Skip to main content
Log in

TiO2 nanosheets with exposed {001} facets for photocatalytic applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

TiO2 nanosheets with highly reactive {001} facets ({001}-TiO2) have attracted great attention in the fields of science and technology because of their unique properties. In recent years, many efforts have been made to synthesize {001}-TiO2 and to explore their applications in photocatalysis. In this review, we summarize the recent progress in preparing {001}-TiO2 using different techniques such as hydrothermal, solvothermal, alcohothermal, chemical vapor deposition (CVD), and sol gel-based techniques. Furthermore, the enhanced efficiency of {001}-TiO2 by modification of carbon materials, surface deposition of transition metals, and non-metal doping is reviewed. Then, the applications of {001}-TiO2-based photocatalysts in the degradation of organic dyes, hydrogen evolution, carbon dioxide (CO2) reduction, bacterial disinfection, and dye-sensitized solar cells are summarized. We believe this entire review on TiO2 nanosheets with {001} facets can further inspire researchers in associated fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Markham, A. A Brief History of Pollution; St. Martin’s Press: New York, 1994.

    Google Scholar 

  2. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.

    Article  Google Scholar 

  3. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  Google Scholar 

  4. Diebold, U. Structure and properties of TiO2 surfaces: A brief review. Appl. Phys. A 2003, 76, 681–687.

    Article  Google Scholar 

  5. Tanemura, S.; Miao, L.; Wunderlich, W.; Tanemura, M.; Mori, Y.; Toh, S.; Kaneko, K. Fabrication and characterization of anatase/rutile–TiO2 thin films by magnetron sputtering: A review. Sci. Technol. Adv. Mater. 2005, 6, 11–17.

    Article  Google Scholar 

  6. Rivera, A. P.; Tanaka, K.; Hisanaga, T. Photocatalytic degradation of pollutant over TiO2 in different crystal structures. Appl. Catal. B-Environ. 1993, 3, 37–44.

    Article  Google Scholar 

  7. Wang, Y. F.; Li, L. P.; Huang, X. S.; Li, Q.; Li, G. S. New insights into fluorinated TiO2 (brookite, anatase and rutile) nanoparticles as efficient photocatalytic redox catalysts. RSC Adv. 2015, 5, 34302–34313.

    Article  Google Scholar 

  8. Fernández-Werner, L.; Faccio, R.; Juan, A.; Pardo, H.; Montenegro, B.; Mombrú, Á. W. Ultrathin (001) and (100) TiO2(B) sheets: Surface reactivity and structural properties. Appl. Surf. Sci. 2014, 290, 180–187.

    Article  Google Scholar 

  9. Kitazawa, S.; Choi, Y.; Yamamoto, S.; Yamaki, T. Rutile and anatase mixed crystal TiO2 thin films prepared by pulsed laser deposition. Thin Solid Films 2006, 515, 1901–1904.

    Article  Google Scholar 

  10. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229.

    Article  Google Scholar 

  11. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.

    Article  Google Scholar 

  12. Hanaor, D. A. H.; Sorrell, C. C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874.

    Article  Google Scholar 

  13. Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959.

    Article  Google Scholar 

  14. Liu, Z. Y.; Misra, M. Dye-sensitized photovoltaic wires using highly ordered TiO2 nanotube arrays. ACS Nano 2010, 4, 2196–2200.

    Article  Google Scholar 

  15. Bavykin, D. V.; Walsh, F. C. Elongated titanate nanostructures and their applications. Eur. J. Inorg. Chem. 2009, 2009, 977–997.

    Article  Google Scholar 

  16. Wu, Y. E.; Wang, D. S.; Li, Y. D. Nanocrystals from solutions: Catalysts. Chem. Soc. Rev. 2014, 43, 2112–2124.

    Article  Google Scholar 

  17. Thomas, J. M. Designing catalysts for tomorrow’s environmentally benign processes. Top. Catal. 2014, 57, 1115–1123.

    Article  Google Scholar 

  18. Lei, W. Y.; Zhang, T. T.; Gu, L.; Liu, P.; Rodriguez, J. A.; Liu, G.; Liu, M. H. Surface-structure sensitivity of CeO2 nanocrystals in photocatalysis and enhancing the reactivity with nanogold. ACS Catal. 2015, 5, 4385–4393.

    Article  Google Scholar 

  19. Zhang, T. T.; Lei, W. Y.; Liu, P.; Rodriguez, J. A.; Yu, J. G.; Qi, Y.; Liu, G.; Liu, M. H. Insights into the structure–photoreactivity relationships in well-defined perovskite ferroelectric KNbO3 nanowires. Chem. Sci. 2015, 6, 4118–4123.

    Article  Google Scholar 

  20. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453, 638–642.

    Article  Google Scholar 

  21. Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J. Am. Chem. Soc. 2009, 131, 4078–4083.

    Article  Google Scholar 

  22. Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153.

    Article  Google Scholar 

  23. Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; Murray, C. B. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 6751–6761.

    Article  Google Scholar 

  24. Lv, K. L.; Cheng, B.; Yu, J. G.; Liu, G. Fluorine ionsmediated morphology control of anatase TiO2 with enhanced photocatalytic activity. Phys. Chem. Chem. Phys. 2012, 14, 5349–5362.

    Article  Google Scholar 

  25. Liu, B. T.; Jin, C. H.; Ju, Y.; Peng, L. L.; Tian, L. L.; Wang, J. B.; Zhang, T. J. Crystal growth and design of a facile synthesized uniform single crystalline football-like anatase TiO2 microspheres with exposed {001} facets. Appl. Surf. Sci. 2014, 311, 147–157.

    Article  Google Scholar 

  26. Liu, S. W.; Yu, J. G.; Jaroniec, M. Anatase TiO2 with dominant high-energy {001} facets: Synthesis, properties, and applications. Chem. Mater. 2011, 23, 4085–4093.

    Article  Google Scholar 

  27. Fang, W. Q.; Gong, X. Q.; Yang, H. G. On the unusual properties of anatase TiO2 exposed by highly reactive facets. J. Phys. Chem. Lett. 2011, 2, 725–734.

    Article  Google Scholar 

  28. Fan, J. J.; Cai, W. Q.; Yu, J. G. Adsorption of N719 dye on anatase TiO2 nanoparticles and nanosheets with exposed (001) facets: Equilibrium, kinetic, and thermodynamic studies. Chem.—Asian J. 2011, 6, 2481–2490.

    Article  Google Scholar 

  29. Xu, H.; Reunchan, P.; Ouyang, S. X.; Tong, H.; Umezawa, N.; Kako, T.; Ye, J. H. Anatase TiO2 single crystals exposed with high-reactive {111} facets toward efficient H2 evolution. Chem. Mater. 2013, 25, 405–411.

    Article  Google Scholar 

  30. Sun, L.; Zhao, Z. L.; Zhou, Y. C.; Liu, L. Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity. Nanoscale 2012, 4, 613–620.

    Article  Google Scholar 

  31. Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, D. H.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H. Hydrogen production by tuning the photonic band gap with the electronic band gap of TiO2. Sci. Rep. 2013, 3, 2849.

    Article  Google Scholar 

  32. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.

    Article  Google Scholar 

  33. Akpan, U. G.; Hameed, B. H. The advancements in sol-gel method of doped-TiO2 photocatalysts. Appl. Catal. A-Gen. 2010, 375, 1–11.

    Article  Google Scholar 

  34. Pan, L.; Zou, J. J.; Zhang, X. W.; Wang, L. Water-mediated promotion of dye sensitization of TiO2 under visible light. J. Am. Chem. Soc. 2011, 133, 10000–10002.

    Article  Google Scholar 

  35. Nadeem, A. M.; Waterhouse, G. I. N.; Idriss, H. The reactions of ethanol on TiO2 and Au/TiO2 anatase catalysts. Catal. Today 2012, 182, 16–24.

    Article  Google Scholar 

  36. Chin, S.; Park, E.; Kim, M.; Bae, G. N.; Jurng, J. Synthesis and visible light photocatalytic activity of transition metal oxide (V2O5) loading on TiO2 via a chemical vapor condensation method. Mater. Lett. 2012, 75, 57–60.

    Article  Google Scholar 

  37. Rupa, A. V.; Manikandan, D.; Divakar, D.; Sivakumar, T. Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of reactive yellow-17. J. Hazard. Mater. 2007, 147, 906–913.

    Article  Google Scholar 

  38. Diak, M.; Grabowska, E.; Zaleska, A. Synthesis, characterization and photocatalytic activity of noble metal-modified TiO2 nanosheets with exposed {001} facets. Appl. Surf. Sci. 2015, 347, 275–285.

    Article  Google Scholar 

  39. Wang, H. Q.; Cao, S.; Fang, Z.; Yu, F. X.; Liu, Y.; Weng, X. L.; Wu, Z. B. of NOby NH3. Appl. Surf. Sci. 2015, 330, 245–252.

    Article  Google Scholar 

  40. Papadimitriou, V. C.; Stefanopoulos, V. G.; Romanias, M. N.; Papagiannakopoulos, P.; Sambani, K.; Tudose, V.; Kiriakidis, G. Determination of photo-catalytic activity of un-doped and Mn-doped TiO2 anatase powders on acetaldehyde under UV and visible light. Thin Solid Films 2011, 520, 1195–1201.

    Article  Google Scholar 

  41. Zhu, J. F.; Chen, F.; Zhang, J. L.; Chen, H. J.; Anpo, M. Fe3+-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. J. Photochem. Photobiol. A 2006, 180, 196–204.

    Article  Google Scholar 

  42. Sakthivel, S.; Janczarek, M.; Kisch, H. Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J. Phys. Chem. B 2004, 108, 19384–19387.

    Article  Google Scholar 

  43. Choi, Y.; Umebayashi, T.; Yoshikawa, M. Fabrication and characterization of C-doped anatase TiO2 photocatalysts. J. Mater. Sci. 2004, 39, 1837–1839.

    Article  Google Scholar 

  44. Rockafellow, E. M.; Stewart, L. K.; Jenks, W. S. Is sulfurdoped TiO2 an effective visible light photocatalyst for remediation? Appl. Catal. B-Environ. 2009, 91, 554–562.

    Article  Google Scholar 

  45. Selloni, A. Crystal growth: Anatase shows its reactive side. Nat. Mater. 2008, 7, 613–615.

    Article  Google Scholar 

  46. Yang, X. H.; Li, Z.; Liu, G.; Xing, J.; Sun, C. H.; Yang, H. G.; Li, C. Z. Ultra-thin anatase TiO2 nanosheets dominated with {001} facets: Thickness-controlled synthesis, growth mechanism and water-splitting properties. CrystEngComm 2011, 13, 1378–1383.

    Article  Google Scholar 

  47. Yu, J. G.; Fan, J. J.; Lv, K. L. Anatase TiO2 nanosheets with exposed (001) facets: Improved photoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale 2010, 2, 2144–2149.

    Article  Google Scholar 

  48. Xiang, Q. J.; Yu, J. G. Photocatalytic activity of hierarchical flower-like TiO2 superstructures with dominant {001} facets. Chin. J. Catal. 2011, 32, 525–531.

    Article  Google Scholar 

  49. Yang, W. G.; Li, J. M.; Wang, Y. L.; Zhu, F.; Shi, W. M.; Wan, F. R.; Xu, D. S. A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells. Chem. Commun. 2011, 47, 1809–1811.

    Google Scholar 

  50. Zhu, J.; Wang, J. G.; Lv, F. J.; Xiao, S. X.; Nuckolls, C.; Li, H. X. Synthesis and self-assembly of photonic materials from nanocrystalline titania sheets. J. Am. Chem. Soc. 2013, 135, 4719–4721.

    Article  Google Scholar 

  51. Liu, S. W.; Yu, J. G.; Jaroniec, M. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. J. Am. Chem. Soc. 2010, 132, 11914–11916.

    Article  Google Scholar 

  52. Yu, J. X.; Zhang, L.; Huang, B. B.; Liu, H. X. Synthesis of spherical TiO2 made up of high reactive facets of (001). Int. J. Electrochem. Sci. 2013, 8, 5810–5816.

    Google Scholar 

  53. Zhang, D. Q.; Li, G. S.; Wang, H. B.; Chan, K. M.; Yu, J. C. Biocompatible anatase single-crystal photocatalysts with tunable percentage of reactive facets. Cryst. Growth Des. 2010, 10, 1130–1137.

    Article  Google Scholar 

  54. Yu, J. G.; Xiang, Q. J.; Ran, J. R.; Mann, S. One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets. CrystEngComm 2010, 12, 872–879.

    Article  Google Scholar 

  55. Wen, C. Z.; Jiang, H. B.; Qiao, S. Z.; Yang, H. G.; Lu, G. Q. Synthesis of high-reactive facets dominated anatase TiO2. J. Mater. Chem. 2011, 21, 7052–7061.

    Article  Google Scholar 

  56. Zhao, Z.; Sun, Z. C.; Zhao, H. F.; Zheng, M.; Du, P.; Zhao, J. L.; Fan, H. Y. Phase control of hierarchically structured mesoporous anatase TiO2 microspheres covered with {001} facets. J. Mater. Chem. 2012, 22, 21965–21971.

    Article  Google Scholar 

  57. Lee, W. J.; Sung, Y. M. Synthesis of anatase nanosheets with exposed (001) facets via chemical vapor deposition. Cryst. Growth Des. 2012, 12, 5792–5795.

    Article  Google Scholar 

  58. Roy, N.; Sohn, Y.; Pradhan, D. Synergy of low-energy {101} and high-energy {001} TiO2 crystal facets for enhanced photocatalysis. ACS Nano 2013, 7, 2532–2540.

    Article  Google Scholar 

  59. Amano, F.; Yasumoto, T.; Prieto-Mahaney, O. O.; Uchida, S.; Shibayama, T.; Terada, Y.; Ohtani, B. Highly active titania photocatalyst particles of controlled crystal phase, size, and polyhedral shapes. Top Catal. 2010, 53, 455–461.

    Article  Google Scholar 

  60. Amano, F.; Prieto-Mahaney, O. O.; Terada, Y.; Yasumoto, T.; Shibayama, T.; Ohtani, B. Decahedral single-crystalline particles of anatase titanium(IV) oxide with high photocatalytic activity. Chem. Mater. 2009, 21, 2601–2603.

    Article  Google Scholar 

  61. Wu, B. H.; Guo, C. Y.; Zheng, N. F.; Xie, Z. X.; Stucky, G. D. Nonaqueous production of nanostructured anatase with high-energy facets. J. Am. Chem. Soc. 2008, 130, 17563–17567.

    Article  Google Scholar 

  62. Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D.; Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X. W. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc. 2010, 132, 6124–6130.

    Article  Google Scholar 

  63. Wang, C. H.; Zhang, X. T.; Liu, Y. C. Coexistence of an anatase/TiO2(B) heterojunction and an exposed (001) facet in TiO2 nanoribbon photocatalysts synthesized via a fluorinefree route and topotactic transformation. Nanoscale 2014, 6, 5329–5337.

    Article  Google Scholar 

  64. Guo, W.; Zhang, F.; Lin, C.; Wang, Z. L. Direct growth of TiO2 nanosheet arrays on carbon fibers for highly efficient photocatalytic degradation of methyl orange. Adv. Mater. 2012, 24, 4761–4764.

    Article  Google Scholar 

  65. Zhang, P.; Shao, C. L.; Zhang, Z. Y.; Zhang, M. Y.; Mu, J. B.; Guo, Z. C.; Liu, Y. C. TiO2@carbon core/shell nanofibers: Controllable preparation and enhanced visible photocatalytic properties. Nanoscale 2011, 3, 2943–2949.

    Article  Google Scholar 

  66. Tao, Y.; Wu, C. Y.; Mazyck, D. W. Microwave-assisted preparation of TiO2/activated carbon composite photocatalyst for removal of methanol in humid air streams. Ind. Eng. Chem. Res. 2006, 45, 5110–5116.

    Article  Google Scholar 

  67. Li, W.; Bai, Y.; Li, F. J.; Liu, C.; Chan, K. Y.; Feng, X.; Lu, X. H. Core–shell TiO2/C nanofibers as supports for electrocatalytic and synergistic photoelectrocatalytic oxidation of methanol. J. Mater. Chem. 2012, 22, 4025–4031.

    Article  Google Scholar 

  68. Eder, D.; Windle, A. H. Carbon–inorganic hybrid materials: The carbon-nanotube/TiO2 interface. Adv. Mater. 2008, 20, 1787–1793.

    Article  Google Scholar 

  69. Woan, K.; Pyrgiotakis, G.; Sigmund, W. Photocatalytic carbon-nanotube–TiO2 composites. Adv. Mater. 2009, 21, 2233–2239.

    Article  Google Scholar 

  70. Byrappa, K.; Dayananda, A. S.; Sajan, C. P.; Basavalingu, B.; Shayan, M. B.; Soga, K.; Yoshimura, M. Hydrothermal preparation of ZnO:CNT and TiO2:CNT composites and their photocatalytic applications. J. Mater. Sci. 2008, 43, 2348–2355.

    Article  Google Scholar 

  71. Gui, M. M.; Chai, S. P.; Mohamed, A. R. Modification of MWCNT@TiO2 core–shell nanocomposites with transition metal oxide dopants for photoreduction of carbon dioxide into methane. Appl. Surf. Sci. 2014, 319, 37–43.

    Article  Google Scholar 

  72. Li, B. B.; Zhao, Z. B.; Gao, F.; Wang, X. Z.; Qiu, J. S. Mesoporous microspheres composed of carbon-coated TiO2 nanocrystals with exposed {001} facets for improved visible light photocatalytic activity. Appl. Catal. B-Environ. 2014, 147, 958–964.

    Article  Google Scholar 

  73. Yu, X. J.; Liu, J. J.; Yu, Y. C.; Zuo, S. L.; Li, B. S. Preparation and visible light photocatalytic activity of carbon quantum dots/TiO2 nanosheet composites. Carbon 2014, 68, 718–724.

    Article  Google Scholar 

  74. Liao, K. H.; Mittal, A.; Bose, S.; Leighton, C.; Mkhoyan, K. A.; Macosko, C. W. Aqueous only route toward graphene from graphite oxide. ACS Nano 2011, 5, 1253–1258.

    Article  Google Scholar 

  75. Zeller, P.; Dä nhardt, S.; Gsell, S.; Schreck, M.; Wintterlin, J. Scalable synthesis of graphene on single crystal Ir(111) films. Surf. Sci. 2012, 606, 1475–1480.

    Article  Google Scholar 

  76. Yan, Z.; Lin, J.; Peng, Z. W.; Sun, Z. Z.; Zhu, Y.; Li, L.; Xiang, C. S.; Samuel, E. L.; Kittrell, C.; Tour, J. M. Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 2012, 6, 9110–9117.

    Article  Google Scholar 

  77. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  78. Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.

    Google Scholar 

  79. Li, D.; Mü ller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotech. 2008, 3, 101–105.

    Article  Google Scholar 

  80. Zhou, K. F.; Zhu, Y. H.; Yang, X. L.; Jiang, X.; Li, C. Z. Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New J. Chem. 2011, 35, 353–359.

    Article  Google Scholar 

  81. Du, J.; Lai, X. Y.; Yang, N. L.; Zhai, J.; Kisailus, D.; Su, F. B.; Wang, D.; Jiang, L. Hierarchically ordered macro-mesoporous TiO2-graphene composite films: Improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 2011, 5, 590–596.

    Article  Google Scholar 

  82. Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. P25- graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386.

    Article  Google Scholar 

  83. Lee, J. S.; You, K. H.; Park, C. B. Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater. 2012, 24, 1084–1088.

    Article  Google Scholar 

  84. Ng, Y. H.; Lightcap, I. V.; Goodwin, K.; Matsumura, M.; Kamat, P. V. To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films? J. Phys. Chem. Lett. 2010, 1, 2222–2227.

    Article  Google Scholar 

  85. Xiang, Q. J.; Cheng, B.; Yu, J. G. Graphene-based photocatalysts for solar-fuel generation. Angew. Chem., Int. Ed. 2015, 54, 11350–11366.

    Article  Google Scholar 

  86. Wang, W. S.; Wang, D. H.; Qu, W. G.; Lu, L. Q.; Xu, A. W. Large ultrathin anatase TiO2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity. J. Phys. Chem. C 2012, 116, 19893–19901.

    Article  Google Scholar 

  87. Yang, H. G.; Zeng, H. C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B 2004, 108, 3492–3495.

    Article  Google Scholar 

  88. Huang, P. Y.; Kurasch, S.; Srivastava, A.; Skakalova, V.; Kotakoski, J.; Krasheninnikov, A. V.; Hovden, R.; Mao, Q. Y.; Meyer, J. C.; Smet, J. et al. Direct imaging of a twodimensional silica glass on graphene. Nano Lett. 2012, 12, 1081–1086.

    Google Scholar 

  89. Huang, X.; Li, S. Z.; Huang, Y. Z.; Wu, S. X.; Zhou, X. Z.; Li, S. Z.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2011, 2, 292.

    Article  Google Scholar 

  90. Gu, L.; Wang, J. Y.; Cheng, H.; Zhao, Y. Z.; Liu, L. F.; Han, X. J. One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties. ACS Appl. Mater. Interfaces 2013, 5, 3085–3093.

    Article  Google Scholar 

  91. Liu, L. C.; Liu, Z.; Liu, A. N.; Gu, X. R.; Ge, C. Y.; Gao, F.; Dong, L. Engineering the TiO2–graphene interface to enhance photocatalytic H2 production. ChemSusChem 2014, 7, 618–626.

    Article  Google Scholar 

  92. Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale 2011, 3, 3670–3678.

    Article  Google Scholar 

  93. Dai, K.; Lu, L. H.; Liu, Q.; Zhu, G. P.; Liu, Q. Z.; Liu, Z. L. Graphene oxide capturing surface-fluorinated TiO2 nanosheets for advanced photocatalysis and the reveal of synergism reinforce mechanism. Dalton Trans. 2014, 43, 2202–2210.

    Article  Google Scholar 

  94. Kment, S.; Kmentova, H.; Kluson, P.; Krysa, J.; Hubicka, Z.; Cirkva, V.; Gregora, I.; Solcova, O.; Jastrabik, L. Notes on the photo-induced characteristics of transition metal-doped and undoped titanium dioxide thin films. J. Colloid Interface Sci. 2010, 348, 198–205.

    Article  Google Scholar 

  95. Yu, J. G.; Qi, L. F.; Jaroniec, M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. C. 2010, 114, 13118–13125.

    Article  Google Scholar 

  96. Zhu, S. Y.; Liang, S. J.; Gu, Q.; Xie, L. Y.; Wang, J. X.; Ding, Z. X.; Liu, P. Effect of Au supported TiO2 with dominant exposed {001} facets on the visible-light photocatalytic activity. Appl. Catal. B-Environ. 2012, 119–120, 146–155.

    Article  Google Scholar 

  97. Zeng, J.; Zhang, Q.; Chen, J. Y.; Xia, Y. N. A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett. 2010, 10, 30–35.

    Article  Google Scholar 

  98. Long, J. L.; Chang, H. J.; Gu, Q.; Xu, J.; Fan, L. Z.; Wang, S. C.; Zhou, Y. G.; Wei, W.; Huang, L.; Wang, X. X. et al. Gold-plasmon enhanced solar-to-hydrogen conversion on the {001} facets of anatase TiO2 nanosheets. Energy Environ. Sci. 2014, 7, 973–977.

    Article  Google Scholar 

  99. Aslam, M.; Fu, L.; Su, M.; Vijayamohanna, K.; Dravid, V. P. Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles. J. Mater. Chem. 2004, 14, 1795–1797.

    Article  Google Scholar 

  100. Liu, L. C.; Gu, X. R.; Sun, C. Z.; Li, H.; Deng, Y.; Gao, F.; Dong, L. In situ loading of ultra-small Cu2O particles on TiO2 nanosheets to enhance the visible-light photoactivity. Nanoscale 2012, 4, 6351–6359.

    Article  Google Scholar 

  101. Xiang, Q. J.; Yu, J. G.; Wang, W. G.; Jaroniec, M. Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity. Chem. Commun. 2011, 47, 6906–6908.

    Article  Google Scholar 

  102. Liu, L. C.; Ji, Z. Y.; Zou, W. X.; Gu, X. R.; Deng, Y.; Gao, F.; Tang, C. J.; Dong, L. In situ loading transition metal oxide clusters on TiO2 nanosheets as co-catalysts for exceptional high photoactivity. ACS. Catal. 2013, 3, 2052–2061.

    Article  Google Scholar 

  103. Carp, O.; Huisman, C. L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32, 33–177.

    Article  Google Scholar 

  104. Irie, H.; Watanabe, Y.; Hashimoto, K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J. Phys. Chem. B 2003, 107, 5483–5486.

    Article  Google Scholar 

  105. Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T.; Matsumura, M. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. A-Gen. 2004, 265, 115–121.

    Article  Google Scholar 

  106. Lu, N.; Quan, X.; Li, J. Y.; Chen, S.; Yu, H. T.; Chen, G. H. Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. J. Phys. Chem. C 2007, 111, 11836–11842.

    Article  Google Scholar 

  107. Zhou, P.; Wu, J. H.; Yu, W. L.; Zhao, G. H.; Fang, G. J.; Cao, S. W. Vectorial doping-promoting charge transfer in anatase TiO2 {001} surface. Appl. Surf. Sci. 2014, 319, 167–172.

    Article  Google Scholar 

  108. Wang, C.; Hu, Q. Q.; Huang, J. Q.; Zhu, C.; Deng, Z. H.; Shi, H. L.; Wu, L.; Liu, Z. G.; Cao, Y. G. Enhanced hydrogen production by water splitting using Cu-doped TiO2 film with preferred (001) orientation. Appl. Surf. Sci. 2014, 292, 161–164.

    Article  Google Scholar 

  109. Wang, W.; Ni, Y. R.; Lu, C. H.; Xu, Z. Z. Hydrogenation temperature related inner structures and visible-light-driven photocatalysis of N–F co-doped TiO2 nanosheets. Appl. Surf. Sci. 2014, 290, 125–130.

    Article  Google Scholar 

  110. Liu, G.; Yang, H. G.; Wang, X. W.; Cheng, L.; Pan, J.; Lu, G. Q.; Cheng, H. M. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J. Am. Chem. Soc. 2009, 131, 12868–12869.

    Article  Google Scholar 

  111. Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: Synthesis, characterization and visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 2011, 13, 4853–4861.

    Article  Google Scholar 

  112. Wang, W.; Lu, C. H.; Su, M. X.; Ni, Y. R.; Xu, Z. Z. Synthesis, characterization, and nitrogen concentration depended visible-light photoactivity of nitrogen-doped TiO2 nanosheets with dominant (001) facets. Chin. J. Catal. 2012, 33, 629–636.

    Article  Google Scholar 

  113. Wang, B.; Leung, M. K. H.; Lu, X. Y.; Chen, S. Y. Synthesis and photocatalytic activity of boron and fluorine codoped TiO2 nanosheets with reactive facets. Appl. Energy 2013, 112, 1190–1197.

    Article  Google Scholar 

  114. Wang, B.; Lu, X. Y.; Xuan, J.; Leung, M. K. H. Facile synthesis and photocatalytic disinfection of boron self-doped TiO2 nanosheets. Mater. Lett. 2014, 115, 57–59.

    Article  Google Scholar 

  115. Yu, J. G.; Dai, G. P.; Xiang, Q. J.; Jaroniec, M. Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed {001} facets. J. Mater. Chem. 2011, 21, 1049–1057.

    Article  Google Scholar 

  116. Yu, J. G.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 2014, 136, 8839–8842.

    Article  Google Scholar 

  117. Brown, D.; Hitz, H. R.; Schä fer, L. The assessment of the possible inhibitory effect of dyestuffs on aerobic waste-water bacteria experience with a screening test. Chemosphere 1981, 10, 245–261.

    Article  Google Scholar 

  118. Wang, J.; Jiang, Y. F.; Zhang, Z. H.; Zhao, G.; Zhang, G.; Ma, T.; Sun, W. Investigation on the sonocatalytic degradation of congo red catalyzed by nanometer rutile TiO2 powder and various influencing factors. Desalination 2007, 216, 196–208.

    Article  Google Scholar 

  119. Muruganandham, M.; Swaminathan, M. Advanced oxidative decolourisation of reactive yellow 14 azo dye by UV/TiO2, UV/H2O2, UV/H2O2/Fe2+ processes-a comparative study. Sep. Purif. Technol. 2006, 48, 297–303.

    Article  Google Scholar 

  120. Boye, B.; Dieng, M. M.; Brillas, E. Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods. Environ. Sci. Technol. 2002, 36, 3030–3035.

    Article  Google Scholar 

  121. Ince, N. H.; Tezcanlí, G. Reactive dyestuff degradation by combined sonolysis and ozonation. Dyes Pigments 2001, 49, 145–153.

    Article  Google Scholar 

  122. Augugliaro, V.; Bellardita, M.; Loddo, V.; Palmisano, G.; Palmisano, L.; Yurdakal, S. Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J. Photochem. Photobio. C 2012, 13, 224–245.

    Article  Google Scholar 

  123. Kisch, H. Semiconductor photocatalysis—Mechanistic and synthetic aspects. Angew. Chem., Int. Ed. 2013, 52, 812–847.

    Article  Google Scholar 

  124. Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C 2012, 13, 169–189.

    Article  Google Scholar 

  125. Fujishima, A.; Zhang, X. T; Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582.

    Article  Google Scholar 

  126. Yu, X. X.; Yu, J. G.; Cheng, B.; Jaroniec, M. Synthesis of hierarchical flower-like AlOOH and TiO2/AlOOH superstructures and their enhanced photocatalytic properties. J. Phys. Chem. C 2009, 113, 17527–17535.

    Article  Google Scholar 

  127. Jiang, P.; Zhou, J. J.; Fang, H. F.; Wang, C. Y.; Wang, Z. L.; Xie, S. S. Hierarchical shelled ZnO structures made of bunched nanowire arrays. Adv. Funct. Mater. 2007, 17, 1303–1310.

    Article  Google Scholar 

  128. Kim, S.; Choi, W. Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: Demonstrating the existence of a surface-complex-mediated path. J. Phys. Chem. B 2005, 109, 5143–5149.

    Article  Google Scholar 

  129. Yu, J. G.; Dai, G. P.; Huang, B. B. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays. J. Phys. Chem. C 2009, 113, 16394–16401.

    Article  Google Scholar 

  130. Monkhorst, H. J.; Pack, J. D. Special points for brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  131. Xiang, Q. J.; Lv, K. L.; Yu, J. G. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air. Appl. Catal. B-Environ. 2010, 96, 557–564.

    Article  Google Scholar 

  132. Liu, S. W.; Yu, J. G.; Wang, W. G. Effects of annealing on the microstructures and photoactivity of fluorinated N-doped TiO2. Phys. Chem. Chem. Phys. 2010, 12, 12308–12315.

    Article  Google Scholar 

  133. Yu, J. G.; Wang, B. Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Appl. Catal. B-Environ. 2010, 94, 295–302.

    Article  Google Scholar 

  134. Schmidt, C. M.; Buchbinder, A. M.; Weitz, E.; Geiger, F. M. Photochemistry of the indoor air pollutant acetone on Degussa P25 TiO2 studied by chemical ionization mass spectrometry. J. Phys. Chem. A 2007, 111, 13023–13031.

    Article  Google Scholar 

  135. Schmidt, C. M.; Weitz, E.; Geiger, F. M. Interaction of the indoor air pollutant acetone with Degussa P25 TiO2 studied by chemical ionization mass spectrometry. Langmuir 2006, 22, 9642–9650.

    Article  Google Scholar 

  136. Vincent, G.; Marquaire, P. M.; Zahraa, O. Abatement of volatile organic compounds using an annular photocatalytic reactor: Study of gaseous acetone. J. Photochem. Photobiol. A 2008, 197, 177–189.

    Article  Google Scholar 

  137. Lv, K. L.; Xiang, Q. J.; Yu, J. G. Effect of calcination temperature on morphology and photocatalytic activity of anatase TiO2 nanosheets with exposed {001} facets. Appl. Catal. B-Environ. 2011, 104, 275–281.

    Article  Google Scholar 

  138. Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Tunable photocatalytic selectivity of TiO2 films consisted of flower-like microspheres with exposed {001} facets. Chem. Commun. 2011, 47, 4532–4534

    Article  Google Scholar 

  139. Sofianou, M. V.; Psycharis, V.; Boukos, N.; Vaimakis, T.; Yu, J. G.; Dillert, R.; Bahnemann, D.; Trapalis, C. Tuning the photocatalytic selectivity of TiO2 anatase nanoplates by altering the exposed crystal facets content. Appl. Catal. B-Environ. 2013, 142–143, 761–768.

    Article  Google Scholar 

  140. Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. A review and recent developments in photocatalytic watersplitting using TiO2 for hydrogen production. Renew. Sust. Energy Rev. 2007, 11, 401–425.

    Google Scholar 

  141. Xu, Y.; Xu, R. Nickel-based cocatalysts for photocatalytic hydrogen production. Appl. Surf. Sci. 2015, 351, 779–793.

    Article  Google Scholar 

  142. Zhou, P.; Yu, J. G.; Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920–4935.

    Article  Google Scholar 

  143. Qi, L. F.; Yu, J. G.; Jaroniec, M. Preparation and enhanced visible-light photocatalytic H2-production activity of CdSsensitized Pt/TiO2 nanosheets with exposed (001) facets. Phys. Chem. Chem. Phys. 2011, 13, 8915–8923.

    Article  Google Scholar 

  144. Jenkinson, D. S.; Adams, D. E.; Wild, A. Model estimates of CO2 emissions from soil in response to global warming. Nature 1991, 351, 304–306.

    Article  Google Scholar 

  145. Olah, G. A.; Prakash, G. K. S.; Goeppert, A. Anthropogenic chemical carbon cycle for a sustainable future. J. Am. Chem. Soc. 2011, 133, 12881–12898.

    Article  Google Scholar 

  146. Lackner, K. S. A guide to CO2 sequestration. Science 2003, 300, 1677–1678.

    Article  Google Scholar 

  147. Szulczewski, M. L.; MacMinn, C. W.; Herzog, H. J.; Juanes, R. Lifetime of carbon capture and storage as a climatechange mitigation technology. Proc. Natl. Acad. Sci. USA 2012, 109, 5185–5189.

    Article  Google Scholar 

  148. Omae, I. Recent developments in carbon dioxide utilization for the production of organic chemicals. Coord. Chem. Rev. 2012, 256, 1384–1405.

    Article  Google Scholar 

  149. Yuan, L.; Xu, Y. J. Photocatalytic conversion of CO2 into value-added and renewable fuels. Appl. Surf. Sci. 2015, 342, 154–167.

    Article  Google Scholar 

  150. Marszewski, M.; Cao, S. W.; Yu, J. G.; Jaroniec, M. Semiconductor-based photocatalytic CO2 conversion. Mater. Horiz. 2015, 2, 261–278.

    Article  Google Scholar 

  151. Li, X.; Wen, J. Q.; Low, J. X.; Fang, Y. P.; Yu, J. G. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 2014, 57, 70–100.

    Article  Google Scholar 

  152. Chen, L.; Graham, M. E.; Li, G. H.; Gentner, D. R.; Dimitrijevic, N. M.; Gray, K. A. Photoreduction of CO2 by TiO2 nanocomposites synthesized through reactive direct current magnetron sputter deposition. Thin Solid Films 2009, 517, 5641–5645.

    Article  Google Scholar 

  153. Li, G. H.; Ciston, S.; Saponjic, Z. V.; Chen, L.; Dimitrijevic, N. M.; Rajh, T.; Gray, K. A. Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications. J. Catal. 2008, 253, 105–110.

    Article  Google Scholar 

  154. Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H. Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci. 2012, 5, 9217–9233.

    Article  Google Scholar 

  155. Anop, M.; Yamashita, H.; Ichihashi, Y.; Fujii, Y.; Honda, M. Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt. J. Phys. Chem. B 1997, 101, 2632–2636.

    Article  Google Scholar 

  156. Xu, Q. L.; Yu, J. G.; Zhang, J.; Zhang, J. F.; Liu, G. Cubic anatase TiO2 nanocrystals with enhanced photocatalytic CO2 reduction activity. Chem. Commun. 2015, 51, 7950–7953.

    Article  Google Scholar 

  157. Wang, H. X.; Bell, J.; Desilvestro, J.; Bertoz, M.; Evans, G. Effect of inorganic iodides on performance of dye-sensitized solar cells. J. Phys. Chem. C 2007, 111, 15125–15131.

    Article  Google Scholar 

  158. Wang, H. X.; Liu, M. N.; Yan, C.; Bell, J. Reduced electron recombination of dye-sensitized solar cells based on TiO2 spheres consisting of ultrathin nanosheets with [001]_facet exposed. Beilstein J. Nanotechnol. 2012, 3, 378–387.

    Article  Google Scholar 

  159. Fan, J. J.; Liu, S. W.; Yu, J. G. Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films. J. Mater. Chem. 2012, 22, 17027–17036.

    Article  Google Scholar 

  160. Zhang, H. M.; Han, Y. H.; Liu, X. L.; Liu, P. R.; Yu, H.; Zhang, S. Q.; Yao, X. D.; Zhao, H. J. Anatase TiO2 microspheres with exposed mirror-like plane {001} facets for high performance dye-sensitized solar cells (DSSCs). Chem. Commun. 2010, 46, 8395–8397.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaguo Yu or Shaowen Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajan, C.P., Wageh, S., Al-Ghamdi, A.A. et al. TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res. 9, 3–27 (2016). https://doi.org/10.1007/s12274-015-0919-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0919-3

Keywords

Navigation