; Liang, Z. X.; Zeng, J. H.; Yang, J.; Liao, S. J. Hybrid PdAg alloy–Au nanorods: Controlled growth, optical properties and electrochemical catalysis. Nano Res. 2013, 6, 571–580.

    Article  Google Scholar 

  13. Xiang, J.; Li, P.; Chong, H. B.; Feng, L.; Fu, F. Y.; Wang, Z.; Zhang, S. L.; Zhu, M. Z. Bimetallic Pd–Ni core–shell nanoparticles as effective catalysts for the Suzuki reaction. Nano Res. 2014, 7, 1337–1343.

    Article  Google Scholar 

  14. Wang, Y.; Ren, J. W.; Deng, K.; Gui, L. L.; Tang, Y. Q. Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media. Chem. Mater. 2000, 12, 1622–1627.

    Article  Google Scholar 

  15. Pan, C.; Pelzer, K.; Philippot, K.; Chaudret, B.; Dassenoy, F.; Lecante, P.; Casanove, M. J. Ligand-stabilized ruthenium nanoparticles: Synthesis, organization, and dynamics. J. Am. Chem. Soc. 2001, 123, 7584–7593.

    Article  Google Scholar 

  16. Yan, X. P.; Liu, H. F.; Liew, K. Y. Size control of polymerstabilized ruthenium nanoparticles by polyol reduction. J. Mater. Chem. 2001, 11, 3387–3391.

    Article  Google Scholar 

  17. Viau, G.; Brayner, R.; Poul, L.; Chakroune, N.; Lacaze, E.; Fié vet-Vincent, F.; Fiévet, F. Ruthenium nanoparticles: Size, shape, and self-assemblies. Chem. Mater. 2003, 15, 486–494.

    Article  Google Scholar 

  18. Tsukatani, T.; Fujihara, H. New method for facile synthesis of amphiphilic thiol-stabilized ruthenium nanoparticles and their redox-active ruthenium nanocomposite. Langmuir 2005, 21, 12093–12095.

    Article  Google Scholar 

  19. Zhai, H. T.; Wang, R. R.; Wang, W. Q.; Wang, X.; Cheng, Y.; Shi, L. J.; Liu, Y. Q.; Sun, J. Novel fabrication of copper nanowire/cuprous oxidebased semiconductor-liquid junction solar cells. Nano Res. 2015, 8, 3205–3215.

    Article  Google Scholar 

  20. Yuan, J. K.; Liu, X. G.; Akbulut, O.; Hu, J. Q.; Suib, S. L.; Kong, J.; Stellacci, F. Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol. 2008, 3, 332–336.

    Article  Google Scholar 

  21. Nerowski, A.; Opitz, J.; Baraban, L.; Cuniberti, G. Bottom-up synthesis of ultrathin straight platinum nanowires: Electric field impact. Nano Res. 2013, 6, 303–311.

    Article  Google Scholar 

  22. Cheng, H.; Lu, Z. G.; Deng, J. Q.; Chung, C. Y.; Zhang, K. L.; Li, Y. Y. A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res. 2010, 3, 895–901.

    Article  Google Scholar 

  23. Yuan, Q.; Zhou, Z. Y.; Zhuang, J.; Wang, X. Seed displacement, epitaxial synthesis of Rh/Pt bimetallic ultrathin nanowires for highly selective oxidizing ethanol to CO2. Chem. Mater. 2010, 22, 2395–2402.

    Article  Google Scholar 

  24. Yang, S. C.; Hong, F.; Wang, L. Q.; Guo, S. W.; Song, X. P.; Ding, B. J.; Yang, Z. M. Ultrathin Pt-based alloy nanowire networks: Synthesized by CTAB assistant twophase water-chloroform micelles. J. Phys. Chem. C 2010, 114, 203–207.

    Article  Google Scholar 

  25. Hu, S.; Liu, H. L.; Wang, P. P.; Wang, X. Inorganic nanostructures with sizes down to 1 nm: A macromolecule analogue. J. Am. Chem. Soc. 2013, 135, 11115–11124.

    Article  Google Scholar 

  26. Huang, X. Q.; Zhao, Z. P.; Chen, Y.; Chiu, C.-Y.; Ruan, L. Y.; Liu, Y.; Li, M. F.; Duan, X. F.; Huang, Y. High density catalytic hot spots in ultrafine wavy nanowires. Nano Lett. 2014, 14, 3887–3894.

    Article  Google Scholar 

  27. Scofield, M. E.; Koenigsmann, C.; Wang, L.; Liu, H. Q.; Wong, S. S. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy Environ. Sci. 2015, 8, 350–363.

    Article  Google Scholar 

  28. Song, Y. J.; Garcia, R. M.; Dorin, R. M.; Wang, H. R.; Qiu, Y.; Coker, E. N.; Steen, W. A.; Miller, J. E.; Shelnutt, J. A. Synthesis of platinum nanowire networks using a soft template. Nano Lett. 2007, 7, 3650–3655.

    Article  Google Scholar 

  29. Teng, X. W.; Han, W.-Q.; Ku, W.; Hücker, M. Synthesis of ultrathin palladium and platinum nanowires and a study of their magnetic properties. Angew. Chem., Int. Ed. 2008, 47, 2055–2058.

    Article  Google Scholar 

  30. Halder, A.; Ravishankar, N. Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv. Mater. 2007, 19, 1854–1858.

    Article  Google Scholar 

  31. Koenigsmann, C.; Semple, D. B.; Sutter, E.; Tobierre, S. E.; Wong, S. S. Ambient synthesis of high-quality ruthenium nanowires and the morphology-dependent electrocatalytic performance of platinum-decorated ruthenium nanowires and nanoparticles in the methanol oxidation reaction. ACS Appl. Mater. Interfaces 2013, 5, 5518–5530.

    Article  Google Scholar 

  32. Teng, X. W.; Feygenson, M.; Wang, Q.; He, J. Q.; Du, W. X.; Frenkel, A. I.; Han, W. Q.; Aronson, M. Electronic and magnetic properties of ultrathin Au/Pt nanowires. Nano Lett. 2009, 9, 3177–3184.

    Article  Google Scholar 

  33. Hong, X.; Tan, C.; Chen, J.; Xu, Z.; Zhang, H. Synthesis, properties and applications of one- and two-dimensional gold nanostructures. Nano Res. 2015, 8, 40–55.

    Article  Google Scholar 

  34. Huo, Z. Y.; Tsung, C. K.; Huang, W. Y.; Zhang, X. F.; Yang, P. D. Sub-two nanometer single crystal Au nanowires. Nano Lett. 2008, 8, 2041–2044.

    Article  Google Scholar 

  35. Lu, X. M.; Yavuz, M. S.; Tuan, H.; Korgel, B. A.; Xia, Y. N. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. J. Am. Chem. Soc. 2008, 130, 8900–8901.

    Article  Google Scholar 

  36. Huo, Z. Y.; Tsung, C. K.; Huang, W. Y.; Fardy, M.; Yan, R. X.; Zhang, X. F.; Li, Y. D.; Yang, P. D. Self-organized ultrathin oxide nanocrystals. Nano Lett. 2009, 9, 1260–1264.

    Article  Google Scholar 

  37. Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

    Article  Google Scholar 

  38. Wang, D. S.; Peng, Q.; Li, Y. D. Nanocrystalline intermetallics and alloys. Nano Res. 2010, 3, 574–580.

    Article  Google Scholar 

  39. Liu, L. P.; Zhuang, Z. B.; Xie, T.; Wang, Y. G.; Li, J.; Peng, Q.; Li, Y. D. Shape control of CdSe nanocrystals with zinc blende structure. J. Am. Chem. Soc. 2009, 131, 16423–16429.

    Article  Google Scholar 

  40. Xiong, Y. J.; Washio, I.; Chen, J. Y.; Cai, H. G.; Li, Z. Y.; Xia, Y. N. Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir 2006, 22, 8563–8570.

    Article  Google Scholar 

  41. Ponrouch, A.; Garbarino, S.; Pronovost, S.; Taberna, P.-L.; Simon, P.; Guay, D. Electrodeposition of arrays of Ru, Pt, and PtRu alloy 1D metallic nanostructures. J. Electrochem. Soc. 2010, 157, K59-K65.

  42. Zhang, Y. W.; Grass, M. E.; Kuhn, J. N.; Tao, F.; Habas, S. E.; Huang, W. Y.; Yang, P. D.; Somorjai, G. A. Highly selective synthesis of catalytically active monodisperse rhodium nanocubes. J. Am. Chem. Soc. 2008, 130, 5868–5869.

    Article  Google Scholar 

  43. Tsung, C. K.; Kuhn, J. N.; Huang, W. Y.; Aliaga, C.; Hung, L. I.; Somorjai, G. A.; Yang, P. D. Sub-10 nm platinum nanocrystals with size and shape control: Catalytic study for ethylene and pyrrole hydrogenation. J. Am. Chem. Soc. 2009, 131, 5816–5822.

    Article  Google Scholar 

  44. Yuan, Q.; Zhuang, J.; Wang, X. Single-phase aqueous approach toward Pd sub-10 nm nanocubes and Pd–Pt heterostructured ultrathin nanowires. Chem. Commun. 2009, 6613–6615.

    Google Scholar 

  45. Huang, X. Q.; Zheng, N. F. One-pot, high-yield synthesis of 5-fold twinned Pd nanowires and nanorods. J. Am. Chem. Soc. 2009, 131, 4602–4603.

    Article  Google Scholar 

  46. Tang, Z. Y.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowire. Science 2002, 297, 237–240.

    Article  Google Scholar 

  47. Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 2003, 3, 1255–1259.

    Article  Google Scholar 

  48. Häglund, J.; Fernández Guillermet, A.; Grimvall, G.; Körling, M. Theory of bonding in transition-metal carbides and nitrides. Phys. Rev. B 1993, 48, 11685–11691.

    Article  Google Scholar 

  49. Chen, A. C.; Holt-Hindle, P. Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev. 2010, 110, 3767–3804.

    Article  Google Scholar 

  50. Green, C. L.; Kucernak, A. Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts. Phys. Chem. B 2002, 106, 1036–1047.

    Article  Google Scholar 

  51. Jiang, J. H.; Kucernak, A. Mesoporous microspheres composed of PtRu alloy. Chem. Mater. 2004, 16, 1362–1367.

    Article  Google Scholar 

  52. Herrero, E.; Franaszczuk, K.; Wieckowski, A. Electrochemistry of methanol at low index crystal planes of platinum: An integrated voltammetric and chronoamperometric study. Phys. Chem. 1994, 98, 5074–5083.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Yuan or Xun Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Huang, D., Yuan, Q. et al. Sub-2.0-nm Ru and composition-tunable RuPt nanowire networks. Nano Res. 9, 3066–3074 (2016). https://doi.org/10.1007/s12274-016-1189-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1189-4

Keywords

Navigation