Skip to main content
Log in

Bioactive Peptides and Its Alternative Processes: A Review

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Bioactive peptides are molecules of paramount importance with significant health benefits. These bioactive peptides extracted from various food sources demonstrated significant bioactivity and potency, including angiotensin-converting enzyme inhibitors, antioxidants, opioids, and antimicrobials. However, various challenges hindered the industrial-scale production of peptides, such as the sensory performance of peptides due to bitterness, low peptides bioavailability and yield, minimal human tests, unconfirmed molecular mechanisms, and the sustainability of the resources for mass production. The emerging alternative processes such as high hydrostatic pressure, microwave, ultrasound, sub- and supercritical fluids are selectively beneficial, albeit time-consuming and expensive. The diversity of the properties of bioactive peptides complicates the design of the appropriate purification steps, particularly for novel peptides. The integrative process by coupling the production and purification of bioactive peptides to a single integrative system can be a way forward for bioactive peptides production with high purity, potency, and cost-effectiveness. Thus, the review provides a comprehensive insight into the current status, trends, and challenges of bioactive peptide production through conventional and emerging processes. Meanwhile, the potential technological leap through integrative processes is also featured as the sustainability of the process must be assured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sánchez, A. and A. Vázquez (2017) Bioactive peptides: a review. Food Qual. Saf. 1: 29–46.

    Article  Google Scholar 

  2. Mann, B., S. Athira, R. Sharma, R. Kumar, and P. Sarkar (2019) Bioactive peptides from whey proteins. pp. 519–547. In: H. C. Deeth and N. Bansal (eds.). Whey Proteins: From Milk to Medicine. Academic Press, London, UK.

    Chapter  Google Scholar 

  3. Toldrá, F., M. Gallego, M. Reig, M. C. Aristoy, and L. Mora (2020) Recent progress in enzymatic release of peptides in foods of animal origin and assessment of bioactivity. J. Agric. Food Chem. 68: 12842–12855.

    Article  PubMed  CAS  Google Scholar 

  4. Minkiewicz, P., A. Iwaniak, and M. Darewicz (2019) BIOPEPUWM database of bioactive peptides: current opportunities. Int. J. Mol. Sci. 20: 5978.

    Article  CAS  PubMed Central  Google Scholar 

  5. Mohanty, D. P., S. Mohapatra, S. Misra, and P. S. Sahu (2016) Milk derived bioactive peptides and their impact on human health — a review. Saudi J. Biol. Sci. 23: 577–583.

    Article  CAS  PubMed  Google Scholar 

  6. Tu, M., S. Cheng, W. Lu, and M. Du (2018) Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: sequence, structure, and functions. Trends Analyt. Chem. 105: 7–17.

    Article  CAS  Google Scholar 

  7. Marciniak, A., S. Suwal, N. Naderi, Y. Pouliot, and A. Doyen (2018) Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends Food Sci. Technol. 80: 187–198.

    Article  CAS  Google Scholar 

  8. Ortiz-Chao, P., J. A. Gómez-Ruiz, R. A. Rastall, D. Mills, R. Cramer, A. Pihlanto, H. Korhonen, and P. Jauregi (2009) Production of novel ACE inhibitory peptides from β-lactoglobulin using Protease N Amano. Int. Dairy J. 19: 69–76.

    Article  CAS  Google Scholar 

  9. Welderufael, F. and P. Jauregi (2010) Development of an integrative process for the production of bioactive peptides from whey by proteolytic commercial mixtures. Sep. Sci. Technol. 45: 2226–2234.

    Article  CAS  Google Scholar 

  10. Welderufael, F. T., T. Gibson, L. Methven, and P. Jauregi (2012) Chemical characterisation and determination of sensory attributes of hydrolysates produced by enzymatic hydrolysis of whey proteins following a novel integrative process. Food Chem. 134: 1947–1958.

    Article  CAS  PubMed  Google Scholar 

  11. Welderufael, F. T., T. Gibson, and P. Jauregi (2012) Production of angiotensin-I-converting enzyme inhibitory peptides from β-lactoglobulin- and casein-derived peptides: an integrative approach. Biotechnol. Prog. 28: 746–755.

    Article  CAS  PubMed  Google Scholar 

  12. Pa’ee, K. F., T. Gibson, B. Marakilova, and P. Jauregi (2015) Production of acid whey hydrolysates applying an integrative process: effect of calcium on process performance. Process Biochem. 50: 302–310.

    Article  CAS  Google Scholar 

  13. Li-Chan, E. C. (2015) Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Curr. Opin. Food Sci. 1: 28–37.

    Article  Google Scholar 

  14. Abd El-Fattah, A., S. Sakr, S. El-Dieb, and H. Elkashef (2018) Developing functional yogurt rich in bioactive peptides and gamma-aminobutyric acid related to cardiovascular health. Lebensm. Wiss. Technol. 98: 390–397.

    Article  CAS  Google Scholar 

  15. Phelan, M., S. A. Aherne-Bruce, D. O’Sullivan, R. J. FitzGerald, and N. M. O’Brien (2009) Potential bioactive effects of casein hydrolysates on human cultured cells. Int. Dairy J. 19: 279–285.

    Article  CAS  Google Scholar 

  16. Liu, F., G. Baggerman, L. Schoofs, and G. Wets (2008) The construction of a bioactive peptide database in Metazoa. J. Proteome Res. 7: 4119–4131.

    Article  CAS  PubMed  Google Scholar 

  17. Shtatland, T., D. Guettler, M. Kossodo, M. Pivovarov, and R. Weissleder (2007) PepBank—a database of peptides based on sequence text mining and public peptide data sources. BMC Bioinformatics. 8: 280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wang, G., X. Li, and Z. Wang (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44: D1087–D1093.

    Article  CAS  PubMed  Google Scholar 

  19. Thomas, S., S. Karnik, R. S. Barai, V. K. Jayaraman, and S. Idicula-Thomas (2010) CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res. 38: D774–D780.

    Article  CAS  PubMed  Google Scholar 

  20. Abdel-Hamid, M., J. Otte, C. De Gobba, A. Osman, and E. Hamad (2017) Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins. Int. Dairy J. 66: 91–98.

    Article  CAS  Google Scholar 

  21. Quirós, A., B. Hernández-Ledesma, M. Ramos, L. Amigo, and I. Recio (2005) Angiotensin-converting enzyme inhibitory activity of peptides derived from caprine kefir. J. Dairy Sci. 88: 3480–3487.

    Article  PubMed  Google Scholar 

  22. Mudgil, P., B. Baby, Y.-Y. Ngoh, H. Kamal, R. Vjayan, C.-Y. Gan, and S. Maqsood (2019) Molecular binding mechanism and identification of novel anti-hypertensive and anti-inflammatory bioactive peptides from camel milk protein hydrolysates. Lebensm. Wiss. Technol. 112: 108193.

    Article  CAS  Google Scholar 

  23. Nakamura, Y., M. Yamamoto, K. Sakai, A. Okubo, S. Yamazaki, and T. Takano (1995) Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. J. Dairy Sci. 78: 777–783.

    Article  CAS  PubMed  Google Scholar 

  24. Lima, K. O., C. D. C. de Quadros, M. da Rocha, J. T. J. G. de Lacerda, M. A. Juliano, M. Dias, M. A. Mendes, and C. Prentice (2019) Bioactivity and bioaccessibility of protein hydrolyzates from industrial byproducts of Stripped weakfish (Cynoscion guatucupa). Lebensm. Wiss. Technol. 111: 408–413.

    Article  CAS  Google Scholar 

  25. Ngo, D.-H., T.-S. Vo, B. Ryu, and S.-K. Kim (2016) Angiotensin-I- converting enzyme (ACE) inhibitory peptides from Pacific cod skin gelatin using ultrafiltration membranes. Process Biochem. 51: 1622–1628.

    Article  CAS  Google Scholar 

  26. Vo, T. D. L., K. T. Pham, and D. Q. Ha (2018) Recovery of proteolysate from salmon by-product: investigation of antioxidant activity, optimization of hydrolysis, determination of iron-binding activity and identification of bioactive peptides. Int. J. Eng. Sci. (Ghaziabad) 7: 18–30.

    Google Scholar 

  27. Sun, L., S. Wu, L. Zhou, F. Wang, X. Lan, J. Sun, Z. Tong, and D. Liao (2017) Separation and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Saurida elongata proteins hydrolysate by IMAC-Ni2+. Mar. Drugs. 15: 29.

    Article  PubMed Central  CAS  Google Scholar 

  28. Toopcham, T., J. J. Mes, H. J. Wichers, S. Roytrakul, and J. Yongsawatdigul (2017) Bioavailability of angiotensin I-converting enzyme (ACE) inhibitory peptides derived from Virgibacillus halodenitrificans SK1-3-7 proteinases hydrolyzed tilapia muscle proteins. Food Chem. 220: 190–197.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, C., Y. Zhang, Z. Wang, S. Chen, and Y. Luo (2017) Production and identification of antioxidant and angiotensin-converting enzyme inhibition and dipeptidyl peptidase IV inhibitory peptides from bighead carp (Hypophthalmichthys nobilis) muscle hydrolysate. J. Funct. Foods. 35: 224–235.

    Article  CAS  Google Scholar 

  30. Ngo, D.-H., Z.-J. Qian, B. Ryu, J. W. Park, and S.-K. Kim (2010) In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems. J. Funct. Foods. 2: 107–117.

    Article  CAS  Google Scholar 

  31. Nurdiani, R., T. Vasiljevic, T. Yeager, T. K. Singh, and O. N. Donkor (2017) Bioactive peptides with radical scavenging and cancer cell cytotoxic activities derived from Flathead (Platycephalus fuscus) by-products. Eur. Food Res. Technol. 243: 627–637.

    Article  CAS  Google Scholar 

  32. Oyama, M., T. Van Hung, K. Yoda, F. He, and T. Suzuki (2017) A novel whey tetrapeptide IPAV reduces interleukin-8 production induced by TNF-α in human intestinal Caco-2 cells. J. Funct. Foods. 35: 376–383.

    Article  CAS  Google Scholar 

  33. Zhao, H., S. Sonada, A. Yoshikawa, K. Ohinata, and M. Yoshikawa (2016) Rubimetide, humanin, and MMK1 exert anxiolytic-like activities via the formyl peptide receptor 2 in mice followed by the successive activation of DP1, A2A, and GABAA receptors. Peptides. 83: 16–20.

    Article  CAS  PubMed  Google Scholar 

  34. Hirata, H., S. Sonoda, S. Agui, M. Yoshida, K. Ohinata, and M. Yoshikawa (2007) Rubiscolin-6, a delta opioid peptide derived from spinach Rubisco, has anxiolytic effect via activating sigma1 and dopamine D1 receptors. Peptides. 28: 1998–2003.

    Article  CAS  PubMed  Google Scholar 

  35. Kapel, R., A. Chabeau, J. Lesage, G. Riviere, R. Ravallec-Ple, D. Lecouturier, M. Wartelle, D. Guillochon, and P. Dhulster (2006) Production, in continuous enzymatic membrane reactor, of an anti-hypertensive hydrolysate from an industrial alfalfa white protein concentrate exhibiting ACE inhibitory and opioid activities. Food Chem. 98: 120–126.

    Article  CAS  Google Scholar 

  36. Kobbi, S., R. Balti, A. Bougatef, G. Le Flem, L. Firdaous, M. Bigan, G. Chataigné, S. Chaabouni, P. Dhulster, and N. Nedjar (2015) Antibacterial activity of novel peptides isolated from protein hydrolysates of RuBisCO purified from green juice alfalfa. J. Funct. Foods. 18: 703–713.

    Article  CAS  Google Scholar 

  37. Siow, H. L. and C. Y. Gan (2013) Extraction of antioxidative and antihypertensive bioactive peptides from Parkia speciosa seeds. Food Chem. 141: 3435–3442.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, M., T.-S. Huang, and T.-H. Mu (2020) Production and characterisation of antioxidant peptides from sweet potato protein by enzymatic hydrolysis with radio frequency pretreatment. Int. J. Food Sci. Technol. 55: 2352–2358.

    Article  CAS  Google Scholar 

  39. He, R., Y. Wang, Y. Yang, Z. Wang, X. Ju, and J. Yuan (2019) Rapeseed protein-derived ACE inhibitory peptides LY, RALP and GHS show antioxidant and anti-inflammatory effects on spontaneously hypertensive rats. J. Funct. Foods. 55: 211–219.

    Article  CAS  Google Scholar 

  40. Najafian, L. and A. S. Babji (2014) Production of bioactive peptides using enzymatic hydrolysis and identification antioxidative peptides from patin (Pangasius sutchi) sarcoplasmic protein hydolysate. J. Funct. Foods. 9: 280–289.

    Article  CAS  Google Scholar 

  41. Intarasirisawat, R., S. Benjakul, J. Wu, and W. Visessanguan (2013) Isolation of antioxidative and ACE inhibitory peptides from protein hydrolysate of skipjack (Katsuwana pelamis) roe. J. Funct. Foods. 5: 1854–1862.

    Article  CAS  Google Scholar 

  42. Maqsoudlou, A., A. S. Mahoonak, L. Mora, H. Mohebodini, F. Toldrá, and M. Ghorbani (2019) Peptide identification in alcalase hydrolysated pollen and comparison of its bioactivity with royal jelly. Food Res. Int. 116: 905–915.

    Article  CAS  PubMed  Google Scholar 

  43. Aguilar-Toalá, J. E. and A. M. Liceaga (2020) Identification of chia seed (Salvia hispanica L.) peptides with enzyme inhibition activity towards skin-aging enzymes. Amino Acids. 52: 1149–1159.

    Article  PubMed  CAS  Google Scholar 

  44. Zhao, Y., Y. Yao, M. Xu, S. Wang, X. Wang, and Y. Tu (2017) Simulated gastrointestinal digest from preserved egg white exerts anti-inflammatory effects on Caco-2 cells and a mouse model of DSS-induced colitis. J. Funct. Foods. 35: 655–665.

    Article  CAS  Google Scholar 

  45. He, P., Q. Wang, Q. Zhan, L. Pan, X. Xin, H. Wu, and M. Zhang (2021) Purification and characterization of immunomodulatory peptides from enzymatic hydrolysates of duck egg ovalbumin. Food Funct. 12: 668–681.

    Article  CAS  PubMed  Google Scholar 

  46. Paisansak, S., P. Sangtanoo, P. Srimongkol, T. Saisavoey, O. Reamtong, K. Choowongkomon, and A. Karnchanatat (2021) Angiotensin-I converting enzyme inhibitory peptide derived from the shiitake mushroom (Lentinula edodes). J. Food Sci. Technol. 58: 85–97.

    Article  CAS  PubMed  Google Scholar 

  47. Espeche Turbay, M. B., A. de Moreno de LeBlanc, G. Perdigón, G. Savoy de Giori, and E. M. Hebert (2012) β-Casein hydrolysate generated by the cell envelope-associated proteinase of Lactobacillus delbrueckii ssp. lactis CRL 581 protects against trinitrobenzene sulfonic acid-induced colitis in mice. J. Dairy Sci. 95: 1108–1118.

    Article  CAS  PubMed  Google Scholar 

  48. Feng, J., Y.-L. Ma, P. Sun, K. Thakur, S. Wang, J.-G. Zhang, and Z.-J. Wei (2021) Purification and characterisation of α-glucosidase inhibitory peptides from defatted camellia seed cake. Int. J. Food Sci. Technol. 56: 138–147.

    Article  CAS  Google Scholar 

  49. Shi, J., R. Q. Su, W. T. Zhang, and J. Chen (2020) Purification and the secondary structure of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the alcalase hydrolysate of seahorse protein. J. Food Sci. Technol. 57: 3927–3934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rivero-Pino, F., F. J. Espejo-Carpio, and E. M. Guadix (2020) Production and identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from discarded Sardine pilchardus protein. Food Chem. 328: 127096.

    Article  CAS  PubMed  Google Scholar 

  51. Farzaneh, P., M. Khanahamadi, M. R. Ehsani, and A. Sharifan (2018) Bioactive properties of Agaricus bisporus and Terfezia claveryi proteins hydrolyzed by gastrointestinal proteases. Lebensm. Wiss. Technol. 91: 322–329.

    Article  CAS  Google Scholar 

  52. Mishra, J., R. Rajput, K. Singh, S. Puri, M. Goyal, A. Bansal, and K. Misra (2018) Antibacterial natural peptide fractions from Indian Ganoderma lucidum. Int. J. Pept. Res. Ther. 24: 543–554.

    Article  CAS  Google Scholar 

  53. Babini, E., D. Tagliazucchi, S. Martini, L. Dei Più, and A. Gianotti (2017) LC-ESI-QTOF-MS identification of novel antioxidant peptides obtained by enzymatic and microbial hydrolysis of vegetable proteins. Food Chem. 228: 186–196.

    Article  CAS  PubMed  Google Scholar 

  54. Nielsen, S. D., R. L. Beverly, Y. Qu, and D. C. Dallas (2017) Milk bioactive peptide database: a comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chem. 232: 673–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deniz, E., L. Mora, M. C. Aristoy, K. Candoğan, and F. Toldrá (2016) Free amino acids and bioactive peptides profile of Pastırma during its processing. Food Res. Int. 89: 194–201.

    Article  CAS  PubMed  Google Scholar 

  56. Latorres, J. M., D. G. Rios, G. Saggiomo, W. WasieleskyJr., and C. Prentice-Hernandez (2018) Functional and antioxidant properties of protein hydrolysates obtained from white shrimp (Litopenaeus vannamei). J. Food Sci. Technol. 55: 721–729.

    Article  CAS  PubMed  Google Scholar 

  57. Erdmann, K., B. W. Y. Cheung, and H. Schröder (2008) The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J. Nutr. Biochem. 19: 643–654.

    Article  CAS  PubMed  Google Scholar 

  58. da Silva, D. D., M. D. S. F. de Lima, M. F. da Silva, G. R. da Silva, J. F. Campos, W. W. C. Albuquerque, M. T. H. Cavalcanti, and A. L. F. Porto (2019) Bioactive water-soluble peptides from fresh buffalo cheese may be used as product markers. Lebensm. Wiss. Technol. 108: 97–105.

    Article  CAS  Google Scholar 

  59. Singh, B. P. and S. Vij (2017) Growth and bioactive peptides production potential of Lactobacillus plantarum strain C2 in soy milk: a LC-MS/MS based revelation for peptides biofunctionality. Lebensm. Wiss. Technol. 86: 293–301.

    Article  CAS  Google Scholar 

  60. Udenigwe, C. C., C. L. Okolie, H. Qian, I. C. Ohanenye, D. Agyei, and R. E. Aluko (2017) Ribulose-1,5-bisphosphate carboxylase as a sustainable and promising plant source of bioactive peptides for food applications. Trends Food Sci. Technol. 69: 74–82.

    Article  CAS  Google Scholar 

  61. Schanbacher, F. L., R. S. Talhouk, F. A. Murray, L. I. Gherman, and L. B. Willett (1998) Milk-borne bioactive peptides. Int. Dairy J. 8: 393–403.

    Article  CAS  Google Scholar 

  62. Clare, D. A. and H. E. Swaisgood (2000) Bioactive milk peptides: a prospectus. J. Dairy Sci. 83: 1187–1195.

    Article  CAS  PubMed  Google Scholar 

  63. Korhonen, H. and A. Pihlanto (2003) Food-derived bioactive peptides—opportunities for designing future foods. Curr. Pharm. Des. 9: 1297–1308.

    Article  CAS  PubMed  Google Scholar 

  64. Matar, C., J. G. LeBlanc, L. Martin, and G. Perdigón (2003) Biologically active peptides released in fermented milk: role and functions. pp. 177–201. In: E. R. Farnworth (eds.). Handbook of Fermented Functional Foods. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  65. Silva, S. V. and F. X. Malcata (2005) Caseins as source of bioactive peptides. Int. Dairy J. 15: 1–15.

    Article  CAS  Google Scholar 

  66. Korhonen, H. (2009) Milk-derived bioactive peptides: from science to applications. J. Funct. Foods. 1: 177–187.

    Article  CAS  Google Scholar 

  67. Corrons, M. A., J. I. Bertucci, C. S. Liggieri, L. M. I. López, and M. A. Bruno (2012) Milk clotting activity and production of bioactive peptides from whey using Maclura pomifera proteases. Lebensm. Wiss. Technol. 47: 103–109.

    Article  CAS  Google Scholar 

  68. FitzGerald, R. J. (1998) Potential uses of caseinophosphopeptides. Int. Dairy J. 8: 451–457.

    Article  CAS  Google Scholar 

  69. Aihara, K., H. Ishii, and M. Yoshida (2009) Casein-derived tripeptide, Val-Pro-Pro (VPP), modulates monocyte adhesion to vascular endothelium. J. Atheroscler. Thromb. 16: 594–603.

    Article  CAS  PubMed  Google Scholar 

  70. Shori, A. B., A. S. Baba, and P. F. Chuah (2013) The effects of fish collagen on the proteolysis of milk proteins, ACE inhibitory activity and sensory evaluation of plain- and Allium sativum-yogurt. J. Taiwan Inst. Chem. Eng. 44: 701–706.

    Article  CAS  Google Scholar 

  71. Jin, Y., Y. Yu, Y. Qi, F. Wang, J. Yan, and H. Zou (2016) Peptide profiling and the bioactivity character of yogurt in the simulated gastrointestinal digestion. J. Proteomics. 141: 24–46.

    Article  CAS  PubMed  Google Scholar 

  72. de Wit, J. N. (1998) Marschall Rhône-Poulenc Award Lecture. Nutritional and functional characteristics of whey proteins in food products. J. Dairy Sci. 81: 597–608.

    Article  CAS  PubMed  Google Scholar 

  73. Özer, E. D. and Z. Öner (2018) Comparison of different methods for beta lactoglobulin isolation. Food Health. 4: 1–8.

    Article  Google Scholar 

  74. Walzem, R. L., C. J. Dillard, and J. B. German (2002) Whey components: millennia of evolution create functionalities for mammalian nutrition: what we know and what we may be overlooking. Crit. Rev. Food Sci. Nutr. 42: 353–375.

    Article  CAS  PubMed  Google Scholar 

  75. Sanjukta, S. and A. K. Rai (2016) Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends Food Sci. Technol. 50: 1–10.

    Article  CAS  Google Scholar 

  76. Kuba, M., K. Tanaka, S. Tawata, Y. Takeda, and M. Yasuda (2003) Angiotensin I-converting enzyme inhibitory peptides isolated from tofuyo fermented soybean food. Biosci. Biotechnol. Biochem. 67: 1278–1283.

    Article  CAS  PubMed  Google Scholar 

  77. Chen, H.-M., K. Muramoto, and F. Yamauchi (1995) Structural analysis of antioxidative peptides from soybean.beta.-conglycinin. J. Agric. Food Chem. 43: 574–578.

    Article  CAS  Google Scholar 

  78. Sanjukta, S., A. K. Rai, A. Muhammed, K. Jeyaram, and N. C. Talukdar (2015) Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation. J. Funct. Foods. 14: 650–658.

    Article  CAS  Google Scholar 

  79. Watanabe, N., K. Fujimoto, and H. Aoki (2007) Antioxidant activities of the water-soluble fraction in tempeh-like fermented soybean (GABA-tempeh). Int. J. Food Sci. Nutr. 58: 577–587.

    Article  CAS  PubMed  Google Scholar 

  80. Wang, W. and E. G. De Mejia (2005) A new frontier in soy bioactive peptides that may prevent age-related chronic diseases. Compr. Rev. Food Sci. Food Saf. 4: 63–78.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang, J.-H., E. Tatsumi, C.-H. Ding, and L.-T. Li (2006) Angiotensin I-converting enzyme inhibitory peptides in douchi, a Chinese traditional fermented soybean product. Food Chem. 98: 551–557.

    Article  CAS  Google Scholar 

  82. Gu, Y. and J. Wu (2013) LC-MS/MS coupled with QSAR modeling in characterising of angiotensin I-converting enzyme inhibitory peptides from soybean proteins. Food Chem. 141: 2682–2690.

    Article  CAS  PubMed  Google Scholar 

  83. Tsai, T. Y., L. H. Chu, C. L. Lee, and T. M. Pan (2009) Atherosclerosis-preventing activity of lactic acid bacteria-fermented milk-soymilk supplemented with Momordica charantia. J. Agric. Food Chem. 57: 2065–2071.

    Article  CAS  PubMed  Google Scholar 

  84. Jung, K. O., S. Y. Park, and K. Y. Park (2006) Longer aging time increases the anticancer and antimetastatic properties of doenjang. Nutrition. 22: 539–545.

    Article  CAS  PubMed  Google Scholar 

  85. Kwon, D. Y., S. M. Hong, I. S. Ahn, M. J. Kim, H. J. Yang, and S. Park (2011) Isoflavonoids and peptides from meju, long-term fermented soybeans, increase insulin sensitivity and exert insulinotropic effects in vitro. Nutrition. 27: 244–252.

    Article  CAS  PubMed  Google Scholar 

  86. Duranti, M. (2006) Grain legume proteins and nutraceutical properties. Fitoterapia. 77: 67–82.

    Article  CAS  PubMed  Google Scholar 

  87. Hsieh, C. C., C. Martínez-Villaluenga, B. O. de Lumen, and B. Hernández-Ledesma (2018) Updating the research on the chemopreventive and therapeutic role of the peptide lunasin. J. Sci. Food Agric. 98: 2070–2079.

    Article  CAS  PubMed  Google Scholar 

  88. Fernández-Tomé, S., B. Hernández-Ledesma, M. Chaparro, P. Indiano-Romacho, D. Bernardo, and J. P. Gisbert (2019) Role of food proteins and bioactive peptides in inflammatory bowel disease. Trends Food Sci. Technol. 88: 194–206.

    Article  CAS  Google Scholar 

  89. Dia, V. P., S. Torres, B. O. De Lumen, J. W. ErdmanJr., and E. G. De Mejia (2009) Presence of lunasin in plasma of men after soy protein consumption. J. Agric. Food Chem. 57: 1260–1266.

    Article  CAS  PubMed  Google Scholar 

  90. Lafarga, T. and M. Hayes (2014) Bioactive peptides from meat muscle and by-products: generation, functionality and application as functional ingredients. Meat Sci. 98: 227–239.

    Article  CAS  PubMed  Google Scholar 

  91. Ferraro, V., A. P. Carvalho, C. Piccirillo, M. M. Santos, P. M. L. Castro, and M. E. Pintado (2013) Extraction of high added value biological compounds from sardine, sardine-type fish and mackerel canning residues—a review. Mater. Sci. Eng. C Mater. Biol. Appl. 33: 3111–3120.

    Article  CAS  PubMed  Google Scholar 

  92. Ryder, K., A. E.-D. Bekhit, M. McConnell, and A. Carne (2016) Towards generation of bioactive peptides from meat industry waste proteins: generation of peptides using commercial microbial proteases. Food Chem. 208: 42–50.

    Article  CAS  PubMed  Google Scholar 

  93. Ren, J., M. Zhao, J. Shi, J. Wang, Y. Jiang, C. Cui, Y. Kakuda, and S. J. Xue (2008) Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem. 108: 727–736.

    Article  CAS  PubMed  Google Scholar 

  94. Je, J.-Y., K.-H. Lee, M. H. Lee, and C.-B. Ahn (2009) Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Res. Int. 42: 1266–1272.

    Article  CAS  Google Scholar 

  95. Samaranayaka, A. G. and E. C. Li-Chan (2008) Autolysis-assisted production of fish protein hydrolysates with antioxidant properties from Pacific hake (Merluccius productus). Food Chem. 107: 768–776.

    Article  CAS  Google Scholar 

  96. Raghavan, S. and H. G. Kristinsson (2008) Antioxidative efficacy of alkali-treated tilapia protein hydrolysates: a comparative study of five enzymes. J. Agric. Food Chem. 56: 1434–1441.

    Article  CAS  PubMed  Google Scholar 

  97. Escudero, E., M. C. Aristoy, H. Nishimura, K. Arihara, and F. Toldrá (2012) Antihypertensive effect and antioxidant activity of peptide fractions extracted from Spanish dry-cured ham. Meat Sci. 91: 306–311.

    Article  CAS  PubMed  Google Scholar 

  98. Farvin, K. H. S., C. P. Baron, N. S. Nielsen, J. Otte, and C. Jacobsen (2010) Antioxidant activity of yoghurt peptides: Part 2 — characterisation of peptide fractions. Food Chem. 123: 1090–1097.

    Article  CAS  Google Scholar 

  99. Schmaier, A. H. (2002) The plasma kallikrein-kinin system counterbalances the renin-angiotensin system. J. Clin. Invest. 109: 1007–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. George, A. J., W. G. Thomas, and R. D. Hannan (2010) The renin-angiotensin system and cancer: old dog, new tricks. Nat. Rev. Cancer. 10: 745–759.

    Article  CAS  PubMed  Google Scholar 

  101. Antonaccio, M. J. (1982) Angiotensin converting enzyme (ACE) inhibitors. Annu. Rev. Pharmacol. Toxicol. 22: 57–87.

    Article  CAS  PubMed  Google Scholar 

  102. Moayedi, A., L. Mora, M. C. Aristoy, M. Hashemi, M. Safari, and F. Toldrá (2017) ACE-inhibitory and antioxidant activities of peptide fragments obtained from tomato processing by-products fermented using Bacillus subtilis: effect of amino acid composition and peptides molecular mass distribution. Appl. Biochem. Biotechnol. 181: 48–64.

    Article  CAS  PubMed  Google Scholar 

  103. Sipola, M., P. Finckenberg, R. Korpela, H. Vapaatalo, and M. L. Nurminen (2002) Effect of long-term intake of milk products on blood pressure in hypertensive rats. J. Dairy Res. 69: 103–111.

    Article  CAS  PubMed  Google Scholar 

  104. He, R., S. A. Malomo, A. Alashi, A. T. Girgih, X. Ju, and R. E. Aluko (2013) Purification and hypotensive activity of rapeseed protein-derived renin and angiotensin converting enzyme inhibitory peptides. J. Funct. Foods. 5: 781–789.

    Article  CAS  Google Scholar 

  105. Girgih, A. T., R. He, S. Malomo, M. Offengenden, J. Wu, and R. E. Aluko (2014) Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. J. Funct. Foods. 6: 384–394.

    Article  CAS  Google Scholar 

  106. Rho, S. J., J.-S. Lee, Y. I. Chung, Y.-W. Kim, and H. G. Lee (2009) Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from fermented soybean extract. Process Biochem. 44: 490–493.

    Article  CAS  Google Scholar 

  107. Suetsuna, K. and T. Nakano (2000) Identification of an antihypertensive peptide from peptic digest of wakame (Undaria pinnatifida). J. Nutr. Biochem. 11: 450–454.

    Article  CAS  PubMed  Google Scholar 

  108. Vásquez-Villanueva, R., M. L. Marina, and M. C. García (2015) Revalorization of a peach (Prunus persica (L.) Batsch) byproduct: extraction and characterization of ACE-inhibitory peptides from peach stones. J. Funct. Foods. 18: 137–146.

    Article  CAS  Google Scholar 

  109. Gu, X., Y.-K. Hou, D. Li, J.-Z. Wang, and F.-J. Wang (2015) Separation, purification, and identification of angiotensin I-converting enzyme inhibitory peptides from walnut (Juglans regia L.) hydrolyzate. Int. J. Food Prop. 18: 266–276.

    Article  CAS  Google Scholar 

  110. FitzGerald, R. and B. A. Murray (2006) Bioactive peptides and lactic fermentations. Int. J. Dairy Technol. 59: 118–125.

    Article  CAS  Google Scholar 

  111. Li, B., L. Qiao, L. Li, Y. Zhang, K. Li, L. Wang, and Y. Qiao (2017) Novel antihypertensive peptides derived from adlay (Coix larchryma-jobi L. var. ma-yuen Stapf) glutelin. Molecules. 22: 123. (Erratum published 2017, Molecules 22: 534)

    Article  CAS  PubMed Central  Google Scholar 

  112. Himaya, S. W. A., D.-H. Ngo, B. Ryu, and S.-K. Kim (2012) An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-1 converting enzyme (ACE) activity and cellular oxidative stress. Food Chem. 132: 1872–1882.

    Article  CAS  Google Scholar 

  113. Ishak, N. H. and N. M. Sarbon (2018) A review of protein hydrolysates and bioactive peptides deriving from wastes generated by fish processing. Food Bioproc. Tech. 11: 2–16.

    Article  CAS  Google Scholar 

  114. Fujita, H., T. Yamagami, and K. Ohshima (2001) Effects of an ACE-inhibitory agent, katsuobushi oligopeptide, in the spontaneously hypertensive rat and in borderline and mildly hypertensive subjects. Nutr. Res. 21: 1149–1158.

    Article  CAS  Google Scholar 

  115. Maes, W., J. Van Camp, V. Vermeirssen, M. Hemeryck, J. M. Ketelslegers, J. Schrezenmeir, P. Van Oostveldt, and A. Huyghebaert (2004) Influence of the lactokinin Ala-Leu-Pro-Met-His-Ile-Arg (ALPMHIR) on the release of endothelin-1 by endothelial cells. Regul. Pept. 118: 105–109.

    Article  CAS  PubMed  Google Scholar 

  116. Hernández-Ledesma, B., M. Miguel, L. Amigo, M. A. Aleixandre, and I. Recio (2007) Effect of simulated gastrointestinal digestion on the antihypertensive properties of synthetic beta-lactoglobulin peptide sequences. J. Dairy Res. 74: 336–339.

    Article  PubMed  CAS  Google Scholar 

  117. Tadesse, S. A. and S. A. Emire (2020) Production and processing of antioxidant bioactive peptides: a driving force for the functional food market. Heliyon. 6: e04765.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ahmad, G., M. Almasry, A. S. Dhillon, M. M. Abuayyash, N. Kothandaraman, and Z. Cakar (2017) Overview and sources of reactive oxygen species (ROS) in the reproductive system. pp. 1–16. In: A. Agarwal, R. Sharma, S. Gupta, A. Harlev, G. Ahmad, S. S. du Plessis, S. C. Esteves, S. M. Wang, and D. Durairajanayagam (eds.). Oxidative Stress in Human Reproduction: Shedding Light on a Complicated Phenomenon. Springer International Publishing, Cham, Switzerland.

    Google Scholar 

  119. Dharmaraja, A. T. (2017) Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J. Med. Chem. 60: 3221–3240.

    Article  CAS  PubMed  Google Scholar 

  120. Antolovich, M., P. D. Prenzler, E. Patsalides, S. McDonald, and K. Robards (2002) Methods for testing antioxidant activity. Analyst. 127: 183–198. (Erratum published 2002, Analyst 127: 430)

    Article  CAS  PubMed  Google Scholar 

  121. Zou, Y., Y. Ding, W. Feng, W. Wang, Q. Li, Y. Chen, H. Wu, X. Wang, L. Yang, and X. Wu (2016) Enzymolysis kinetics, thermodynamics and model of porcine cerebral protein with single-frequency countercurrent and pulsed ultrasound-assisted processing. Ultrason. Sonochem. 28: 294–301.

    Article  CAS  PubMed  Google Scholar 

  122. Yang, X., L. Zhang, D. Ding, C. Chi, B. Wang, and J. C. Huo (2019) Preparation, identification, and activity evaluation of eight antioxidant peptides from protein hydrolysate of hairtail (Trichiurus japonicas) muscle. Mar. Drugs. 17: 23.

    Article  CAS  PubMed Central  Google Scholar 

  123. Ketnawa, S., M. Wickramathilaka, and A. M. Liceaga (2018) Changes on antioxidant activity of microwave-treated protein hydrolysates after simulated gastrointestinal digestion: purification and identification. Food Chem. 254: 36–46.

    Article  CAS  PubMed  Google Scholar 

  124. Pihlanto, A. (2013) Lactic fermentation and bioactive peptides. pp. 309–332. In: J. M. Kongo (eds.). Lactic Acid Bacteria — R & D for Food, Health and Livestock Purposes. IntechOpen, London, UK.

    Google Scholar 

  125. Power, O., P. Jakeman, and R. J. FitzGerald (2013) Antioxidative peptides: enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids. 44: 797–820.

    Article  CAS  PubMed  Google Scholar 

  126. Brandelli, A., D. J. Daroit, and A. P. F. Corrêa (2015) Whey as a source of peptides with remarkable biological activities. Food Res. Int. 73: 149–161.

    Article  CAS  Google Scholar 

  127. El-Salam, M. A. and S. El-Shibiny (2013) Bioactive peptides of buffalo, camel, goat, sheep, mare, and yak milks and milk products. Food Rev. Int. 29: 1–23.

    Article  CAS  Google Scholar 

  128. Rizzello, C. G., D. Tagliazucchi, E. Babini, G. S. Rutella, D. L. T. Saa, and A. Gianotti (2016) Bioactive peptides from vegetable food matrices: research trends and novel biotechnologies for synthesis and recovery. J. Funct. Foods. 27: 549–569.

    Article  CAS  Google Scholar 

  129. Malaguti, M., G. Dinelli, E. Leoncini, V. Bregola, S. Bosi, A. F. Cicero, and S. Hrelia (2014) Bioactive peptides in cereals and legumes: agronomical, biochemical and clinical aspects. Int. J. Mol. Sci. 15: 21120–21135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Aluko, R. E. (2015) Amino acids, peptides, and proteins as antioxidants for food preservation. pp. 105–140. In: F. Shahidi (eds.). Handbook of Antioxidants for Food Preservation. Woodhead Publishing, Cambridge, UK.

    Chapter  Google Scholar 

  131. Sila, A. and A. Bougatef (2016) Antioxidant peptides from marine by-products: isolation, identification and application in food systems. A review. J. Funct. Foods. 21: 10–26.

    Article  CAS  Google Scholar 

  132. Samaranayaka, A. G. and E. C. Li-Chan (2011) Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications. J. Funct. Foods. 3: 229–254.

    Article  CAS  Google Scholar 

  133. Wu, R., C. Wu, D. Liu, X. Yang, J. Huang, J. Zhang, B. Liao, H. He, and H. Li (2015) Overview of antioxidant peptides derived from marine resources: the sources, characteristic, purification, and evaluation methods. Appl. Biochem. Biotechnol. 176: 1815–1833.

    Article  CAS  PubMed  Google Scholar 

  134. Nimalaratne, C. and J. Wu (2015) Hen egg as an antioxidant food commodity: a review. Nutrients. 7: 8274–8293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mora, L., M. Reig, and F. Toldrá (2014) Bioactive peptides generated from meat industry by-products. Food Res. Int. 65: 344–349.

    Article  CAS  Google Scholar 

  136. Zhang, Y., J. Liu, X. Lu, H. Zhang, L. Wang, X. Guo, X. Qi, and H. Qian (2014) Isolation and identification of an antioxidant peptide prepared from fermented peanut meal using Bacillus subtilis fermentation. Int. J. Food Prop. 17: 1237–1253.

    Article  CAS  Google Scholar 

  137. Xu, F., J. Zhang, Z. Wang, Y. Yao, G. G. Atungulu, X. Ju, and L. Wang (2018) Absorption and metabolism of peptide WDHHAPQLR derived from rapeseed protein and inhibition of HUVEC apoptosis under oxidative stress. J. Agric. Food Chem. 66: 5178–5189.

    Article  CAS  PubMed  Google Scholar 

  138. González-García, E., P. Puchalska, M. L. Marina, and M. C. García (2015) Fractionation and identification of antioxidant and angiotensin-converting enzyme-inhibitory peptides obtained from plum (Prunus domestica L.) stones. J. Funct. Foods. 19: 376–384.

    Article  CAS  Google Scholar 

  139. Zou, Z., M. Wang, Z. Wang, R. E. Aluko, and R. He (2020) Antihypertensive and antioxidant activities of enzymatic wheat bran protein hydrolysates. J. Food Biochem. 44: e13090.

    Article  PubMed  Google Scholar 

  140. Girgih, A. T., D. Chao, L. Lin, R. He, S. Jung, and R. E. Aluko (2015) Enzymatic protein hydrolysates from high pressure-pretreated isolated pea proteins have better antioxidant properties than similar hydrolysates produced from heat pretreatment. Food Chem. 188: 510–516.

    Article  CAS  PubMed  Google Scholar 

  141. Tang, W., H. Zhang, L. Wang, H. Qian, and X. Qi (2015) Taigeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis. Food Chem. 168: 115–123.

    Article  CAS  PubMed  Google Scholar 

  142. Pu, C. and W. Tang (2017) The antibacterial and antibiofilm efficacies of a liposomal peptide originating from rice bran protein against Listeria monocytogenes. Food Funct. 8: 4159–4169.

    Article  CAS  PubMed  Google Scholar 

  143. Cole, A. M., P. Weis, and G. Diamond (1997) Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J. Biol. Chem. 272: 12008–12013.

    Article  CAS  PubMed  Google Scholar 

  144. Oren, Z. and Y. Shai (1996) A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Eur. J. Biochem. 237: 303–310.

    Article  CAS  PubMed  Google Scholar 

  145. Umadevi, P., M. Soumya, J. K. George, and M. Anandaraj (2018) Proteomics assisted profiling of antimicrobial peptide signatures from black pepper (Piper nigrum L.). Physiol. Mol. Biol. Plants 24: 379–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. McCann, K. B., B. J. Shiell, W. P. Michalski, A. Lee, J. Wan, H. Roginski, and M. J. Coventry (2006) Isolation and characterisation of a novel antibacterial peptide from bovine αS1-casein. Int. Dairy J. 16: 316–323.

    Article  CAS  Google Scholar 

  147. Cuthbertson, B. J., E. F. Shepard, R. W. Chapman, and P. S. Gross (2002) Diversity of the penaeidin antimicrobial peptides in two shrimp species. Immunogenetics. 54: 442–445.

    Article  CAS  PubMed  Google Scholar 

  148. Wang, Z. and G. Wang (2004) APD: the antimicrobial peptide database. Nucleic Acids Res. 32: D590–D592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cheng, A. C., H. L. Lin, Y. L. Shiu, Y. C. Tyan, and C. H. Liu (2017) Isolation and characterization of antimicrobial peptides derived from Bacillus subtilis E20-fermented soybean meal and its use for preventing Vibrio infection in shrimp aquaculture. Fish Shellfish Immunol. 67: 270–279.

    Article  CAS  PubMed  Google Scholar 

  150. Xiao, J. and H. Zhang (2012) An Escherichia coli cell membrane chromatography-offline LC-TOF-MS method for screening and identifying antimicrobial peptides from Jatropha curcas meal protein isolate hydrolysates. J. Biomol. Screen. 17: 752–760.

    Article  CAS  PubMed  Google Scholar 

  151. Dhayakaran, R., S. Neethirajan, and X. Weng (2016) Investigation of the antimicrobial activity of soy peptides by developing a high throughput drug screening assay. Biochem. Biophys. Rep. 6: 149–157.

    PubMed  PubMed Central  Google Scholar 

  152. Akalın, A. S. (2014) Dairy-derived antimicrobial peptides: action mechanisms, pharmaceutical uses and production proposals. Trends Food Sci. Technol. 36: 79–95.

    Article  CAS  Google Scholar 

  153. Ward, P. P., E. Paz, and O. M. Conneely (2005) Multifunctional roles of lactoferrin: a critical overview. Cell. Mol. Life Sci. 62: 2540–2548.

    Article  CAS  PubMed  Google Scholar 

  154. Rodríguez-Franco, D. A., L. Vázquez-Moreno, and G. Ramos-Clamont Montfort (2005) Antimicrobial mechanisms and potential clinical application of lactoferrin. Rev. Latinoam. Microbiol. 47: 102–111.

    PubMed  Google Scholar 

  155. Smolenski, G., S. Haines, F. Y.-S. Kwan, J. Bond, V. Farr, S. R. Davis, K. Stelwagen, and T. T. Wheeler (2007) Characterisation of host defence proteins in milk using a proteomic approach. J. Proteome Res. 6: 207–215.

    Article  CAS  PubMed  Google Scholar 

  156. Gifford, J. L., H. N. Hunter, and H. J. Vogel (2005) Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell. Mol. Life Sci. 62: 2588–2598.

    Article  CAS  PubMed  Google Scholar 

  157. Junkes, C., A. Wessolowski, S. Farnaud, R. W. Evans, L. Good, M. Bienert, and M. Dathe (2008) The interaction of arginine- and tryptophan-rich cyclic hexapeptides with Escherichia coli membranes. J. Pept. Sci. 14: 535–543.

    Article  CAS  PubMed  Google Scholar 

  158. Wang, Q., W. Li, Y. He, D. Ren, F. Kow, L. Song, and X. Yu (2014) Novel antioxidative peptides from the protein hydrolysate of oysters (Crassostrea talienwhanensis). Food Chem. 145: 991–996.

    Article  CAS  PubMed  Google Scholar 

  159. Wang, B. S., G. J. Huang, Y. H. Lu, and L. W. Chang (2013) Anti-inflammatory effects of an aqueous extract of Welsh onion green leaves in mice. Food Chem. 138: 751–756.

    Article  CAS  PubMed  Google Scholar 

  160. Devi, K. P., D. S. Malar, S. F. Nabavi, A. Sureda, J. Xiao, S. M. Nabavi, and M. Daglia (2015) Kaempferol and inflammation: from chemistry to medicine. Pharmacol. Res. 99: 1–10.

    Article  CAS  PubMed  Google Scholar 

  161. Lin, J.-Y. and C.-Y. Tang (2008) Strawberry, loquat, mulberry, and bitter melon juices exhibit prophylactic effects on LPS-induced inflammation using murine peritoneal macrophages. Food Chem. 107: 1587–1596.

    Article  CAS  Google Scholar 

  162. Needleman, P. and P. C. Isakson (1997) The discovery and function of COX-2. J. Rheumatol. Suppl. 49: 6–8.

    CAS  PubMed  Google Scholar 

  163. Kim, H. P., K. H. Son, H. W. Chang, and S. S. Kang (2004) Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci. 96: 229–245.

    Article  CAS  PubMed  Google Scholar 

  164. Fernández-Tomé, S., S. Ramos, I. Cordero-Herrera, I. Recio, L. Goya, and B. Hernández-Ledesma (2014) In vitro chemoprotective effect of bioactive peptide lunasin against oxidative stress in human HepG2 cells. Food Res. Int. 62: 793–800.

    Article  CAS  Google Scholar 

  165. Yin, H., X. Pan, Z. Song, S. Wang, L. Yang, and G. Sun (2014) Protective effect of wheat peptides against indomethacin-induced oxidative stress in IEC-6 cells. Nutrients 6: 564–574.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Wen, L., Y. Chen, L. Zhang, H. Yu, Z. Xu, H. You, and Y. Cheng (2016) Rice protein hydrolysates (RPHs) inhibit the LPS-stimulated inflammatory response and phagocytosis in RAW264.7 macrophages by regulating the NF-κB signaling pathway. RSC Adv. 6: 71295–71304.

    Article  CAS  Google Scholar 

  167. Agyei, D. and M. K. Danquah (2011) Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol. Adv. 29: 272–277.

    Article  CAS  PubMed  Google Scholar 

  168. Agyei, D., C. M. Ongkudon, C. Y. Wei, A. S. Chan, and M. K. Danquah (2016) Bioprocess challenges to the isolation and purification of bioactive peptides. Food Bioprod. Process. 98: 244–256.

    Article  CAS  Google Scholar 

  169. Antink, M. M. H., T. Sewczyk, S. Kroll, P. Árki, S. Beutel, K. Rezwan, and M. Maas (2019) Proteolytic ceramic capillary membranes for the production of peptides under flow. Biochem. Eng. J. 147: 89–99.

    Article  CAS  Google Scholar 

  170. Wang, Z. and X. Zhang (2017) Isolation and identification of anti-proliferative peptides from Spirulina platensis using three-step hydrolysis. J. Sci. Food Agric. 97: 918–922.

    Article  CAS  PubMed  Google Scholar 

  171. Adjonu, R., G. Doran, P. Torley, and S. Agboola (2013) Screening of whey protein isolate hydrolysates for their dual functionality: influence of heat pre-treatment and enzyme specificity. Food Chem. 136: 1435–1443.

    Article  CAS  PubMed  Google Scholar 

  172. Herrero, M., J. A. Mendiola, A. Cifuentes, and E. Ibáñez (2010) Supercritical fluid extraction: recent advances and applications. J. Chromatogr. A 1217: 2495–2511.

    Article  CAS  PubMed  Google Scholar 

  173. Arnáiz, E., J. Bernal, M. T. Martín, M. J. Nozal, J. L. Bernal, and L. Toribio (2012) Supercritical fluid extraction of free amino acids from broccoli leaves. J. Chromatogr. A 1250: 49–53.

    Article  PubMed  CAS  Google Scholar 

  174. Najafian, L. and A. S. Babji (2012) A review of fish-derived antioxidant and antimicrobial peptides: their production, assessment, and applications. Peptides. 33: 178–185.

    Article  CAS  PubMed  Google Scholar 

  175. Kitchener, R. L. and A. M. Grunden (2012) Prolidase function in proline metabolism and its medical and biotechnological applications. J. Appl. Microbiol. 113: 233–247.

    Article  CAS  PubMed  Google Scholar 

  176. Ou, K., Y. Liu, L. Zhang, X. Yang, Z. Huang, M. J. R. Nout, and J. Liang (2010) Effect of neutrase, alcalase, and papain hydrolysis of whey protein concentrates on iron uptake by Caco-2 cells. J. Agric. Food Chem. 58: 4894–4900.

    Article  CAS  PubMed  Google Scholar 

  177. Charoenphun, N., W. Youravong, and B. Cheirsilp (2013) Determination of reaction kinetics of hydrolysis of tilapia (Oreochromis niloticus) protein for manipulating production of bioactive peptides with antioxidant activity, angiotensin-I-converting enzyme inhibitory activity and Ca-binding properties. Int. J. Food Sci. Technol. 48: 419–428.

    Article  CAS  Google Scholar 

  178. Hatta, E., K. Matsumoto, and Y. Honda (2015) Bacillolysin, papain, and subtilisin improve the quality of gluten-free rice bread. J. Cereal Sci. 61: 41–47.

    Article  CAS  Google Scholar 

  179. Merz, M., T. Eisele, P. Berends, D. Appel, S. Rabe, I. Blank, T. Stressler, and L. Fischer (2015) Flavourzyme, an enzyme preparation with industrial relevance: automated nine-step purification and partial characterization of eight enzymes. J. Agric. Food Chem. 63: 5682–5693.

    Article  CAS  PubMed  Google Scholar 

  180. Sung, D. E., J. Lee, Y. Han, D. H. Shon, K. Ahn, S. Oh, and J. R. Do (2014) Effects of enzymatic hydrolysis of buckwheat protein on antigenicity and allergenicity. Nutr. Res. Pract. 8: 278–283. (Erratum published 2014, Nutr. Res. Pract. 8: 724)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ahtesh, F., L. Stojanovska, N. Shah, and V. K. Mishra (2016) Effect of Flavourzyme(®) on angiotensin-converting enzyme inhibitory peptides formed in skim milk and whey protein concentrate during fermentation by Lactobacillus helveticus. J. Food Sci. 81: M135–M143.

    Article  CAS  PubMed  Google Scholar 

  182. de Castro, R. J. S. and H. H. Sato (2015) Synergistic actions of proteolytic enzymes for production of soy protein hydrolysates with antioxidant activities: an approach based on enzymes specificities. Biocatal. Agric. Biotechnol. 4: 694–702.

    Article  Google Scholar 

  183. Ambigaipalan, P., A. S. Al-Khalifa, and F. Shahidi (2015) Antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of date seed protein hydrolysates prepared using Alcalase, Flavourzyme and Thermolysin. J. Funct. Foods. 18: 1125–1137.

    Article  CAS  Google Scholar 

  184. Klompong, V., S. Benjakul, M. Yachai, W. Visessanguan, F. Shahidi, and K. D. Hayes (2009) Amino acid composition and antioxidative peptides from protein hydrolysates of yellow stripe trevally (Selaroides leptolepis). J. Food Sci. 74: C126–C133.

    Article  CAS  PubMed  Google Scholar 

  185. Priyanto, A. D., R. J. Doerksen, C. I. Chang, W. C. Sung, S. B. Widjanarko, J. Kusnadi, Y. C. Lin, T. C. Wang, and J. L. Hsu (2015) Screening, discovery, and characterization of angiotensin-I converting enzyme inhibitory peptides derived from proteolytic hydrolysate of bitter melon seed proteins. J. Proteomics. 128: 424–435.

    Article  CAS  PubMed  Google Scholar 

  186. Hou, Y., Z. Wu, Z. Dai, G. Wang, and G. Wu (2017) Protein hydrolysates in animal nutrition: industrial production, bioactive peptides, and functional significance. J. Anim. Sci. Biotechnol. 8: 24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. U G, Y., I. Bhat, I. Karunasagar, and M. B S (2019) Antihypertensive activity of fish protein hydrolysates and its peptides. Crit. Rev. Food Sci. Nutr. 59: 2363–2374.

    Article  PubMed  CAS  Google Scholar 

  188. Tian, X., J. Zheng, B. Xu, J. Ye, Z. Yang, and F. Yuan (2020) Optimization of extraction of bioactive peptides from monkfish (Lophius litulon) and characterization of their role in H2O2-induced lesion. Mar. Drugs. 18: 468.

    Article  CAS  PubMed Central  Google Scholar 

  189. Le Maux, S., A. B. Nongonierma, C. Barre, and R. J. FitzGerald (2016) Enzymatic generation of whey protein hydrolysates under pH-controlled and non pH-controlled conditions: impact on physicochemical and bioactive properties. Food Chem. 199: 246–251.

    Article  CAS  PubMed  Google Scholar 

  190. Gu, R.-Z., C.-Y. Li, W.-Y. Liu, W.-X. Yi, and M.-Y. Cai (2011) Angiotensin I-converting enzyme inhibitory activity of low-molecular-weight peptides from Atlantic salmon (Salmo salar L.) skin. Food Res. Int. 44: 1536–1540.

    Article  CAS  Google Scholar 

  191. Akagündüz, Y., M. Mosquera, B. Giménez, A. Alemán, P. Montero, and M. C. Gómez-Guillén (2014) Sea bream bones and scales as a source of gelatin and ACE inhibitory peptides. Lebensm. Wiss. Technol. 55: 579–585.

    Article  CAS  Google Scholar 

  192. Yin, H., J. Pu, Y. Wan, B. Xiang, P. J. Bechtel, and S. Sathivel (2010) Rheological and functional properties of catfish skin protein hydrolysates. J. Food Sci. 75: E11–E17.

    Article  CAS  PubMed  Google Scholar 

  193. Zhang, F., Z. Wang, and S. Xu (2009) Macroporous resin purification of grass carp fish (Ctenopharyngodon idella) scale peptides with in vitro angiotensin-I converting enzyme (ACE) inhibitory ability. Food Chem. 117: 387–392.

    Article  CAS  Google Scholar 

  194. Nakajima, K., Y. Yoshie-Stark, and M. Ogushi (2009) Comparison of ACE inhibitory and DPPH radical scavenging activities of fish muscle hydrolysates. Food Chem. 114: 844–851.

    Article  CAS  Google Scholar 

  195. Bougatef, A., N. Nedjar-Arroume, R. Ravallec-Plé, Y. Leroy, D. Guillochon, A. Barkia, and M. Nasri (2008) Angiotensin I-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases. Food Chem. 111: 350–356.

    Article  CAS  PubMed  Google Scholar 

  196. Lee, J. K., J.-K. Jeon, and H.-G. Byun (2014) Antihypertensive effect of novel angiotensin I converting enzyme inhibitory peptide from chum salmon (Oncorhynchus keta) skin in spontaneously hypertensive rats. J. Funct. Foods. 7: 381–389.

    Article  CAS  Google Scholar 

  197. Rai, A. K. and K. Jeyaram (2015) Health benefits of functional proteins in fermented foods. pp. 455–474. In: J. P. Tamang (eds.). Health Benefits of Fermented Foods and Beverages. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  198. Rai, A. K., R. Kumari, S. Sanjukta, and D. Sahoo (2016) Production of bioactive protein hydrolysate using the yeasts isolated from soft chhurpi. Bioresour. Technol. 219: 239–245.

    Article  CAS  PubMed  Google Scholar 

  199. Gobbetti, M., P. Ferranti, E. Smacchi, F. Goffredi, and F. Addeo (2000) Production of angiotensin-I-converting-enzyme-inhibitory peptides in fermented milks started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4. Appl. Environ. Microbiol. 66: 3898–3904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Gobbetti, M., F. Minervini, and C. G. Rizzello (2004) Angiotensin I-converting-enzyme-inhibitory and antimicrobial bioactive peptides. Int. J. Dairy Technol. 57: 173–188.

    Article  CAS  Google Scholar 

  201. Matar, C., J. C. Valdez, M. Medina, M. Rachid, and G. Perdigon (2001) Immunomodulating effects of milks fermented by Lactobacillus helveticus and its non-proteolytic variant. J. Dairy Res. 68: 601–609.

    Article  CAS  PubMed  Google Scholar 

  202. Pan, D., Y. Luo, and M. Tanokura (2005) Antihypertensive peptides from skimmed milk hydrolysate digested by cell-free extract of Lactobacillus helveticus JCM1004. Food Chem. 91: 123–129.

    Article  CAS  Google Scholar 

  203. Kleekayai, T., P. A. Harnedy, M. B. O’Keeffe, A. A. Poyarkov, A. CunhaNeves, W. Suntornsuk, and R. J. FitzGerald (2015) Extraction of antioxidant and ACE inhibitory peptides from Thai traditional fermented shrimp pastes. Food Chem. 176: 441–447.

    Article  CAS  PubMed  Google Scholar 

  204. Mazorra-Manzano, M. A., G. R. Robles-Porchas, D. A. González-Velázquez, M. J. Torres-Llanez, M. Martínez-Porchas, C. O. García-Sifuentes, A. F. González-Córdova, and B. Vallejo-Córdoba (2020) Cheese whey fermentation by its native microbiota: proteolysis and bioactive peptides release with ACE-inhibitory activity. Fermentation (Basel). 6: 19.

    Article  CAS  Google Scholar 

  205. Amorim, F. G., L. B. Coitinho, A. T. Dias, A. G. F. Friques, B. L. Monteiro, L. C. D. de Rezende, T. M. C. Pereira, B. P. Campagnaro, E. De Pauw, E. C. Vasquez, and L. Quinton (2019) Identification of new bioactive peptides from Kefir milk through proteopeptidomics: bioprospection of antihypertensive molecules. Food Chem. 282: 109–119.

    Article  CAS  PubMed  Google Scholar 

  206. Tamam, B., D. Syah, M. T. Suhartono, W. A. Kusuma, S. Tachibana, and H. N. Lioe (2019) Proteomic study of bioactive peptides from tempe. J. Biosci. Bioeng. 128: 241–248.

    Article  CAS  PubMed  Google Scholar 

  207. Pescuma, M., E. M. Hébert, T. Haertlé, J. M. Chobert, F. Mozzi, and G. Font de Valdez (2015) Lactobacillus delbrueckii subsp. bulgaricus CRL 454 cleaves allergenic peptides of β-lactoglobulin. Food Chem. 170: 407–414.

    Article  CAS  PubMed  Google Scholar 

  208. Jain, S. and A. K. Anal (2017) Production and characterization of functional properties of protein hydrolysates from egg shell membranes by lactic acid bacteria fermentation. J. Food Sci. Technol. 54: 1062–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Amadou, I., G.-W. Le, Y.-H. Shi, and S. Jin (2011) Reducing, radical scavenging, and chelation properties of fermented soy protein meal hydrolysate by Lactobacillus plantarum LP6. Int. J. Food Prop. 14: 654–665.

    Article  CAS  Google Scholar 

  210. Mechmeche, M., F. Kachouri, H. Ksontini, and M. Hamdi (2017) Production of bioactive peptides from tomato seed isolate by Lactobacillus plantarum fermentation and enhancement of antioxidant activity. Food Biotechnol. 31: 94–113.

    Article  CAS  Google Scholar 

  211. Najafian, L. and A. S. Babji (2018) Fractionation and identification of novel antioxidant peptides from fermented fish (pekasam). J. Food Meas. Charact. 12: 2174–2183.

    Article  Google Scholar 

  212. Godinho, I., C. Pires, S. Pedro, B. Teixeira, R. Mendes, M. L. Nunes, and I. Batista (2016) Antioxidant properties of fish protein hydrolysates prepared from cod protein hydrolysate by Bacillus sp. Appl. Biochem. Biotechnol. 178: 1095–1112.

    Article  CAS  PubMed  Google Scholar 

  213. Rajendran, S. R., A. Mohan, Z. Khiari, C. C. Udenigwe, and B. Mason (2018) Yield, physicochemical, and antioxidant properties of Atlantic salmon visceral hydrolysate: comparison of lactic acid bacterial fermentation with Flavourzyme proteolysis and formic acid treatment. J. Food Process. Preserv. 42: e13620.

    Article  CAS  Google Scholar 

  214. Ozyurt, G., M. Boga, Y. Uçar, E. K. Boga, and A. Polat (2018) Chemical, bioactive properties and in vitro digestibility of spray-dried fish silages: comparison of two discard fish (Equulites klunzingeri and Carassius gibelio) silages. Aquac. Nutr. 24: 998–1005.

    Article  CAS  Google Scholar 

  215. Jemil, I., L. Mora, R. Nasri, O. Abdelhedi, M. C. Aristoy, M. Hajji, M. Nasri, and F. Toldrá (2016) A peptidomic approach for the identification of antioxidant and ACE-inhibitory peptides in sardinelle protein hydrolysates fermented by Bacillus subtilis A26 and Bacillus amyloliquefaciens An6. Food Res. Int. 89: 347–358.

    Article  CAS  PubMed  Google Scholar 

  216. Capriotti, A. L., G. Caruso, C. Cavaliere, R. Samperi, S. Ventura, R. Z. Chiozzi, and A. Laganà (2015) Identification of potential bioactive peptides generated by simulated gastrointestinal digestion of soybean seeds and soy milk proteins. J. Food Compost. Anal. 44: 205–213.

    Article  CAS  Google Scholar 

  217. Korhonen, H. J. (2013) Production and properties of health-promoting proteins and peptides from bovine colostrum and milk. Cell. Mol. Biol. (Noisy-le-grand) 59: 12–24.

    CAS  Google Scholar 

  218. Lafarga, T. and M. Hayes (2017) Effect of pre-treatment on the generation of dipeptidyl peptidase-IV- and prolyl endopeptidase-inhibitory hydrolysates from bovine lung. Ir. J. Agric. Food Res. 56: 12–24.

    CAS  Google Scholar 

  219. Zhang, M., T.-S. Huang, and T.-H. Mu (2019) Improvement of thermal, microwave and ultrasonication pretreatment on the production of antioxidant peptides from sweet potato protein via in vitro gastrointestinal digestion. Int. J. Food Sci. Technol. 54: 2338–2345.

    Article  CAS  Google Scholar 

  220. Wang, J., W. Liao, C. Nimalaratne, S. Chakrabarti, and J. Wu (2018) Purification and characterization of antioxidant peptides from cooked eggs using a dynamic in vitro gastrointestinal model in vascular smooth muscle A7r5 cells. NPJ Sci. Food 2: 7.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Mahdi, C., H. Untari, M. C. Padaga, and S. J. Raharjo (2018) The characterization of bioactive peptides of goat milk fermented to activities as anti-hypercholerolemia. Int. Food Res. J. 25: 17–23.

    CAS  Google Scholar 

  222. Balti, R., A. Bougatef, A. Sila, D. Guillochon, P. Dhulster, and N. Nedjar-Arroume (2015) Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats. Food Chem. 170: 519–525.

    Article  CAS  PubMed  Google Scholar 

  223. Adje, E. Y., R. Balti, M. Kouach, P. Dhulster, D. Guillochon, and N. Nedjar-Arroume (2011) Obtaining antimicrobial peptides by controlled peptic hydrolysis of bovine hemoglobin. Int. J. Biol. Macromol. 49: 143–153.

    Article  CAS  PubMed  Google Scholar 

  224. Nasri, R., I. B. Amor, A. Bougatef, N. Nedjar-Arroume, P. Dhulster, J. Gargouri, M. K. Châabouni, and M. Nasri (2012) Anticoagulant activities of goby muscle protein hydrolysates. Food Chem. 133: 835–841.

    Article  CAS  Google Scholar 

  225. Oseguera-Toledo, M. E., E. G. de Mejia, V. P. Dia, and S. L. Amaya-Llano (2011) Common bean (Phaseolus vulgaris L.) hydrolysates inhibit inflammation in LPS-induced macrophages through suppression of NF-kB pathways. Food Chem. 127: 1175–1185.

    Article  CAS  PubMed  Google Scholar 

  226. Furuta, T., Y. Miyabe, H. Yasui, Y. Kinoshita, and H. Kishimura (2016) Angiotensin I converting enzyme inhibitory peptides derived from phycobiliproteins of dulse Palmaria palmata. Mar. Drugs. 14: 32.

    Article  PubMed Central  CAS  Google Scholar 

  227. Harnedy, P. A., M. B. O’Keeffe, and R. J. FitzGerald (2015) Purification and identification of dipeptidyl peptidase (DPP) IV inhibitory peptides from the macroalga Palmaria palmata. Food Chem. 172: 400–406.

    Article  CAS  PubMed  Google Scholar 

  228. Li, G.-H., J. Z. Wan, G. W. Le, and Y. H. Shi (2006) Novel angiotensin I-converting enzyme inhibitory peptides isolated from Alcalase hydrolysate of mung bean protein. J. Pept. Sci. 12: 509–514.

    Article  CAS  PubMed  Google Scholar 

  229. Yust, M. M., J. Pedroche, J. Girón-Calle, M. Alaiz, F. Millán, and J. Vioque (2003) Production of ace inhibitory peptides by digestion of chickpea legumin with alcalase. Food Chem. 81: 363–369.

    Article  CAS  Google Scholar 

  230. Wu, J. and X. Ding (2002) Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides. Food Res. Int. 35: 367–375.

    Article  CAS  Google Scholar 

  231. Yang, Y., G. Tao, P. Liu, and J. Liu (2007) Peptide with angiotensin I-converting enzyme inhibitory activity from hydrolyzed corn gluten meal. J. Agric. Food Chem. 55: 7891–7895.

    Article  CAS  PubMed  Google Scholar 

  232. Motoi, H. and T. Kodama (2003) Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides from wheat gliadin hydrolysate. Nahrung. 47: 354–358.

    Article  CAS  PubMed  Google Scholar 

  233. Chen, Z., C. Wang, X. Gao, Y. Chen, R. Kumar Santhanam, C. Wang, L. Xu, and H. Chen (2019) Interaction characterization of preheated soy protein isolate with cyanidin-3-O-glucoside and their effects on the stability of black soybean seed coat anthocyanins extracts. Food Chem. 271: 266–273.

    Article  CAS  PubMed  Google Scholar 

  234. Chi, C.-F., B. Wang, Y.-M. Wang, B. Zhang, and S.-G. Deng (2015) Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. J. Funct. Foods. 12: 1–10.

    Article  CAS  Google Scholar 

  235. Ahn, C.-B., J.-G. Kim, and J.-Y. Je (2014) Purification and antioxidant properties of octapeptide from salmon byproduct protein hydrolysate by gastrointestinal digestion. Food Chem. 147: 78–83.

    Article  CAS  PubMed  Google Scholar 

  236. Zhuang, Y. and L. Sun (2011) Preparation of reactive oxygen scavenging peptides from tilapia (Oreochromis niloticus) skin gelatin: optimization using response surface methodology. J. Food Sci. 76: C483–C489.

    Article  CAS  PubMed  Google Scholar 

  237. Ambigaipalan, P. and F. Shahidi (2017) Bioactive peptides from shrimp shell processing discards: antioxidant and biological activities. J. Funct. Foods. 34: 7–17.

    Article  CAS  Google Scholar 

  238. Hsu, K.-C. (2010) Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chem. 122: 42–48.

    Article  CAS  Google Scholar 

  239. Wang, J., C. Li, J. Xue, J. Yang, Q. Zhang, H. Zhang, and Y. Chen (2015) Fermentation characteristics and angiotensin I-converting enzyme-inhibitory activity of Lactobacillus helveticus isolate H9 in cow milk, soy milk, and mare milk. J. Dairy Sci. 98: 3655–3664.

    Article  CAS  PubMed  Google Scholar 

  240. Conde, E., B. D. Reinoso, M. J. González-Muñoz, A. Moure, H. Domínguez, and J. C. Parajó (2013) Recovery and concentration of antioxidants from industrial effluents and from processing streams of underutilized vegetal biomass. Food Public Health. 3: 69–91.

    Google Scholar 

  241. Szydłowska-Czerniak, A., K. Trokowski, and E. Szłyk (2011) Optimization of extraction conditions of antioxidants from sunflower shells (Helianthus annuus L.) before and after enzymatic treatment. Ind. Crops Prod. 33: 123–131.

    Article  CAS  Google Scholar 

  242. Langevin, M.-E., C. Roblet, C. Moresoli, C. Ramassamy, and L. Bazinet (2012) Comparative application of pressure- and electrically-driven membrane processes for isolation of bioactive peptides from soy protein hydrolysate. J. Memb. Sci. 403–404: 15–24.

    Article  CAS  Google Scholar 

  243. Martin-Orue, C., S. Bouhallab, and A. Garem (1998) Nanofiltration of amino acid and peptide solutions: mechanisms of separation. J. Memb. Sci. 142: 225–233.

    Article  CAS  Google Scholar 

  244. Holder, A., A. Birke, T. Eisele, I. Klaiber, L. Fischer, and J. Hinrichs (2013) Selective isolation of angiotensin-I-converting enzyme-inhibitory peptides from micellar casein and β-casein hydrolysates via ultrafiltration. Int. Dairy J. 31: 34–40.

    Article  CAS  Google Scholar 

  245. Galier, S. and H. Roux-de Balmann (2004) Study of biomolecules separation in an electrophoretic membrane contactor. J. Memb. Sci. 241: 79–87.

    Article  CAS  Google Scholar 

  246. Bazinet, L. and T. R. Geoffroy (2020) Electrodialytic processes: market overview, membrane phenomena, recent developments and sustainable strategies. Membranes (Basel). 10: 221.

    Article  CAS  PubMed Central  Google Scholar 

  247. Pownall, T. L., C. C. Udenigwe, and R. E. Aluko (2010) Amino acid composition and antioxidant properties of pea seed (Pisum sativum L.) enzymatic protein hydrolysate fractions. J. Agric. Food Chem. 58: 4712–4718.

    Article  CAS  PubMed  Google Scholar 

  248. Bamdad, F., S. H. Shin, J. W. Suh, C. Nimalaratne, and H. Sunwoo (2017) Anti-inflammatory and antioxidant properties of casein hydrolysate produced using high hydrostatic pressure combined with proteolytic enzymes. Molecules. 22: 609.

    Article  PubMed Central  CAS  Google Scholar 

  249. Garcia-Mora, P., E. Peñas, J. Frias, R. Gomez, and C. Martinez-Villaluenga (2015) High-pressure improves enzymatic proteolysis and the release of peptides with angiotensin I converting enzyme inhibitory and antioxidant activities from lentil proteins. Food Chem. 171: 224–232.

    Article  CAS  PubMed  Google Scholar 

  250. Boukil, A., S. Suwal, J. Chamberland, Y. Pouliot, and A. Doyen (2018) Ultrafiltration performance and recovery of bioactive peptides after fractionation of tryptic hydrolysate generated from pressure-treated β-lactoglobulin. J. Memb. Sci. 556: 42–53.

    Article  CAS  Google Scholar 

  251. Guan, H., X. Diao, F. Jiang, J. Han, and B. Kong (2018) The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates. Food Chem. 245: 89–96.

    Article  CAS  PubMed  Google Scholar 

  252. Homma, N., Y. Ikeuchi, and A. Suzuki (1994) Effects of high pressure treatment on the proteolytic enzymes in meat. Meat Sci. 38: 219–228.

    Article  CAS  PubMed  Google Scholar 

  253. Rivalain, N., J. Roquain, and G. Demazeau (2010) Development of high hydrostatic pressure in biosciences: pressure effect on biological structures and potential applications in biotechnologies. Biotechnol. Adv. 28: 659–672.

    Article  CAS  PubMed  Google Scholar 

  254. Mozhaev, V. V., K. Heremans, J. Frank, P. Masson, and C. Balny (1994) Exploiting the effects of high hydrostatic pressure in biotechnological applications. Trends Biotechnol. 12: 493–501.

    Article  CAS  Google Scholar 

  255. Mozhaev, V. V., K. Heremans, J. Frank, P. Masson, and C. Balny (1996) High pressure effects on protein structure and function. Proteins. 24: 81–91.

    Article  CAS  PubMed  Google Scholar 

  256. De Maria, S., G. Ferrari, and P. Maresca (2017) Effect of high hydrostatic pressure on the enzymatic hydrolysis of bovine serum albumin. J. Sci. Food Agric. 97: 3151–3158.

    Article  CAS  PubMed  Google Scholar 

  257. Hu, G, Y. Zheng, Z. Liu, Y. Xiao, Y. Deng, and Y. Zhao (2017) Effects of high hydrostatic pressure, ultraviolet light-C, and far-infrared treatments on the digestibility, antioxidant and antihypertensive activity of α-casein. Food Chem. 221: 1860–1866.

    Article  CAS  PubMed  Google Scholar 

  258. Blayo, C., O. Vidcoq, F. Lazennec, and E. Dumay (2016) Effects of high pressure processing (hydrostatic high pressure and ultra-high pressure homogenisation) on whey protein native state and susceptibility to tryptic hydrolysis at atmospheric pressure. Food Res. Int. 79: 40–53.

    Article  CAS  Google Scholar 

  259. Lozano-Ojalvo, D., L. Pérez-Rodríguez, A. Pablos-Tanarro, R. López-Fandiño, and E. Molina (2017) Pepsin treatment of whey proteins under high pressure produces hypoallergenic hydrolysates. Innov. Food Sci. Emerg. Technol. 43: 154–162.

    Article  CAS  Google Scholar 

  260. Alemán, A., B. Giménez, M. C. Gómez-Guillén, and P. Montero (2011) Enzymatic hydrolysis of fish gelatin under high pressure treatment. Int. J. Food Sci. Technol. 46: 1129–1136.

    Article  CAS  Google Scholar 

  261. Zhang, Y., K. Olsen, A. Grossi, and J. Otte (2013) Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE-inhibitory peptides. Food Chem. 141: 2343–2354.

    Article  CAS  PubMed  Google Scholar 

  262. Toldrà, M., D. Parés, E. Saguer, and C. Carretero (2011) Hemoglobin hydrolysates from porcine blood obtained through enzymatic hydrolysis assisted by high hydrostatic pressure processing. Innov. Food Sci. Emerg. Technol. 12: 435–442.

    Article  CAS  Google Scholar 

  263. Perreault, V., L. Hénaux, L. Bazinet, and A. Doyen (2017) Pretreatment of flaxseed protein isolate by high hydrostatic pressure: impacts on protein structure, enzymatic hydrolysis and final hydrolysate antioxidant capacities. Food Chem. 221: 1805–1812.

    Article  CAS  PubMed  Google Scholar 

  264. Peñas, E., G. Préstamo, and R. Gomez (2004) High pressure and the enzymatic hydrolysis of soybean whey proteins. Food Chem. 85: 641–648.

    Article  CAS  Google Scholar 

  265. Zhang, M. and T.-H. Mu (2017) Identification and characterization of antioxidant peptides from sweet potato protein hydrolysates by Alcalase under high hydrostatic pressure. Innov. Food Sci. Emerg. Technol. 43: 92–101.

    Article  CAS  Google Scholar 

  266. Zhou, H., C. Wang, J. Ye, R. Tao, H. Chen, and F. Cao (2016) Effects of enzymatic hydrolysis assisted by high hydrostatic pressure processing on the hydrolysis and allergenicity of proteins from ginkgo seeds. Food Bioproc. Tech. 9: 839–848.

    Article  CAS  Google Scholar 

  267. Yin, S.-W., C.-H. Tang, Q.-B. Wen, X.-Q. Yang, and L. Li (2008) Functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate: effect of high-pressure treatment. Food Chem. 110: 938–945.

    Article  CAS  PubMed  Google Scholar 

  268. Knudsen, J., J. Otte, K. Olsen, and L. Skibsted (2002) Effect of high hydrostatic pressure on the conformation of β-lactoglobulin A as assessed by proteolytic peptide profiling. Int. Dairy J. 12: 791–803.

    Article  CAS  Google Scholar 

  269. Izquierdo, F. J., I. Alli, R. Gómez, H. S. Ramaswamy, and V. Yaylayan (2005) Effects of high pressure and microwave on pronase and α-chymotrypsin hydrolysis of β-lactoglobulin. Food Chem. 92: 713–719.

    Article  CAS  Google Scholar 

  270. Zeece, M., T. Huppertz, and A. Kelly (2008) Effect of high-pressure treatment on in-vitro digestibility of β-lactoglobulin. Innov. Food Sci. Emerg. Technol. 9: 62–69.

    Article  CAS  Google Scholar 

  271. Stapelfeldt, H., P. H. Petersen, K. R. Kristiansen, K. B. Qvist, and L. H. Skibsted (1996) Effect of high hydrostatic pressure on the enzymic hydrolysis of beta-lactoglobulin B by trypsin, thermolysin and pepsin. J. Dairy Res. 63: 111–118.

    Article  CAS  PubMed  Google Scholar 

  272. Maynard, F., A. Weingand, J. Hau, and R. Jost (1998) Effect of high-pressure treatment on the tryptic hydrolysis of bovine β-lactoglobulin AB. Int. Dairy J. 8: 125–133.

    Article  CAS  Google Scholar 

  273. Jin, H. X., H. P. Xu, Y. Li, Q. W. Zhang, and H. Xie (2019) Preparation and evaluation of peptides with potential antioxidant activity by microwave assisted enzymatic hydrolysis of collagen from sea cucumber Acaudina molpadioides obtained from Zhejiang Province in China. Mar. Drugs. 17: 169.

    Article  CAS  PubMed Central  Google Scholar 

  274. Nguyen, T. T., W. Zhang, A. R. Barber, P. Su, and S. He (2016) Microwave-intensified enzymatic deproteinization of Australian rock lobster shells (Jasus edwardsii) for the efficient recovery of protein hydrolysate as food functional nutrients. Food Bioproc. Tech. 9: 628–636.

    Article  CAS  Google Scholar 

  275. Zhou, Y., X. Yi, J. Wang, Q. Yang, and S. Wang (2018) Optimization of the ultrasonic-microwave assisted enzymatic hydrolysis of freshwater mussel meat. Int. J. Agric. Biol. Eng. 11: 236–242.

    Google Scholar 

  276. Ketnawa, S. and A. M. Liceaga (2017) Effect of microwave treatments on antioxidant activity and antigenicity of fish frame protein hydrolysates. Food Bioproc. Tech. 10: 582–591.

    Article  CAS  Google Scholar 

  277. Zhang, M., T. S. Huang, and T. H. Mu (2019) Production and in vitro gastrointestinal digestion of antioxidant peptides from enzymatic hydrolysates of sweet potato protein affected by pretreatment. Plant Foods Hum. Nutr. 74: 225–231.

    Article  CAS  PubMed  Google Scholar 

  278. Gohi, B. F. C. A., J. Du, H. Y. Zeng, X. J. Cao, and K. M. Zou (2019) Microwave pretreatment and enzymolysis optimization of the lotus seed protein. Bioengineering (Basel). 6: 28.

    Article  PubMed Central  Google Scholar 

  279. Huang, Y., G. Ruan, Z. Qin, H. Li, and Y. Zheng (2017) Antioxidant activity measurement and potential antioxidant peptides exploration from hydrolysates of novel continuous microwave-assisted enzymolysis of the Scomberomorus niphonius protein. Food Chem. 223: 89–95.

    Article  CAS  PubMed  Google Scholar 

  280. Lin, Y. J., G. W. Le, J. Y. Wang, Y. X. Li, Y. H. Shi, and J. Sun (2010) Antioxidative peptides derived from enzyme hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Int. J. Mol. Sci. 11: 4297–4308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Zhang, H., L. Yu, Q. Yang, J. Sun, J. Bi, S. Liu, C. Zhang, and L. Tang (2012) Optimization of a microwave-coupled enzymatic digestion process to prepare peanut peptides. Molecules. 17: 5661–5674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Li, Y., J. Li, S. J. Lin, Z. S. Yang, and H. X. Jin (2019) Preparation of antioxidant peptide by microwave- assisted hydrolysis of collagen and its protective effect against H2O2-induced damage of RAW264.7 cells. Mar. Drugs. 17: 642.

    Article  CAS  PubMed Central  Google Scholar 

  283. Dong, Z., G. Tian, Z. Xu, M. Li, M. Xu, Y. Zhou, and H. Ren (2017) Antioxidant activities of peptide fractions derived from freshwater mussel protein using ultrasound-assisted enzymatic hydrolysis. Czech J. Food Sci. 35: 328–338.

    Article  CAS  Google Scholar 

  284. Wen, C., J. Zhang, H. Zhang, Y. Duan, and H. Ma (2019) Effects of divergent ultrasound pretreatment on the structure of watermelon seed protein and the antioxidant activity of its hydrolysates. Food Chem. 299: 125165.

    Article  CAS  PubMed  Google Scholar 

  285. Wu, Q., X. Zhang, J. Jia, C. Kuang, and H. Yang (2018) Effect of ultrasonic pretreatment on whey protein hydrolysis by alcalase: thermodynamic parameters, physicochemical properties and bioactivities. Process Biochem. 67: 46–54.

    Article  CAS  Google Scholar 

  286. Shirsath, S. R., S. H. Sonawane, and P. R. Gogate (2012) Intensification of extraction of natural products using ultrasonic irradiations—a review of current status. Chem. Eng. Process. 53: 10–23.

    Article  CAS  Google Scholar 

  287. Yu, Z. L., W. C. Zeng, W. H. Zhang, X. P. Liao, and B. Shi (2014) Effect of ultrasound on the activity and conformation of α-amylase, papain and pepsin. Ultrason. Sonochem. 21: 930–936.

    Article  CAS  PubMed  Google Scholar 

  288. Zhu, J. and Q. Fu (2012) Optimization of ultrasound-assisted extraction process of perilla seed meal proteins. Food Sci. Biotechnol. 21: 1701–1706.

    Article  CAS  Google Scholar 

  289. Dong, X.-Y., L.-L. Guo, F. Wei, J.-F. Li, M.-L. Jiang, G.-M. Li, Y.-D. Zhao, and H. Chen (2011) Some characteristics and functional properties of rapeseed protein prepared by ultrasonication, ultrafiltration and isoelectric precipitation. J. Sci. Food Agric. 91: 1488–1498.

    Article  CAS  PubMed  Google Scholar 

  290. Bean, S. R., B. P. Ioerger, S. H. Park, and H. Singh (2006) Interaction between sorghum protein extraction and precipitation conditions on yield, purity, and composition of purified protein fractions. Cereal Chem. 83: 99–107.

    Article  CAS  Google Scholar 

  291. Moulton, K. and L. Wang (1982) A pilot-plant study of continuous ultrasonic extraction of soybean protein. J. Food Sci. 47: 1127–1129.

    Article  Google Scholar 

  292. Tang, D.-S., Y.-J. Tian, Y.-Z. He, L. Li, S.-Q. Hu, and B. Li (2010) Optimisation of ultrasonic-assisted protein extraction from brewer’s spent grain. Czech J. Food Sci. 28: 9–17.

    Article  CAS  Google Scholar 

  293. Li, H., J. Yu, M. Ahmedna, and I. Goktepe (2013) Reduction of major peanut allergens Ara h 1 and Ara h 2, in roasted peanuts by ultrasound assisted enzymatic treatment. Food Chem. 141: 762–768.

    Article  CAS  PubMed  Google Scholar 

  294. Kim, H. K., Y. H. Kim, Y. J. Kim, H. J. Park, and N. H. Lee (2012) Effects of ultrasonic treatment on collagen extraction from skins of the sea bass Lateolabrax japonicus. Fish. Sci. 78: 485–490.

    Article  CAS  Google Scholar 

  295. Chittapalo, T. and A. Noomhorm (2009) Ultrasonic assisted alkali extraction of protein from defatted rice bran and properties of the protein concentrates. Int. J. Food Sci. Technol. 44: 1843–1849.

    Article  CAS  Google Scholar 

  296. Huang, L., B. Liu, H. Ma, and X. Zhang (2014) Combined effect of ultrasound and enzymatic treatments on production of ACE inhibitory peptides from wheat germ protein. J. Food Process. Preserv. 38: 1632–1640.

    Article  CAS  Google Scholar 

  297. Kadam, S. U., B. K. Tiwari, C. Álvarez, and C. P. O’Donnell (2015) Ultrasound applications for the extraction, identification and delivery of food proteins and bioactive peptides. Trends Food Sci. Technol. 46: 60–67.

    Article  CAS  Google Scholar 

  298. Ozuna, C., I. Paniagua-Martínez, E. Castaño-Tostado, L. Ozimek, and S. L. Amaya-Llano (2015) Innovative applications of high-intensity ultrasound in the development of functional food ingredients: production of protein hydrolysates and bioactive peptides. Food Res. Int. 77: 685–696.

    Article  CAS  Google Scholar 

  299. Ahmed, R. and B.-S. Chun (2018) Subcritical water hydrolysis for the production of bioactive peptides from tuna skin collagen. J. Supercrit. Fluids. 141: 88–96.

    Article  CAS  Google Scholar 

  300. Esteban, M., A. García, P. Ramos, and M. Márquez (2010) Sub-critical water hydrolysis of hog hair for amino acid production. Bioresour. Technol. 101: 2472–2476.

    Article  CAS  PubMed  Google Scholar 

  301. Cheng, H., X. Zhu, C. Zhu, J. Qian, N. Zhu, L. Zhao, and J. Chen (2008) Hydrolysis technology of biomass waste to produce amino acids in sub-critical water. Bioresour. Technol. 99: 3337–3341.

    Article  CAS  PubMed  Google Scholar 

  302. Asaduzzaman, A. K. M. and B. S. Chun (2015) Recovery of functional materials with thermally stable antioxidative properties in squid muscle hydrolyzates by subcritical water. J. Food Sci. Technol. 52: 793–802.

    Article  CAS  PubMed  Google Scholar 

  303. Espinoza, A. D., R. O. Morawicki, and T. Hager (2012) Hydrolysis of whey protein isolate using subcritical water. J. Food Sci. 77: C20–C26.

    Article  CAS  PubMed  Google Scholar 

  304. Rogalinski, T., S. Herrmann, and G. Brunner (2005) Production of amino acids from bovine serum albumin by continuous sub-critical water hydrolysis. J. Supercrit. Fluids. 36: 49–58.

    Article  CAS  Google Scholar 

  305. Powell, T., S. Bowra, and H. J. Cooper (2016) Subcritical water processing of proteins: an alternative to enzymatic digestion? Anal. Chem. 88: 6425–6432.

    Article  CAS  PubMed  Google Scholar 

  306. Lamoolphak, W., M. Goto, M. Sasaki, M. Suphantharika, C. Muangnapoh, C. Prommuag, and A. Shotipruk (2006) Hydrothermal decomposition of yeast cells for production of proteins and amino acids. J. Hazard. Mater. 137: 1643–1648.

    Article  CAS  PubMed  Google Scholar 

  307. Mallikarjun Gouda, K. G., L. R. Gowda, A. G. A. Rao, and V. Prakash (2006) Angiotensin I-converting enzyme inhibitory peptide derived from glycinin, the 11S globulin of soybean (Glycine max). J. Agric. Food Chem. 54: 4568–4573.

    Article  CAS  PubMed  Google Scholar 

  308. Chen, J.-R., T. Okada, K. Muramoto, K. Suetsuna, and S.-C. Yang (2002) Identification of angiotensin I-converting enzyme inhibitory peptides derived from the peptic digest of soybean protein. J. Food Biochem. 26: 543–554.

    Article  Google Scholar 

  309. Ademiluyi, A. O. and G. Oboh (2015) Angiotensin I-converting enzyme inhibitory activity and hypocholesterolemic effect of some fermented tropical legumes in streptozotocin-induced diabetic rats. Int. J. Diabetes Dev. Ctries. 35: 493–500.

    Article  CAS  Google Scholar 

  310. Gibbs, B. F., A. Zougman, R. Masse, and C. Mulligan (2004) Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Res. Int. 37: 123–131.

    Article  CAS  Google Scholar 

  311. Bao, Z. and Y. Chi (2016) In vitro and in vivo assessment of angiotensin-converting enzyme (ACE) inhibitory activity of fermented soybean milk by Lactobacillus casei strains. Curr. Microbiol. 73: 214–219.

    Article  CAS  PubMed  Google Scholar 

  312. Vallabha, V. S. and P. K. Tiku (2014) Antihypertensive peptides derived from soy protein by fermentation. Int. J. Pept. Res. Ther. 20: 161–168.

    Article  CAS  Google Scholar 

  313. Kodera, T. and N. Nio (2006) Identification of an angiotensin I-converting enzyme inhibitory peptides from protein hydrolysates by a soybean protease and the antihypertensive effects of hydrolysates in 4 spontaneously hypertensive model rats. J. Food Sci. 71: C164–C173.

    Article  CAS  Google Scholar 

  314. Daliri, E. B.-M., F. K. Ofosu, R. Chelliah, M. H. Park, J. H. Kim, and D. H. Oh (2019) Development of a soy protein hydrolysate with an antihypertensive effect. Int. J. Mol. Sci. 20: 1496.

    Article  CAS  PubMed Central  Google Scholar 

  315. Hanafi, M. A., S. N. Hashim, S. Y. Chay, A. Ebrahimpour, M. Zarei, K. Muhammad, A. Abdul-Hamid, and N. Saari (2018) High angiotensin-I converting enzyme (ACE) inhibitory activity of Alcalase-digested green soybean (Glycine max) hydrolysates. Food Res. Int. 106: 589–597.

    Article  CAS  PubMed  Google Scholar 

  316. Li, M., S. Xia, Y. Zhang, and X. Li (2018) Optimization of ACE inhibitory peptides from black soybean by microwave-assisted enzymatic method and study on its stability. Lebensm. Wiss. Technol. 98: 358–365.

    Article  CAS  Google Scholar 

  317. Wakita, Y., O. Harada, M. Kuwata, T. Fujimura, T. Yamada, M. Suzuki, and K. Tsuji (2004) Preparation of subcritical water-treated okara and its effect on blood pressure in spontaneously hypertensive rats. Food Sci. Technol. Res. 10: 164–167.

    Article  CAS  Google Scholar 

  318. Hoppe, A., S. Jung, A. Patnaik, and M. G. Zeece (2013) Effect of high pressure treatment on egg white protein digestibility and peptide products. Innov. Food Sci. Emerg. Technol. 17: 54–62.

    Article  CAS  Google Scholar 

  319. Chao, D., R. He, S. Jung, and R. E. Aluko (2013) Effect of pressure or temperature pretreatment of isolated pea protein on properties of the enzymatic hydrolysates. Food Res. Int. 54: 1528–1534.

    Article  CAS  Google Scholar 

  320. Leeb, E., U. Kulozik, and S. Cheison (2011) Thermal pre-treatment of β-Lactoglobulin as a tool to steer enzymatic hydrolysis and control the release of peptides. Procedia Food Sci. 1: 1540–1546.

    Article  CAS  Google Scholar 

  321. Uluko, H., L. Liu, H. Li, W. Cui, S. Zhang, L. Zhao, H. Xue, and J. Lv (2014) Effect of power ultrasound pretreatment on peptidic profiles and angiotensin converting enzyme inhibition of milk protein concentrate hydrolysates. J. Sci. Food Agric. 94: 2420–2428.

    Article  CAS  PubMed  Google Scholar 

  322. Kangsanant, S., C. Thongraung, C. Jansakul, M. Murkovic, and V. Seechamnanturakit (2015) Purification and characterisation of antioxidant and nitric oxide inhibitory peptides from Tilapia (Oreochromis niloticus) protein hydrolysate. Int. J. Food Sci. Technol. 50: 660–665.

    Article  CAS  Google Scholar 

  323. Konrad, G., B. Lieske, and W. Faber (2000) A large-scale isolation of native β-lactoglobulin: characterization of physicochemical properties and comparison with other methods. Int. Dairy J. 10:713–721.

    Article  CAS  Google Scholar 

  324. Rojas, E. E. G., J. S. dos Reis Coimbra, L. A. Minim, S. H. Saraiva, and C. A. S. da Silva (2006) Hydrophobic interaction adsorption of hen egg white proteins albumin, conalbumin, and lysozyme. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 840: 85–93.

    Article  CAS  PubMed  Google Scholar 

  325. Ozorio, L., N. R. Pereira, J. E. da Silva-Santos, A. I. Brígida, C. Mellinger-Silva, and L. M. Cabral (2019) Enzyme inactivation and drying technologies influencing the vasorelaxant activity of a whey protein hydrolysate in semi-pilot scale. Int. Dairy J. 93: 11–14.

    Article  CAS  Google Scholar 

  326. Zhao, W., G. Xu, R. Yang, and W. Katiyo (2013) Preparation of casein phosphopeptides using a novel continuous process of combining an enzymatic membrane reactor with anion-exchange chromatography. J. Food Eng. 117: 105–112.

    Article  CAS  Google Scholar 

  327. Hajfathalian, M., S. Ghelichi, P. J. García-Moreno, A. D. Moltke Serensen, and C. Jacobsen (2018) Peptides: production, bioactivity, functionality, and applications. Crit. Rev. Food Sci. Nutr. 58: 3097–3129.

    Article  CAS  PubMed  Google Scholar 

  328. Udenigwe, C. C. (2014) Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends Food Sci. Technol. 36: 137–143.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Universiti Kuala Lumpur is thankful for the grant given to Dr. Khairul Faizal Pa’ee by the Ministry of Education (MOE) under the Fundamental Research Grant Scheme (FRGS), FRGS/1/2018/STG05/UNIKL/02/8 and Short-Term Research Grant (STR17031) awarded by Universiti Kuala Lumpur, part of which enabled this review article to be prepared. We are grateful for the contribution of all researchers involved in this paper preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khairul Faizal Pa’ee.

Ethics declarations

The authors declare no competing of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Talib, N., Yaji, E.L.A., Wahab, N.S.A. et al. Bioactive Peptides and Its Alternative Processes: A Review. Biotechnol Bioproc E 27, 306–335 (2022). https://doi.org/10.1007/s12257-021-0160-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0160-8

Keywords

Navigation