Skip to main content

Advertisement

Log in

Advances in Glycolysis Metabolism of Atherosclerosis

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Glycolysis is an important way for various cells such as vascular wall endothelial cells, smooth muscle cells, macrophages, and other cells to obtain energy. In pathological conditions, it can participate in the process of AS by regulating lipid deposition, calcification, angiogenesis in plaques, etc., together with its metabolite lactic acid. Recent studies have shown that lactate-related lactylation modifications are ubiquitous in the human proteome and are involved in the regulation of various inflammatory diseases. Combined with the distribution and metabolic characteristics of cells in the plaque in the process of AS, glycolysis-lactate-lactylation modification may be a new entry point for targeted intervention in atherosclerosis in the future. Therefore, this article intends to elaborate on the role and mechanism of glycolysis-lactate-lactylation modification in AS, as well as the opportunities and challenges in targeted therapy, hoping to bring some help to relevant scholars in this field.

Graphical Abstract

In atherosclerosis, glycolysis, lactate, and lactylation modification as a metabolic sequence affect the functions of macrophages, smooth muscle cells, endothelial cells, lymphocytes, and other cells and interfere with processes such as vascular calcification and intraplaque neovascularization to influence the progression of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AS:

Atherosclerosis

ABCA1:

ATP-binding cassette transporter A1

ECs:

Endothelial cells

ECM:

Extracellular matrix

HK2:

Hexokinase 2

HIF-1α:

Hypoxia-inducible factor-1α

HDL:

High-density lipoprotein

IL-6:

Interleukin-6

IL-17:

Interleukin-17

IL-1β:

Interleukin-1β

GPR81:

G protein-coupled receptor 81

LDHA:

Lactate dehydrogenase A

MCA:

Metabolic control analysis

MCT:

Monocarboxylate transporter

NDRG:

N-Myc downstream-regulated gene

NF-κB:

Nuclear factor-kappa B

OSS:

Oscillatory shear stress

oxLDL:

Oxidized low-density lipoprotein

PKM2:

Pyruvate kinase isozyme typeM2

PDGF:

Platelet-derived growth factor

PFK-1:

Phosphofructokinase 1

PDH:

Pyruvate dehydrogenase

PKB/Akt:

Protein kinase B

PRKA/AMPK:

Protein kinase AMP-activated; AMP-activated protein kinases

STAT3:

Signal transducer and activator of transcription 3

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor-α

VSMCs:

Vascular smooth muscle cells

VCAM-1:

Vascular cell adhesion molecule-1

VEGF:

Vascular endothelial growth factor

References

  1. Fan J, Watanabe T. Atherosclerosis: known and unknown. Pathol Int. 2022;72(3):151–60. https://doi.org/10.1111/pin.13202.

    Article  PubMed  Google Scholar 

  2. Xiangdong L, et al. Animal models for the atherosclerosis research: a review. Protein Cell. 2011;2(3):189–201. https://doi.org/10.1007/s13238-011-1016-3.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Öörni K, et al. Acidification of the intimal fluid: the perfect storm for atherogenesis. J Lipid Res. 2015;56(2):203–14. https://doi.org/10.1194/jlr.R050252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van Tuijl J, et al. Immunometabolism orchestrates training of innate immunity in atherosclerosis. Cardiovasc Res. 2019;115(9):1416–24. https://doi.org/10.1093/cvr/cvz107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Foks AC, Bot I. Preface: pathology and pharmacology of atherosclerosis. Eur J Pharmacol. 2017;816:1–2. https://doi.org/10.1016/j.ejphar.2017.10.052.

    Article  CAS  PubMed  Google Scholar 

  6. Costopoulos C, Liew TV, Bennett M. Ageing and atherosclerosis: mechanisms and therapeutic options. Biochem Pharmacol. 2008;75(6):1251–61. https://pubmed.ncbi.nlm.nih.gov/18035332. Accessed 06 Oct 2021.

    Article  CAS  PubMed  Google Scholar 

  7. Lusis AJ. Atherosclerosis. Nature. 2000;407(6801):233–41. https://pubmed.ncbi.nlm.nih.gov/11001066. Accessed 30 Sept 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Libby P, et al. Atherosclerosis. Nat Rev Dis Primers. 2019;5(1):56. https://doi.org/10.1038/s41572-019-0106-z.

    Article  PubMed  Google Scholar 

  9. Libby P. The changing landscape of atherosclerosis. Nature. 2021;592(7855):524–33. https://doi.org/10.1038/s41586-021-03392-8.

    Article  CAS  PubMed  Google Scholar 

  10. Palsson-McDermott EM, O’Neill LAJ. The Warburg effect then and now: from cancer to inflammatory diseases. BioEssays. 2013;35(11):965–73. https://doi.org/10.1002/bies.201300084.

    Article  CAS  PubMed  Google Scholar 

  11. De Bock K, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154(3):651–63. https://doi.org/10.1016/j.cell.2013.06.037.

    Article  CAS  PubMed  Google Scholar 

  12. Butler TM, Siegman MJ. High-energy phosphate metabolism in vascular smooth muscle. Annu Rev Physiol. 1985;47:629–43. https://pubmed.ncbi.nlm.nih.gov/3158271. Accessed 15 Mar 2022.

    Article  CAS  PubMed  Google Scholar 

  13. Shi J, et al. Metabolism of vascular smooth muscle cells in vascular diseases. Am J Physiol Heart Circ Physiol. 2020;319(3):H613–31. https://doi.org/10.1152/ajpheart.00220.2020.

    Article  CAS  PubMed  Google Scholar 

  14. Park HY, et al. Inhibitory effect of a glutamine antagonist on proliferation and migration of VSMCs via simultaneous attenuation of glycolysis and oxidative phosphorylation. Int J Mol Sci. 2021;22(11). https://doi.org/10.3390/ijms22115602.

  15. O’Neill LAJ, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature. 2013;493(7432):346–55. https://doi.org/10.1038/nature11862.

    Article  CAS  PubMed  Google Scholar 

  16. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14. https://pubmed.ncbi.nlm.nih.gov/13298683. Accessed 22 Jan 2022.

    Article  CAS  PubMed  Google Scholar 

  17. Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64. https://doi.org/10.1146/annurev-cellbio-092910-154237.

    Article  CAS  PubMed  Google Scholar 

  18. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33. https://doi.org/10.1126/science.1160809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing pathways. Science. 2001;292(5516):504–7. https://pubmed.ncbi.nlm.nih.gov/11283355. Accessed 30 Jan 2022.

    Article  CAS  PubMed  Google Scholar 

  20. Chen Z, et al. Involvement of the Warburg effect in non-tumor diseases processes. J Cell Physiol. 2018;233(4):2839–49. https://doi.org/10.1002/jcp.25998.

    Article  CAS  PubMed  Google Scholar 

  21. Yamashita A, et al. Increased metabolite levels of glycolysis and pentose phosphate pathway in rabbit atherosclerotic arteries and hypoxic macrophage. PLoS ONE. 2014;9(1):e86426. https://doi.org/10.1371/journal.pone.0086426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sarrazy V, et al. Disruption of Glut1 in hematopoietic stem cells prevents myelopoiesis and enhanced glucose flux in atheromatous plaques of ApoE(-/-) mice. Circ Res. 2016;118(7):1062–77. https://doi.org/10.1161/CIRCRESAHA.115.307599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu Y, et al. Endothelial PFKFB3 plays a critical role in angiogenesis. Arterioscler Thromb Vasc Biol. 2014;34(6):1231–9. https://doi.org/10.1161/ATVBAHA.113.303041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu RH, et al. miR-143 is involved in endothelial cell dysfunction through suppression of glycolysis and correlated with atherosclerotic plaques formation. Eur Rev Med Pharmacol Sci. 2016;20(19):4063–71. https://pubmed.ncbi.nlm.nih.gov/27775792. Accessed Feb 2022.

    PubMed  Google Scholar 

  25. Yang Q, et al. PRKAA1/AMPKα1-driven glycolysis in endothelial cells exposed to disturbed flow protects against atherosclerosis. Nat Commun. 2018;9(1):4667. https://doi.org/10.1038/s41467-018-07132-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schoors S, et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 2014;19(1):37–48. https://doi.org/10.1016/j.cmet.2013.11.008.

    Article  CAS  PubMed  Google Scholar 

  27. Wang R, et al. Mechanism overview and target mining of atherosclerosis: endothelial cell injury in atherosclerosis is regulated by glycolysis (review). Int J Mol Med. 2021;47(1):65–76. https://doi.org/10.3892/ijmm.2020.4798.

    Article  CAS  PubMed  Google Scholar 

  28. Wolf D, Ley K. Immunity and inflammation in atherosclerosis. Circ Res. 2019;124(2):315–27. https://doi.org/10.1161/CIRCRESAHA.118.313591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rayner KJ, et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Investig. 2011;121(7):2921–31. https://doi.org/10.1172/JCI57275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ouimet M, et al. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Investig. 2015;125(12):4334–48. https://doi.org/10.1172/JCI81676.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Maedler K, et al. Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J Clin Investig. 2017;127(4):1589. https://doi.org/10.1172/JCI92172.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kirii H, et al. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2003;23(4):656–60. https://pubmed.ncbi.nlm.nih.gov/12615675. Accessed Jan 2022.

    Article  CAS  PubMed  Google Scholar 

  33. Shi LZ, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med. 2011;208(7):1367–76. https://doi.org/10.1084/jem.20110278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bekkering S, et al. Innate immune cell activation and epigenetic remodeling in symptomatic and asymptomatic atherosclerosis in humans in vivo. Atherosclerosis. 2016;254:228–36. https://doi.org/10.1016/j.atherosclerosis.2016.10.019.

    Article  CAS  PubMed  Google Scholar 

  35. Shirai T, et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med. 2016;213(3):337–54. https://doi.org/10.1084/jem.20150900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schnitzler JG, et al. Atherogenic lipoprotein(a) increases vascular glycolysis, thereby facilitating inflammation and leukocyte extravasation. Circ Res. 2020;126(10):1346–59. https://doi.org/10.1161/CIRCRESAHA.119.316206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Basatemur GL, et al. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 2019;16(12):727–44. https://doi.org/10.1038/s41569-019-0227-9.

    Article  PubMed  Google Scholar 

  38. Chappell J, et al. Extensive proliferation of a subset of differentiated, yet plastic, medial vascular smooth muscle cells contributes to neointimal formation in mouse injury and atherosclerosis models. Circ Res. 2016;119(12):1313–23. https://pubmed.ncbi.nlm.nih.gov/27682618. Accessed Jan 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Werle M, et al. Metabolic control analysis of the Warburg-effect in proliferating vascular smooth muscle cells. J Biomed Sci. 2005;12(5):827–34. https://pubmed.ncbi.nlm.nih.gov/16205843. Accessed 10 Feb 2022.

    Article  CAS  PubMed  Google Scholar 

  40. Kim J-H, et al. Lactate dehydrogenase-A is indispensable for vascular smooth muscle cell proliferation and migration. Biochem Biophys Res Commun. 2017;492(1):41–7. https://doi.org/10.1016/j.bbrc.2017.08.041.

    Article  CAS  PubMed  Google Scholar 

  41. Heiss EH, et al. Increased aerobic glycolysis is important for the motility of activated VSMC and inhibited by indirubin-3’-monoxime. Vasc Pharmacol. 2016;83:47–56. https://doi.org/10.1016/j.vph.2016.05.002.

    Article  CAS  Google Scholar 

  42. Zhao X, et al. PKM2-dependent glycolysis promotes the proliferation and migration of vascular smooth muscle cells during atherosclerosis. Acta Biochim Biophys Sin. 2020;52(1). https://doi.org/10.1093/abbs/gmz135.

  43. Cristescu ME, et al. D- and L-lactate dehydrogenases during invertebrate evolution. BMC Evol Biol. 2008;8:268. https://doi.org/10.1186/1471-2148-8-268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma L-N, et al. Lactic acid: a novel signaling molecule in early pregnancy? Front Immunol. 2020;11:279. https://doi.org/10.3389/fimmu.2020.00279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marchiq I, Pouysségur J. Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H(+) symporters. J Mol Med. 2016;94(2):155–71. https://doi.org/10.1007/s00109-015-1307-x.

    Article  CAS  PubMed  Google Scholar 

  46. van Hall G, et al. Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab. 2009;29(6):1121–9. https://doi.org/10.1038/jcbfm.2009.35.

    Article  CAS  PubMed  Google Scholar 

  47. Certo M, et al. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol. 2021;21(3):151–61. https://doi.org/10.1038/s41577-020-0406-2.

    Article  CAS  PubMed  Google Scholar 

  48. Matsushita K, et al. The association of plasma lactate with incident cardiovascular outcomes: the ARIC Study. Am J Epidemiol. 2013;178(3):401–9. https://doi.org/10.1093/aje/kwt002.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Crawford SO, et al. Association of blood lactate with type 2 diabetes: the Atherosclerosis Risk in Communities Carotid MRI Study. Int J Epidemiol. 2010;39(6):1647–55. https://doi.org/10.1093/ije/dyq126.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shantha GPS, et al. Association of blood lactate with carotid atherosclerosis: the Atherosclerosis Risk in Communities (ARIC) Carotid MRI Study. Atherosclerosis. 2013;228(1):249–55. https://doi.org/10.1016/j.atherosclerosis.2013.02.014.

    Article  CAS  PubMed  Google Scholar 

  51. Khazaei M, Nematbakhsh M. Effect of experimentally induced metabolic acidosis on aortic endothelial permeability and serum nitric oxide concentration in normal and high-cholesterol fed rabbits. Arch Med Sci. 2012;8(4):719–23. https://doi.org/10.5114/aoms.2012.30296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ivashkiv LB. The hypoxia-lactate axis tempers inflammation. Nat Rev Immunol. 2020;20(2):85–6. https://doi.org/10.1038/s41577-019-0259-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang L, et al. Lactate promotes synthetic phenotype in vascular smooth muscle cells. Circ Res. 2017;121(11):1251–62. https://doi.org/10.1161/CIRCRESAHA.117.311819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Naghavi M, et al. pH heterogeneity of human and rabbit atherosclerotic plaques; a new insight into detection of vulnerable plaque. Atherosclerosis. 2002;164(1):27–35. https://pubmed.ncbi.nlm.nih.gov/12119190. Accessed 12 Feb 2022.

    Article  CAS  PubMed  Google Scholar 

  55. Lähdesmäki K, et al. Acidity and lipolysis by group V secreted phospholipase A(2) strongly increase the binding of apoB-100-containing lipoproteins to human aortic proteoglycans. Biochim Biophys Acta. 2012;1821(2):257–67. https://doi.org/10.1016/j.bbalip.2011.10.014.

    Article  CAS  PubMed  Google Scholar 

  56. Sneck M, Kovanen PT, Oörni K. Decrease in pH strongly enhances binding of native, proteolyzed, lipolyzed, and oxidized low density lipoprotein particles to human aortic proteoglycans. J Biol Chem. 2005;280(45):37449–54. https://pubmed.ncbi.nlm.nih.gov/16147996. Accessed 02 Mar 2022.

    Article  CAS  PubMed  Google Scholar 

  57. Leake DS. Does an acidic pH explain why low density lipoprotein is oxidised in atherosclerotic lesions? Atherosclerosis. 1997;129(2):149–57. https://pubmed.ncbi.nlm.nih.gov/9105556. Accessed 16 Feb 2022.

    Article  CAS  PubMed  Google Scholar 

  58. Plihtari R, Kovanen PT, Öörni K. Acidity increases the uptake of native LDL by human monocyte-derived macrophages. Atherosclerosis. 2011;217(2):401–6. https://doi.org/10.1016/j.atherosclerosis.2011.04.013.

    Article  CAS  PubMed  Google Scholar 

  59. Lee-Rueckert M, et al. Acidic extracellular environments strongly impair ABCA1-mediated cholesterol efflux from human macrophage foam cells. Arterioscler Thromb Vasc Biol. 2010;30(9):1766–72. https://doi.org/10.1161/ATVBAHA.110.211276.

    Article  CAS  PubMed  Google Scholar 

  60. Vedhachalam C, et al. The C-terminal lipid-binding domain of apolipoprotein E is a highly efficient mediator of ABCA1-dependent cholesterol efflux that promotes the assembly of high-density lipoproteins. Biochemistry. 2007;46(10):2583–93. https://pubmed.ncbi.nlm.nih.gov/17305370. Accessed 16 Feb 2022.

    Article  CAS  PubMed  Google Scholar 

  61. Navab M, et al. HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat Rev Cardiol. 2011;8(4):222–32. https://doi.org/10.1038/nrcardio.2010.222.

    Article  CAS  PubMed  Google Scholar 

  62. Nguyen SD, et al. Spontaneous remodeling of HDL particles at acidic pH enhances their capacity to induce cholesterol efflux from human macrophage foam cells. J Lipid Res. 2012;53(10):2115–25. https://doi.org/10.1194/jlr.M028118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee-Rueckert M, Kovanen PT. Extracellular modifications of HDL in vivo and the emerging concept of proteolytic inactivation of preβ-HDL. Curr Opin Lipidol. 2011;22(5):394–402. https://doi.org/10.1097/MOL.0b013e32834a3d24.

    Article  CAS  PubMed  Google Scholar 

  64. Pucino V, et al. Lactate at the crossroads of metabolism, inflammation, and autoimmunity. Eur J Immunol. 2017;47(1):14–21. https://doi.org/10.1002/eji.201646477.

    Article  CAS  PubMed  Google Scholar 

  65. Ratter JM, et al. In vitro and in vivo effects of lactate on metabolism and cytokine production of human primary PBMCs and monocytes. Front Immunol. 2018;9:2564. https://doi.org/10.3389/fimmu.2018.02564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Manoharan I, et al. Lactate-dependent regulation of immune responses by dendritic cells and macrophages. Front Immunol. 2021;12:691134. https://doi.org/10.3389/fimmu.2021.691134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Manosalva C, et al. Role of lactate in inflammatory processes: friend or foe. Front Immunol. 2021;12:808799. https://doi.org/10.3389/fimmu.2021.808799.

    Article  CAS  PubMed  Google Scholar 

  68. Zhao Y, et al. Role of PI3K in the progression and regression of atherosclerosis. Front Pharmacol. 2021;12:632378. https://doi.org/10.3389/fphar.2021.632378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Végran F, et al. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011;71(7):2550–60. https://doi.org/10.1158/0008-5472.CAN-10-2828.

    Article  PubMed  Google Scholar 

  70. Khatib-Massalha E, et al. Lactate released by inflammatory bone marrow neutrophils induces their mobilization via endothelial GPR81 signaling. Nat Commun. 2020;11(1):3547. https://doi.org/10.1038/s41467-020-17402-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sun Z, et al. Activation of GPR81 by lactate inhibits oscillatory shear stress-induced endothelial inflammation by activating the expression of KLF2. IUBMB Life. 2019;71(12):2010–9. https://doi.org/10.1002/iub.2151.

    Article  CAS  PubMed  Google Scholar 

  72. Haas R, et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol. 2015;13(7):e1002202. https://doi.org/10.1371/journal.pbio.1002202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen A-N, et al. Lactylation, a novel metabolic reprogramming code: current status and prospects. Front Immunol. 2021;12:688910. https://doi.org/10.3389/fimmu.2021.688910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145(3):341–55. https://doi.org/10.1016/j.cell.2011.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xu H, et al. Vascular macrophages in atherosclerosis. J Immunol Res. 2019;2019:4354786. https://doi.org/10.1155/2019/4354786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hoque R, et al. Lactate reduces liver and pancreatic injury in Toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology. 2014;146(7):1763–74. https://doi.org/10.1053/j.gastro.2014.03.014.

    Article  CAS  PubMed  Google Scholar 

  77. Yang K, et al. Lactate suppresses macrophage pro-inflammatory response to LPS stimulation by inhibition of YAP and NF-κB activation GPR81-mediated signaling. Front Immunol. 2020;11:587913. https://doi.org/10.3389/fimmu.2020.587913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bohn T, et al. Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat Immunol. 2018;19(12):1319–29. https://doi.org/10.1038/s41590-018-0226-8.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang W, et al. Lactate is a natural suppressor of RLR signaling by targeting MAVS. Cell. 2019;178(1). https://doi.org/10.1016/j.cell.2019.05.003.

  80. Bidani A, et al. Evidence for pH sensitivity of tumor necrosis factor-alpha release by alveolar macrophages. Lung. 1998;176(2):111–21. https://pubmed.ncbi.nlm.nih.gov/9500296. Accessed Jan 2022.

    Article  CAS  PubMed  Google Scholar 

  81. Colegio OR, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 2014;513(7519):559–63. https://doi.org/10.1038/nature13490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu N, et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression. J Clin Investig. 2019;129(2):631–46. https://doi.org/10.1172/JCI123027.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lee DC, et al. A lactate-induced response to hypoxia. Cell. 2015;161(3):595–609. https://doi.org/10.1016/j.cell.2015.03.011.

    Article  CAS  PubMed  Google Scholar 

  84. Camaré C, et al. Angiogenesis in the atherosclerotic plaque. Redox Biol. 2017;12:18–34. https://doi.org/10.1016/j.redox.2017.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. van den Oord SCH, et al. Assessment of carotid atherosclerosis, intraplaque neovascularization, and plaque ulceration using quantitative contrast-enhanced ultrasound in asymptomatic patients with diabetes mellitus. Eur Heart J Cardiovasc Imaging. 2014;15(11):1213–8. https://doi.org/10.1093/ehjci/jeu127.

    Article  PubMed  Google Scholar 

  86. Eilken HM, Adams RH. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol. 2010;22(5):617–25. https://doi.org/10.1016/j.ceb.2010.08.010.

    Article  CAS  PubMed  Google Scholar 

  87. Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol Ther. 2020;206:107451. https://doi.org/10.1016/j.pharmthera.2019.107451.

    Article  CAS  PubMed  Google Scholar 

  88. Doherty J, Baehrecke EH. Life, death and autophagy. Nat Cell Biol. 2018;20(10):1110–7. https://doi.org/10.1038/s41556-018-0201-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhao Y, et al. Mitophagy contributes to the pathogenesis of inflammatory diseases. Inflammation. 2018;41(5):1590–600. https://doi.org/10.1007/s10753-018-0835-2.

    Article  CAS  PubMed  Google Scholar 

  90. Rikka S, et al. Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ. 2011;18(4):721–31. https://doi.org/10.1038/cdd.2010.146.

    Article  CAS  PubMed  Google Scholar 

  91. Zhu Y, et al. Lactate accelerates calcification in VSMCs through suppression of BNIP3-mediated mitophagy. Cell Signal. 2019;58:53–64. https://doi.org/10.1016/j.cellsig.2019.03.006.

    Article  CAS  PubMed  Google Scholar 

  92. Zhu Y, et al. Lactate accelerates vascular calcification through NR4A1-regulated mitochondrial fission and BNIP3-related mitophagy. Apoptosis. 2020;25(5–6):321–40. https://doi.org/10.1007/s10495-020-01592-7.

    Article  CAS  PubMed  Google Scholar 

  93. Wu Y, et al. Lactate induces osteoblast differentiation by stabilization of HIF1α. Mol Cell Endocrinol. 2017;452:84–92. https://doi.org/10.1016/j.mce.2017.05.017.

    Article  CAS  PubMed  Google Scholar 

  94. Nomoto H, et al. Activation of the HIF1α/PFKFB3 stress response pathway in beta cells in type 1 diabetes. Diabetologia. 2020;63(1):149–61. https://doi.org/10.1007/s00125-019-05030-5.

    Article  CAS  PubMed  Google Scholar 

  95. Niu J, et al. κ-opioid receptor stimulation alleviates rat vascular smooth muscle cell calcification via PFKFB3-lactate signaling. Aging. 2021;13(10):14355–71. https://doi.org/10.18632/aging.203050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xu S, et al. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics. Pharmacol Ther. 2019;196:15–43. https://doi.org/10.1016/j.pharmthera.2018.11.003.

    Article  CAS  PubMed  Google Scholar 

  97. Zhang D, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574(7779):575–80. https://doi.org/10.1038/s41586-019-1678-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Genders AJ, et al. A physiological drop in pH decreases mitochondrial respiration, and HDAC and Akt signaling, in L6 myocytes. Am J Physiol Cell Physiol. 2019;316(3):C404–14. https://doi.org/10.1152/ajpcell.00214.2018.

    Article  CAS  PubMed  Google Scholar 

  99. Bhagat TD, et al. Lactate-mediated epigenetic reprogramming regulates formation of human pancreatic cancer-associated fibroblasts. eLife. 2019;8. https://doi.org/10.7554/eLife.50663.

  100. Irizarry-Caro RA, et al. TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proc Natl Acad Sci U S A. 2020;117(48):30628–38. https://doi.org/10.1073/pnas.2009778117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Moreno-Yruela C, et al. Class I histone deacetylases (HDAC1–3) are histone lysine delactylases. Sci Adv. 2022;8(3):eabi6696. https://doi.org/10.1126/sciadv.abi6696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wan N, et al. Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome. Nat Methods. 2022;19(7):854–64. https://doi.org/10.1038/s41592-022-01523-1.

    Article  CAS  PubMed  Google Scholar 

  103. Barale C, et al. PCSK9 biology and its role in atherothrombosis. Int J Mol Sci. 2021;22(11). https://doi.org/10.3390/ijms22115880.

  104. Ridker PM, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31. https://doi.org/10.1056/NEJMoa1707914.

    Article  CAS  PubMed  Google Scholar 

  105. de Carvalho JF, Pereira RMR, Shoenfeld Y. Vaccination for atherosclerosis. Clin Rev Allergy Immunol. 2010;38(2–3):135–40. https://doi.org/10.1007/s12016-009-8145-y.

    Article  PubMed  Google Scholar 

  106. Kobiyama K, Ley K. Atherosclerosis. Circ Res. 2018;123(10):1118–20. https://doi.org/10.1161/CIRCRESAHA.118.313816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Li T-T, et al. The mechanisms of traditional Chinese medicine underlying the prevention and treatment of atherosclerosis. Chin J Nat Med. 2019;17(6):401–12. https://doi.org/10.1016/S1875-5364(19)30048-2.

    Article  CAS  PubMed  Google Scholar 

  108. Williams JW, et al. Single cell RNA sequencing in atherosclerosis research. Circ Res. 2020;126(9):1112–26. https://doi.org/10.1161/CIRCRESAHA.119.315940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Depuydt MAC, et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ Res. 2020;127(11):1437–55. https://doi.org/10.1161/CIRCRESAHA.120.316770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pan H, et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation. 2020;142(21):2060–75. https://doi.org/10.1161/CIRCULATIONAHA.120.048378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ali L, Schnitzler JG, Kroon J. Metabolism: the road to inflammation and atherosclerosis. Curr Opin Lipidol. 2018;29(6):474–80. https://doi.org/10.1097/MOL.0000000000000550.

    Article  CAS  PubMed  Google Scholar 

  112. Perrotta P, et al. Partial inhibition of glycolysis reduces atherogenesis independent of intraplaque neovascularization in mice. Arterioscler Thromb Vasc Biol. 2020;40(5):1168–81. https://doi.org/10.1161/ATVBAHA.119.313692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rohlenova K, et al. Endothelial cell metabolism in health and disease. Trends Cell Biol. 2018;28(3):224–36. https://doi.org/10.1016/j.tcb.2017.10.010.

    Article  CAS  PubMed  Google Scholar 

  114. Chen S, et al. MiR-638 repressed vascular smooth muscle cell glycolysis by targeting LDHA. Open Med. 2019;14:663–72. https://doi.org/10.1515/med-2019-0077.

    Article  CAS  Google Scholar 

  115. Tannahill GM, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013;496(7444):238–42. https://doi.org/10.1038/nature11986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mizoguchi T, et al. Oral administration of the lactic acid bacterium Pediococcus acidilactici attenuates atherosclerosis in mice by inducing tolerogenic dendritic cells. Heart Vessels. 2017;32(6):768–76. https://doi.org/10.1007/s00380-017-0949-8.

    Article  PubMed  Google Scholar 

  117. Kobayashi R, Hashizume-Takizawa T, Kurita-Ochiai T. Lactic acid bacteria prevent both periodontitis and atherosclerosis exacerbated by periodontitis in spontaneously hyperlipidemic mice. J Periodontal Res. 2021;56(4):753–60. https://doi.org/10.1111/jre.12874.

    Article  CAS  PubMed  Google Scholar 

  118. Pucino V, Cucchi D, Mauro C. Lactate transporters as therapeutic targets in cancer and inflammatory diseases. Expert Opin Ther Targets. 2018;22(9):735–43. https://doi.org/10.1080/14728222.2018.1511706.

    Article  CAS  PubMed  Google Scholar 

  119. Feichtinger RG, Lang R. Targeting L-lactate metabolism to overcome resistance to immune therapy of melanoma and other tumor entities. J Oncol. 2019;2019:2084195. https://doi.org/10.1155/2019/2084195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Feng S, et al. Mechanical activation of hypoxia-inducible factor 1α drives endothelial dysfunction at atheroprone sites. Arterioscler Thromb Vasc Biol. 2017;37(11):2087–101. https://doi.org/10.1161/ATVBAHA.117.309249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wu D, et al. is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium. ELife. 2017;6. https://doi.org/10.7554/eLife.25217.

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (82070455), the related Foundation of Jiangsu Province (BK20201225), and the Medical Innovation Team Project of Jiangsu Province (CXTDA2017010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongqun Wang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Yihua Bei oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (AI 1623 KB)

Supplementary file2 (AI 505 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Yuan, W. & Wang, Z. Advances in Glycolysis Metabolism of Atherosclerosis. J. of Cardiovasc. Trans. Res. 16, 476–490 (2023). https://doi.org/10.1007/s12265-022-10311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10311-3

Keywords

Navigation