Skip to main content
Log in

Understanding the stability and reactivity of ultrathin tellurium nanowires in solution: An emerging platform for chemical transformation and material design

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The stability and reactivity of nanomaterials are of crucial importance for their application, but the long-term effects of stability and reactivity of nanomaterials under practical conditions are still not well understood. In this study, we first established a comprehensive strategy to investigate the stability of a highly reactive nanomaterial from the viewpoint of reaction kinetics with ultrathin tellurium nanowires (TeNWs) as a model material in aqueous solution through an accelerated oxidation process. This allowed us to propose a new approach for the design and synthesis of other unique one-dimensional nanostructures by a chemical transformation process using the intermediate nanostructures “captured” during the dynamic oxidation process under different conditions. In essence, the oxidation of ultrathin TeNWs is a gas-solid reaction which involves liquid, gas and solid phases. It has been demonstrated that the oxidation process of ultrathin TeNWs in aqueous solution can be divided into three stages, namely oxygen limiting, ultrathin TeNWs limiting and mass transfer resistance limiting stages. The apparent oxidation kinetics for ultrathin TeNWs is approximately in accord with a first order reaction kinetics model and has an apparent activation energy as low as 13.53 kJ·mol−1, indicating that ultrathin TeNWs are thermodynamically unstable. However, the unstable nature of ultrathin TeNWs is actually an advantage since it can act as an excellent platform to help us synthesize and design one-dimensional functional nanomaterials-with special structures and distinctive properties-which are difficult to obtain by a direct synthesis method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2009, 48, 60–103.

    Article  Google Scholar 

  2. Yin, Y.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664–670.

    Article  Google Scholar 

  3. Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.

    Article  Google Scholar 

  4. Lim, B.; Jiang, M. J.; Yu, T.; Camargo, P. H. C.; Xia, Y. N. Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Res. 2010, 3, 69–80.

    Article  Google Scholar 

  5. Mackenzie, J. D.; Bescher, E. P. Chemical routes in the synthesis of nanomaterials using the sol-gel process. Acc. Chem. Res. 2007, 40, 810–818.

    Article  Google Scholar 

  6. Ghosh Chaudhuri, R.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433.

    Article  Google Scholar 

  7. Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.

    Article  Google Scholar 

  8. Walther, A.; Muller, A. H. E. Janus particles: Synthesis, self-assembly, physical properties, and applications. Chem. Rev. 2013, 113, 5194–5261.

    Article  Google Scholar 

  9. Xia, Y. S.; Tang, Z. Y. Monodisperse inorganic supraparticles: Formation mechanism, properties and applications. Chem. Commun. 2012, 48, 6320–6336.

    Article  Google Scholar 

  10. Wang, D. S.; Peng, Q.; Li, Y. D. Nanocrystalline intermetallics and alloys. Nano Res. 2010, 3, 574–580.

    Article  Google Scholar 

  11. Gong, J. X.; Li, G. D.; Tang, Z. Y. Self-assembly of noble metal nanocrystals: Fabrication, optical property, and application. Nano Today 2012, 7, 564–585.

    Article  Google Scholar 

  12. Pratt, A.; Lari, L.; Hovorka, O.; Shah, A.; Woffinden, C.; Tear, S. P.; Binns, C.; Kroger, R. Enhanced oxidation of nanoparticles through strain-mediated ionic transport. Nat. Mater. 2014, 13, 26–30.

    Article  Google Scholar 

  13. Andrievski, R. A. Review stability of nanostructured materials. J. Mater. Sci. 2003, 38, 1367–1375.

    Article  Google Scholar 

  14. Tang, Z. Y.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 2002, 297, 237–240.

    Article  Google Scholar 

  15. Tang, Z. Y.; Wang, Y.; Shanbhag, S.; Giersig, M.; Kotov, N. A. Spontaneous transformation of CdTe nanoparticles into angled Te nanocrystals: From particles and rods to checkmarks, X-marks, and other unusual shapes. J. Am. Chem. Soc. 2006, 128, 6730–6736.

    Article  Google Scholar 

  16. Tang, Z. Y.; Wang, Y.; Sun, K.; Kotov, N. A. Spontaneous transformation of stabilizer-depleted binary semiconductor nanoparticles into selenium and tellurium nanowires. Adv. Mater. 2005, 17, 358–363.

    Article  Google Scholar 

  17. Moreels, I.; Fritzinger, B.; Martins, J. C.; Hens, Z. Surface chemistry of colloidal PbSe nanocrystals. J. Am. Chem. Soc. 2008, 130, 15081–15086.

    Article  Google Scholar 

  18. Xiong, Y. J. Morphological changes in Ag nanocrystals triggered by citrate photoreduction and governed by oxidative etching. Chem. Commun. 2011, 47, 1580–1582.

    Article  Google Scholar 

  19. Hung, L. I.; Tsung, C. K.; Huang, W. Y.; Yang, P. D. Room-temperature formation of hollow Cu2O nanoparticles. Adv. Mater. 2010, 22, 1910–1914.

    Article  Google Scholar 

  20. Mortimer, R. G. Physical Chemistry; Academic Press: London, 2008.

    Google Scholar 

  21. Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.

    Article  Google Scholar 

  22. Peng, Z. A.; Peng, X. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124, 3343–3353.

    Article  Google Scholar 

  23. Bunge, S. D.; Krueger, K. M.; Boyle, T. J.; Rodriguez, M. A.; Headley, T. J.; Colvin, V. L. Growth and morphology of cadmium chalcogenides: The synthesis of nanorods, tetrapods, and spheres from CdO and Cd(O2CCH3)2. J. Mater. Chem. 2003, 13, 1705–1709.

    Article  Google Scholar 

  24. Xie, R. G.; Li, Z.; Peng, X. G. Nucleation kinetics vs. chemical kinetics in the initial formation of semiconductor nanocrystals. J. Am. Chem. Soc. 2009, 131, 15457–15466.

    Article  Google Scholar 

  25. Peng, X. G. An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2009, 2, 425–447.

    Article  Google Scholar 

  26. Qian, H. S.; Yu, S. H.; Gong, J. Y.; Luo, L. B.; Fei, L. F. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly(vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 2006, 22, 3830–3835.

    Article  Google Scholar 

  27. Liang, H. W.; Liu, J. W.; Qian, H. S.; Yu, S. H. Multiplex templating process in one-dimensional nanoscale: Controllable synthesis, macroscopic assemblies, and applications. Acc. Chem. Res. 2013, 46, 1450–1461.

    Article  Google Scholar 

  28. Liang, H. W.; Cao, X.; Zhou, F.; Cui, C. H.; Zhang, W. J.; Yu, S. H. A free-standing Pt-nanowire membrane as a highly stable electrocatalyst for the oxygen reduction reaction. Adv. Mater. 2011, 23, 1467–1471.

    Article  Google Scholar 

  29. Liang, H. W.; Liu, S.; Yu, S. H. Controlled synthesis of one-dimensional inorganic nanostructures using pre-existing one-dimensional nanostructures as templates. Adv. Mater. 2010, 22, 3925–3937.

    Article  Google Scholar 

  30. Li, H. H.; Zhao, S.; Gong, M.; Cui, C. H.; He, D.; Liang, H. W.; Wu, L.; Yu, S. H. Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation. Angew. Chem. Int. Ed. 2013, 52, 7472–7476.

    Article  Google Scholar 

  31. Chen, L. F.; Zhang, X. D.; Liang, H. W.; Kong, M. G.; Guan, Q. F.; Chen, P.; Wu, Z. Y.; Yu, S. H. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 2012, 6, 7092–7102.

    Article  Google Scholar 

  32. Wang, K.; Liang, H. W.; Yao, W. T.; Yu, S. H. Templating synthesis of uniform Bi2Te3 nanowires with high aspect ratio in triethylene glycol (TEG) and their thermoelectric performance. J. Mater. Chem. 2011, 21, 15057–15062.

    Article  Google Scholar 

  33. Liu, J. W.; Xu, J.; Liang, H. W.; Wang, K.; Yu, S. H. Macroscale ordered ultrathin telluride nanowire films, and tellurium/telluride hetero-nanowire films. Angew. Chem. Int. Ed. 2012, 51, 7420–7425.

    Article  Google Scholar 

  34. Wu, Z. Y.; Li, C.; Liang, H. W.; Chen, J. F.; Yu, S. H. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew. Chem. Int. Ed. 2013, 52, 2925–2929.

    Article  Google Scholar 

  35. Liang, H. W.; Cao, X.; Zhang, W. J.; Lin, H. T.; Zhou, F.; Chen, L. F.; Yu, S. H. Robust and highly efficient free-standing carbonaceous nanofiber membranes for water purification. Adv. Funct. Mater. 2011, 21, 3851–3858.

    Article  Google Scholar 

  36. Lan, W. J.; Yu, S. H.; Qian, H. S.; Wan, Y. Dispersibility, stabilization, and chemical stability of ultrathin tellurium nanowires in acetone: Morphology change, crystallization, and transformation into TeO2 in different solvents. Langmuir 2007, 23, 3409–3417.

    Article  Google Scholar 

  37. Liu, J. W.; Chen, F.; Zhang, M.; Qi, H.; Zhang, C. L.; Yu, S. H. Rapid microwave-assisted synthesis of uniform ultralong Te nanowires, optical property, and chemical stability. Langmuir 2010, 26, 11372–11377.

    Article  Google Scholar 

  38. Liang, H. W.; Zhang, W. J.; Ma, Y. N.; Cao, X.; Guan, Q. F.; Xu, W. P.; Yu, S. H. Highly active carbonaceous nanofibers: A versatile scaffold for constructing multifunctional free-standing membranes. ACS Nano 2011, 5, 8148–8161.

    Article  Google Scholar 

  39. Qian, H. S.; Yu, S. H.; Luo, L. B.; Gong, J. Y.; Fei, L. F.; Liu, X. M. Synthesis of uniform Te@carbon-rich composite nanocables with photoluminescence properties and carbonaceous nanofibers by the hydrothermal carbonization of glucose. Chem. Mater. 2006, 18, 2102–2108.

    Article  Google Scholar 

  40. Moon, G. D.; Ko, S.; Xia, Y.; Jeong, U. Chemical transformations in ultrathin chalcogenide nanowires. ACS Nano 2010, 4, 2307–2319.

    Article  Google Scholar 

  41. Lin, Z. H.; Yang, Z. S.; Chang, H. T. Preparation of fluorescent tellurium nanowires at room temperature. Cryst. Growth. Des. 2008, 8, 351–357.

    Article  Google Scholar 

  42. Isomäki, H. M.; von Boehm, J. Optical absorption of tellurium. Phys. Scr. 1981, 25, 801–803.

    Article  Google Scholar 

  43. Gautam, U. K.; Rao, C. N. R. Controlled synthesis of crystalline tellurium nanorods, nanowires, nanobelts and related structures by a self-seeding solution process. J. Mater. Chem. 2004, 14, 2530–2535.

    Article  Google Scholar 

  44. Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light by Small Particles; Wiley Interscience: New York, 1983.

    Google Scholar 

  45. Cademartiri, L.; Montanari, E.; Calestani, G.; Migliori, A.; Guagliardi, A.; Ozin, G. A. Size-dependent extinction coefficients of PbS quantum dots. J. Am. Chem. Soc. 2006, 128, 10337–10346.

    Article  Google Scholar 

  46. Darbha, G. K.; Singh, A. K.; Rai, U. S.; Yu, E.; Yu, H. T.; Ray, P. C. Selective detection of mercury(II) ion using nonlinear optical properties of gold nanoparticles. J. Am. Chem. Soc. 2008, 130, 8038–8043.

    Article  Google Scholar 

  47. Cheng, K. L. Analysis of lead telluride with an accuracy to better than 0.1%. Anal. Chem. 1961, 33, 761–764.

    Article  Google Scholar 

  48. Liang, H. W.; Guan, Q. F.; Chen, L. F.; Zhu, Z.; Zhang, W. J.; Yu, S. H. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem. Int. Ed. 2012, 51, 5101–5105.

    Article  Google Scholar 

  49. Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304, 711–714.

    Article  Google Scholar 

  50. Wang, W. S.; Dahl, M.; Yin, Y. D. Hollow nanocrystals through the nanoscale Kirkendall effect. Chem. Mater. 2013, 25, 1179–1189.

    Article  Google Scholar 

  51. Fan, H. J.; Knez, M.; Scholz, R.; Nielsch, K.; Pippel, E.; Hesse, D.; Zacharias, M.; Gosele, U. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat. Mater. 2006, 5, 627–631.

    Article  Google Scholar 

  52. Nalwa, H. S. Handbook of Nanostructured Materials and Nanotechnology; Academic Press: London, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Hong Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Liang, HW., Li, HH. et al. Understanding the stability and reactivity of ultrathin tellurium nanowires in solution: An emerging platform for chemical transformation and material design. Nano Res. 8, 1081–1097 (2015). https://doi.org/10.1007/s12274-014-0586-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0586-9

Keywords

Navigation