Skip to main content
Log in

Metabolic control analysis of the Warburg-effect in proliferating vascular smooth muscle cells

  • Brief communication
  • Published:
Journal of Biomedical Science

Summary

The accumulation and proliferation of vascular smooth muscle cells (VSMC) within the vessel wall is an important pathogenic feature in the development of atherosclerosis. Glucose metabolism has been implicated to play an important role in this cellular mechanism. To further elucidate the role of glucose metabolism in atherogenesis, glycolysis and its regulation have been investigated in proliferating VSMC. Platelet derived growth factor (PDGF BB)-induced proliferation of VSMCs significantly stimulated glucose flux through glycolysis. Further evaluating the enzymatic regulation of this pathway, the analysis of flux:metabolite co-responses revealed that anaerobic glycolytic flux is controlled at different sites of gycolysis in proliferating VSMCs, being consistent with the concept of multisite modulation. These findings indicate that regulation of glycolytic flux in proliferating VSMCs differs from traditional concepts of metabolic control of the Embden–Meyerhof pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. 1. Warburg O. (1926) Über den Stoffwechsel der Tumoren. Springer, Berlin

    Google Scholar 

  2. 2. Semenza GL (2000) Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol. 35:71–103

    Article  PubMed  CAS  Google Scholar 

  3. 3. Schwickert G, Walenta S, Sundfor K, Rofstad EK, Mueller Klieser W (1995) Correlation of high lactate levels in human cervical cancer with incidence of metastasis. Cancer Res. 55:4757–9

    PubMed  CAS  Google Scholar 

  4. 4. Walenta S, Salameh A, Lyng H, Evensen JF, Mitze M, Rofstad EK, Mueller Klieser W (1997) Correlation of high lactate levels in head and neck tumors with incidence of metastasis. Am J Pathol. 150:409–15

    PubMed  CAS  Google Scholar 

  5. 5. Dominguez JE, Graham JF, Cummins CJ, Loreck DJ, Galarraga J, Van der Feen J, DeLaPaz R, Smith BH (1987) Enzymes of glucose metabolism in cultured human gliomas: neoplasia is accompanied by altered hexokinase, phosphofructokinase, and glucose-6-phosphate dehydrogenase levels. Metab Brain Dis. 2:17–30

    Article  PubMed  CAS  Google Scholar 

  6. 6. Van Veelen CW, Rijksen G, Van Ketel BA, Staal GE (1988) The pyruvate kinase isoenzyme shift in human gliomas: a potential marker in the treatment of gliomas. Br J Neurosurg. 2:257–63

    Article  PubMed  CAS  Google Scholar 

  7. 7. Barron JT, Parrillo JE (1995) Production of lactic acid and energy metabolism in vascular smooth muscle: effect of dichloroacetate. Am J Physiol. 268:H713–9

    PubMed  CAS  Google Scholar 

  8. 8. Barron JT, Kopp SJ, Tow J, Parrillo JE (1994) Fatty acid, tricarboxylic acid cycle metabolites, and energy metabolism in vascular smooth muscle. Am J Physiol. 267:H764–9

    PubMed  CAS  Google Scholar 

  9. 9. Brand FN, Abbott RD, Kannel WB (1989) Diabetes, intermittent claudication, and risk of cardiovascular events. The Framingham Study. Diabetes. 38:504–9

    Article  PubMed  CAS  Google Scholar 

  10. 10. Hall JL, Chatham JC, Eldar Finkelman H, Gibbons GH (2001) Upregulation of glucose metabolism during intimal lesion formation is coupled to the inhibition of vascular smooth muscle cell apoptosis. Role of GSK3beta. Diabetes. 50:1171–9

    Article  PubMed  CAS  Google Scholar 

  11. 11. Hall JL, Matter CM, Wang X, Gibbons GH (2000) Hyperglycemia inhibits vascular smooth muscle cell apoptosis through a protein kinase C-dependent pathway. Circ Res. 87:574–80

    PubMed  CAS  Google Scholar 

  12. 12. Hardin CD, Finder DR (1998) Glycolytic flux in permeabilized freshly isolated vascular smooth muscle cells. Am J Physiol. 274:C88–96

    PubMed  CAS  Google Scholar 

  13. 13. Roberts TM, Sturek M, Dixon JL, Hardin CD (2001) Alterations in the oxidative metabolic profile in vascular smooth muscle from hyperlipidemic and diabetic swine. Mol Cell Biochem. 217:99–106

    Article  PubMed  CAS  Google Scholar 

  14. 14. Stamler J, Vaccaro O, Neaton JD, Wentworth D (1993) Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 16:434–44

    Article  PubMed  CAS  Google Scholar 

  15. 15. Ross J, Stagliano N, Donovan M, Breitbart R, GS G (2001) Atherosclerosis: a cancer of the blood vessels? Am J Clin Pathol. 116:Suppl S97–S107

    Google Scholar 

  16. 16. Ross J (1995) Cell Biology of atherosclerosis. Annu Rev Physiol. 57:791–804

    Article  PubMed  CAS  Google Scholar 

  17. 17. Rollins BJ, Morrison ED, Usher P, Flier JS (1988) Platelet-derived growth factor regulates glucose transporter expression. J Biol Chem. 263:16523–6

    PubMed  CAS  Google Scholar 

  18. 18. Vander Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB (2001) Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol. 21:5899–912

    Article  PubMed  CAS  Google Scholar 

  19. 19. Depre C, Vanoverschelde JL, Taegtmeyer H (1999) Glucose for the heart. Circulation. 99:578–88

    PubMed  CAS  Google Scholar 

  20. 20. Kubler W, Spieckermann PG (1970) Regulation of glycolysis in the ischemic and the anoxic myocardium. J Mol Cell Cardiol. 1:351–77

    Article  PubMed  CAS  Google Scholar 

  21. 21. Stanley WC, Lopaschuk GD, Hall JL, McCormack JG (1997) Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res. 33:243–57

    Article  PubMed  CAS  Google Scholar 

  22. 22. Van Schaftingen E (1993) Glycolysis revisited. Diabetologia 36:581–8

    Article  PubMed  CAS  Google Scholar 

  23. 23. Kranzhofer R, Schmidt J, Pfeiffer CA, Hagl S, Libby P, Kubler W (1999) Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 19:1623–9

    PubMed  CAS  Google Scholar 

  24. 24. Sodhi CP, Phadke SA, Batlle D, Sahai A (2001) Hypoxia stimulates osteopontin expression and proliferation of cultured vascular smooth muscle cells: potentiation by high glucose. Diabetes 50:1482–90

    Article  PubMed  CAS  Google Scholar 

  25. 25. Vogt A, Ackermann C, Noe T, Jensen D, Kübler W (1998) Simultaneous detection of hogh energy phsophates and metabolites of glycolysis and the Krens cycle by HPLC. Biochem Biophys Res Comm. 248:527–32

    Article  PubMed  CAS  Google Scholar 

  26. 26. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–54

    Article  PubMed  CAS  Google Scholar 

  27. 27. Spriet LL (1990) Anaerobic ATP provision, glycogenolysis and glycolysis in rat slow-twitch muscle during tetanic contractions. Pflugers Arch. 417:278–84

    Article  PubMed  CAS  Google Scholar 

  28. 28. Thomas S, Fell DA (1996) Design of metabolic control for large flux changes. J Theor Biol. 182:285–98

    Article  PubMed  CAS  Google Scholar 

  29. 29. Kacser H, Acerenza L (1993) A universal method for achieving increases in metabolite production. Eur J Biochem. 216:361–7

    Article  PubMed  CAS  Google Scholar 

  30. 30. Thomas S., Fell D.A. (1998) The role of multiple enzyme activation in metabolic flux control. Adv Enzyme Regul. 38:65-85

    Article  Google Scholar 

  31. 31. Fell DA, Thomas S (1995) Physiological control of metabolic flux: the requirement for multisite modulation. Biochem J. 311:35–9

    PubMed  CAS  Google Scholar 

  32. 32. Korzeniewski B, Harper ME, Brand MD (1995) Proportional activation coefficients during stimulation of oxidative phosphorylation by lactate and pyruvate or by vasopressin. Biochim Biophys Acta. 1229:315–22

    Article  PubMed  Google Scholar 

  33. 33. Fell DA (1997) Understanding the control of metabolism. Portland Press, London

    Google Scholar 

  34. 34. Thomas S, Fell DA (1998) A control analysis exploration of the role of ATP utilisation in glycolytic-flux control and glycolytic-metabolite-concentration regulation. Eur J Biochem. 258:956–67

    Article  PubMed  CAS  Google Scholar 

  35. 35. Galarraga J, Loreck DJ, Graham JF, DeLaPaz RL, Smith BH, Hallgren D, Cummins CJ (1986) Glucose metabolism in human gliomas: correspondence of in situ and in vitro metabolic rates and altered energy metabolism. Metab Brain Dis. 1:279–91

    Article  PubMed  CAS  Google Scholar 

  36. 36. Weinhouse S (1976) The Warburg hypothesis fifty years later. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol. 87:115–26

    Article  PubMed  CAS  Google Scholar 

  37. 37. Schoburg D (1997) Enzyme Handbook. Springer, Berlin

    Google Scholar 

  38. 38. Depre C, Rider MH, Veitch K, Hue L (1993) Role of fructose 2,6-bisphosphate in the control of heart glycolysis. J Biol Chem. 268:13274–9

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported in part by a grant from the Medical Faculty of the University of Heidelberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim M. Vogt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werle, M., Kreuzer, J., Höfele, J. et al. Metabolic control analysis of the Warburg-effect in proliferating vascular smooth muscle cells. J Biomed Sci 12, 827–834 (2005). https://doi.org/10.1007/s11373-005-9010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-005-9010-5

Keywords

Navigation