Skip to main content

Advertisement

Log in

Designing Catalysts for Tomorrow’s Environmentally Benign Processes

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

After first recalling some of the key challenges involved in meeting the demands for energy and chemicals by 2050, brief accounts are given of (a) the present scene in water oxidation photocatalysis with particular reference to TiO2 and other oxides possessing the appropriate band gap and (b) of band structure engineering of semiconductors for enhanced photoelectrochemical water splitting. The photochemical possibilities of metal–organic frameworks are then briefly outlined as are (c) some of the solids (mainly TiO2) for the destruction of pollutants and other substances that are environmentally aggressive. Solar-cavity receivers for the catalytic (thermochemical) conversion of CO2 to CO and H2O to H2 are then considered. The principal feature of this article is an analysis, with specific examples, of some existing catalysts that are likely to prove difficult to replace. Biorefineries for producing transportation fuels and bulk chemicals are then considered. The article concludes with the prospects for the design of new catalysts and, in particular, with the fertility of the concept of single-site heterogeneous catalysts in both thermal and photochemical contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lewis NS (2007) MRS Bull 32:809

    Article  Google Scholar 

  2. Nocera DG (2012) Acc Chem Res 45:767

    Article  CAS  Google Scholar 

  3. MacKay DJC (2013) Philos Trans R Soc 20110431

  4. Population growth is not a problem. Dr. H. Rosling of Karolinska Institute, Stockholm (May 2012) pointed out this fact. He also mentioned the decreasing birth rates in Africa, Asia, S. America, and the 5-fold increase in consumers (in the middle classes) in the forthcoming decades with concomitant increases in demand for clean water and energy

  5. Backvall JE (2003) Modern oxidation methods. Wiley-VCH, Weinheim

    Google Scholar 

  6. Clayden J, Greeves N, Warren S, Wothers P (2001) Organic chemistry. Oxford University Press, Oxford

    Google Scholar 

  7. Thomas JM, Raja R, Sankar G, Bell RG (1999) Nature 398:227

    Article  CAS  Google Scholar 

  8. Raja R, Thomas JM (2006) Solid State Sci 8:321

    Article  Google Scholar 

  9. Thomas JM, Raja R (2006) Catal Today 117:22

    Article  CAS  Google Scholar 

  10. Lee SO, Raja R, Harris KDM, Thomas JM, Johnson BFG, Sankar G (2003) Angew Chem Int Ed 42:1520

    Article  CAS  Google Scholar 

  11. Raja R, Thomas JM, Xu M, Harris KDM, Greenhill-Hooper M, Quill K (2006) Chem Commun 448

  12. Greenhill-Hooper MJ, Raja R, Thomas JM, Intl. Publ. No. WO 2006/043075 AI

  13. Centi G et al this volume

  14. Gangeri M, Centi G, Schlögl R et al (2009) Catal Today 143:57

    Article  CAS  Google Scholar 

  15. Mi Q et al (2012) J Am Chem Soc B4:18318

    Article  Google Scholar 

  16. Youngblood WJ, Hyun S, Lee A, Maeda K, Mallouk T (2009) Acc Chem Res 42:1966

    Article  CAS  Google Scholar 

  17. Harriman A, ref 3 p 20114015

  18. Hu XL (2012) Angew Chem Int Ed 51:12410

    Article  CAS  Google Scholar 

  19. Soriano-Lopez J, Galan-Mascaros JR (2013) Inorg Chem 52:4743

    Article  Google Scholar 

  20. Regishi N, Iyoda T, Hashimoto K, Fajishima A (1995) Chem Lett 841

  21. Anpo M (2003) J Catal 216:505

    Article  CAS  Google Scholar 

  22. Kitano M, Takeuchi M, Matsuoka M, Thomas JM, Anpo M (2007) Catal Today 120:133

    Article  CAS  Google Scholar 

  23. Bak T, Nowotny J, Rekas M, Sorrell CC (2002) J Hydrogen Energy 27:991

    Article  CAS  Google Scholar 

  24. Yin W-J, Yan Y et al (2010) Phys Rev B 82:045106

    Article  Google Scholar 

  25. Tong H, Yan Y et al (2012) J Appl Phys 111:07350

    Google Scholar 

  26. Cho IS, Zhang X et al (2013) Nat Commun 4:1723

    Article  Google Scholar 

  27. Horiuchi Y, Matsuoka M, Anpo M (2013) Phys Chem Chem Phys 15:1324

    Article  Google Scholar 

  28. Wang JL, Lin W et al (2012) ACS Catal 2:2630

    Article  CAS  Google Scholar 

  29. Kent CA, Papaniholas JM, Meir TJ et al (2011) J Am Chem Soc 132:12767

    Article  Google Scholar 

  30. Che M, Mori K, Yamashita S (2012) Proc R Soc A 468:2099

    Article  Google Scholar 

  31. Anpo M, Thomas JM (2006) Chem Commun 3273

  32. Thomas JM, Raja R (2006) Top Catal 40:3

    Article  CAS  Google Scholar 

  33. Thomas JM (2012) Design and applications of single-site heterogeneous catalysis: contributions to green chemistry, clean technology and sustainability. Imperial College Press, London

    Google Scholar 

  34. Thomas JM (2014) Phys Chem Chem Phys 16:7647

    Article  CAS  Google Scholar 

  35. Thomas JM, Thomas WJ (1997) Principles and practice of heterogeneous catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  36. Chueh WC, Haile SM (2009) Chem Sus Chem 2:735

    Article  CAS  Google Scholar 

  37. Chueh WC, Falter C, Abbott M, Seipio D, Furler P, Haile SM, Steinfeld A (2010) Science 330:1797

    Article  CAS  Google Scholar 

  38. Thomas JM (2014) Chem Sus Chem (in press)

  39. Thomas JM (2014) Energy Environ Sci 7:19

    Article  CAS  Google Scholar 

  40. Thomas JM, Thomas WJ (2014) Principles and practice of Heterogeneous catalysis, 2nd edn, Wiley-VCH, Weinheim

  41. Wang D, Osmundsen CM, Taarning E, Dumesic JA (2013) Chem Cat Chem 5:2044

    CAS  Google Scholar 

  42. Shiramizu M, Toste TD (2011) Chem Eur J 17:12452

    Article  CAS  Google Scholar 

  43. Jia CJ, Schüth F (2009) J Catal 225:71

    Google Scholar 

  44. Raja R, Thomas JM, US Patent 8,450,526B2, 28 May 2013

  45. Levy AB, Raja R, Polter ME, Intl Publication No. WO2013/063244A1 (2 May 2013)

  46. Alper H, Stephanopoulos G (2011) Nat Rev Microbiol 8:715

    Google Scholar 

  47. Bastian S, Arnold FH et al (2011) Metab Eng 13:345

    Article  CAS  Google Scholar 

  48. Keasling JD (2010) Science 330:1355

    Article  CAS  Google Scholar 

  49. U.S. Patent, 8,193,402B2, 5 June 2012

  50. U.S. Patent, 8,450,543B2, 28 May 2012

  51. Bokinsky G, Keasling JD et al (2011) PNAS 108:19949

    Article  CAS  Google Scholar 

  52. Thomas JM, Raja R (2005) PNAS 102:13732

    Article  CAS  Google Scholar 

  53. Maschmeyer T, Rey F, Sankar G, Thomas JM (1995) Nature 378:159

    Article  CAS  Google Scholar 

  54. Leithall RM, Shetti VN, Maurelli S, Chiesa M, Gianotti E, Raja R (2013) J Am Chem Soc 135:2915

    Article  CAS  Google Scholar 

  55. Thomas JM, Hernandez-Garrido JC, Bell RG (2009) Top Catal 52:1630—see also ref 9 above

Download references

Acknowledgments

I am grateful to R. G. Grasselli, G. Centi, J. A. Lercher, A. Harriman, P. P. Edwards, K. D. M. Harris, R. Raja, S. M. Haile, R. Schlögl, J. D. Keasling and T. Maschmeyer for stimulating discussions and to Nathan Pitt and Linda Webb for invaluable assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Meurig Thomas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, J.M. Designing Catalysts for Tomorrow’s Environmentally Benign Processes. Top Catal 57, 1115–1123 (2014). https://doi.org/10.1007/s11244-014-0279-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0279-3

Keywords

Navigation