Skip to main content
Log in

Current Status of Pseudomonas putida Engineering for Lignin Valorization

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Lignin, a complex aromatic polymer, is a structural component of plant biomass. It decomposes with difficulty because of its rigidity properties, however, lignin valorization is essential for the economics of lignocellulosic biorefineries. Pseudomonas putida has been extensively investigated as a promising host strain for lignin valorizations due to intrinsic traits, such as low nutritional requirement, high tolerance to toxicity, and metabolic versatility with a wide spectrum of substrates, such as aromatic compounds. Although a naturally occurring, lignin-utilizing P. putida strain has been reported, it is necessary to engineer the genome of P. putida for efficient lignin utilization. For biological lignin valorization, the decomposition of lignin polymer to low-molecular weight compounds and transformation of lignin-derived aromatic compounds to value-added chemicals is essential. Various tools of synthetic biology have been developed for the genome engineering of P. putida; efforts in metabolic engineering have been made to expand aromatic substrate specificity and to improve productivity of value-added chemicals. Development of high-performance bio-parts and biosensors for lignin valorization has also been done. In this review, we present recent research on genome engineering tools developed for P. putida and metabolic engineering employed in P. putida to improve lignin valorization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nikel, P. I., E. Martínez-García, and V. de Lorenzo (2014) Biotechnological domestication of pseudomonads using synthetic biology. Nat. Rev. Microbiol. 12: 368–379.

    Article  CAS  PubMed  Google Scholar 

  2. Vanholme, R., B. Demedts, K. Morreel, J. Ralph, and W. Boerjan (2010) Lignin biosynthesis and structure. Plant Physiol. 153: 895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ezeji, T., N. Qureshi, and H. P. Blaschek (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol. Bioeng. 97: 1460–1469.

    Article  CAS  PubMed  Google Scholar 

  4. Bugg, T. D. H. and R. Rahmanpour (2015) Enzymatic conversion of lignin into renewable chemicals. Curr. Opin. Chem. Biol. 29: 10–17.

    Article  CAS  PubMed  Google Scholar 

  5. Lee, S., M. Kang, J. H. Bae, J. H. Sohn, and B. H. Sung (2019) Bacterial valorization of lignin: strains, enzymes, conversion pathways, biosensors, and perspectives. Front. Bioeng. Biotechnol. 7: 209.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Santos, A., S. Mendes, V. Brissos, and L. O. Martins (2014) New dye-decolorizing peroxidases from Bacillus subtilis and Pseudomonas putida MET94: towards biotechnological applications. Appl. Microbiol. Biotechnol. 98: 2053–2065.

    Article  CAS  PubMed  Google Scholar 

  7. Jiménez, J. I., B. Miñambres, J. L. García, and E. Díaz (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ. Microbiol. 4: 824–841.

    Article  PubMed  Google Scholar 

  8. Min, K., G. Gong, H. M. Woo, Y. Kim, and Y. Um (2015) A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer. Sci. Rep. 5: 8245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Salvachúa, D., E. M. Karp, C. T. Nimlos, D. R. Vardon, and G. T. Beckham (2015) Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria. Green Chem. 17: 4951–4967.

    Article  CAS  Google Scholar 

  10. Linger, J. G., D. R. Vardon, M. T. Guarnieri, E. M. Karp, G. B. Hunsinger, M. A. Franden, C. W. Johnson, G. Chupka, T. J. Strathmann, P. T. Pienkos, and G. T. Beckham (2014) Lignin valorization through integrated biological funneling and chemical catalysis. Proc. Natl. Acad. Sci. USA. 111: 12013–12018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin, L., Y. Cheng, Y. Pu, S. Sun, X. Li, M. Jin, E. A. Pierson, D. C. Gross, B. E. Dale, S. Y. Dai, A. J. Ragauskas, and J. S. Yuan (2016) Systems biology-guided biodesign of consolidated lignin conversion. Green Chem. 18: 5536–5547.

    Article  CAS  Google Scholar 

  12. Nikel, P. I. and V. de Lorenzo (2018) Pseudomonas putida as a functional chassis for industrial biocatalysis: from native biochemistry to trans-metabolism. Metab. Eng. 50: 142–155.

    Article  CAS  PubMed  Google Scholar 

  13. Domröse, A., A. S. Klein, J. Hage-Hülsmann, S. Thies, V. Svensson, T. Classen, J. Pietruszka, K. E. Jaeger, T. Drepper, and A. Loeschcke (2015) Efficient recombinant production of prodigiosin in Pseudomonas putida. Front. Microbiol. 6: 972.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Martínez-García, E. and V. de Lorenzo (2011) Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ. Microbiol. 13: 2702–2716.

    Article  PubMed  CAS  Google Scholar 

  15. Chen, Z., W. Ling, and G. Shang (2016) Recombineering and I-SceI-mediated Pseudomonas putida KT2440 scarless gene deletion. FEMS Microbiol. Lett. 363: fnw231.

    Article  PubMed  CAS  Google Scholar 

  16. Martínez-García, E., P. I. Nikel, M. Chavarría, and V. de Lorenzo (2014) The metabolic cost of flagellar motion in Pseudomonas putida KT 2440. Environ. Microbiol. 16: 291–303.

    Article  PubMed  CAS  Google Scholar 

  17. Salvachúa, D., T. Rydzak, R. Auwae, A. De Capite, B. A. Black, J. T. Bouvier, N. S. Cleveland, J. R. Elmore, J. D. Huenemann, R. Katahira, W. E. Michener, D. J. Peterson, H. Rohrer, D. R. Vardon, G. T. Beckham, and A. M. Guss (2020) Metabolic engineering of Pseudomonas putida for increased polyhydroxyalkanoate production from lignin. Microb. Biotechnol. 13: 290–298.

    Article  PubMed  CAS  Google Scholar 

  18. Luo, X., Y. Yang, W. Ling, H. Zhuang, Q. Li, and G. Shang (2016) Pseudomonas putida KT2440 markerless gene deletion using a combination of λ Red recombineering and Cre/loxP site-specific recombination. FEMS Microbiol. Lett. 363: fnw014.

    Article  PubMed  CAS  Google Scholar 

  19. Choi, K. R. and S. Y. Lee (2020) Protocols for RecET-based markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida. Microb. Biotechnol. 13: 199–209.

    Article  CAS  PubMed  Google Scholar 

  20. Choi, K. R., J. S. Cho, I. J. Cho, D. Park, and S. Y. Lee (2018) Markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida. Metab. Eng. 47: 463–474.

    Article  CAS  PubMed  Google Scholar 

  21. Martínez-García, E. and V. de Lorenzo (2017) Molecular tools and emerging strategies for deep genetic/genomic refactoring of Pseudomonas. Curr. Opin. Biotechnol. 47: 120–132.

    Article  PubMed  CAS  Google Scholar 

  22. Sun, J., Q. Wang, Y. Jiang, Z. Wen, L. Yang, J. Wu, and S. Yang (2018) Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system. Microb. Cell Fact. 17: 41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Tan, S. Z., C. R. Reisch, and K. L. Prather (2018) A robust CRISPR interference gene repression system in Pseudomonas. J. Bacteriol. 200: e00575–00517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mougiakos, I., P. Mohanraju, E. F. Bosma, V. Vrouwe, M. F. Bou, M. I. Naduthodi, A. Gussak, R. B. Brinkman, R. Van Kranenburg, and J. Van Der Oost (2017) Characterizing a thermostable Cas9 for bacterial genome editing and silencing. Nat. Commun. 8: 1647.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Aparicio, T., V. de Lorenzo, and E. Martínez-García (2018) CRISPR/Cas9-based counterselection boosts recombineering efficiency in Pseudomonas putida. Biotechnol. J. 13: e1700161.

    Article  PubMed  CAS  Google Scholar 

  26. Lieder, S., P. I. Nikel, V. de Lorenzo, and R. Takors (2015) Genome reduction boosts heterologous gene expression in Pseudomonas putida. Microb. Cell Fact. 14: 23.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Martínez-García, E., P. I. Nikel, T. Aparicio, and V. de Lorenzo (2014) Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb. Cell Fact. 13: 159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wang, J., W. Ma, Y. Wang, L. Lin, T. Wang, Y. Wang, Y. Li, and X. Wang (2018) Deletion of 76 genes relevant to flagella and pili formation to facilitate polyhydroxyalkanoate production in Pseudomonas putida. Appl. Microbiol. Biotechnol. 102: 10523–10539.

    Article  CAS  PubMed  Google Scholar 

  29. García-Hidalgo, J., K. Ravi, L. L. Kuré, G. Lidén, and M. Gorwa-Grauslund (2019) Identification of the two-component guaiacol demethylase system from Rhodococcus rhodochrous and expression in Pseudomonas putida EM42 for guaiacol assimilation. AMB Express. 9: 34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. de Lorenzo, V., L. Eltis, B. Kessler, and K. N. Timmis (1993) Analysis of Pseudomonas gene products using lacIq/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene. 123: 17–24.

    Article  CAS  PubMed  Google Scholar 

  31. Pérez-Martin, J. and V. de Lorenzo (1996) VTR expression cassettes for engineering conditional phenotypes in Pseudomonas: activity of the Pu promoter of the TOL plasmid under limiting concentrations of the XylR activator protein. Gene. 172: 81–86.

    Article  PubMed  Google Scholar 

  32. de Lorenzo, V., S. Fernández, M. Herrero, U. Jakubzik, and K. N. Timmis (1993) Engineering of alkyl- and haloaromatic-responsive gene expression with mini-transposons containing regulated promoters of biodegradative pathways of Pseudomonas. Gene. 130: 41–46.

    Article  CAS  PubMed  Google Scholar 

  33. Gawin, A., S. Valla, and T. Brautaset (2017) The XylS/Pm regulator/promoter system and its use in fundamental studies of bacterial gene expression, recombinant protein production and metabolic engineering. Microb. Biotechnol. 10: 702–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wittgens, A., B. Santiago-Schuebel, M. Henkel, T. Tiso, L. M. Blank, R. Hausmann, D. Hofmann, S. Wilhelm, K. E. Jaeger, and F. Rosenau (2018) Heterologous production of long-chain rhamnolipids from Burkholderia glumae in Pseudomonas putida-a step forward to tailor-made rhamnolipids. Appl. Microbiol. Biotechnol. 102: 1229–1239.

    Article  CAS  PubMed  Google Scholar 

  35. Silva-Rocha, R., E. Martínez-García, B. Calles, M. Chavarría, A. Arce-Rodríguez, A. de Las Heras, A. D. Paez-Espino, G. Durante-Rodríguez, J. Kim, P. I. Nikel, R. Platero, and V. de Lorenzo (2013) The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res. 41: D666–D675.

    Article  CAS  PubMed  Google Scholar 

  36. Martínez-García, E., T. Aparicio, A. Goñi-Moreno, S. Fraile, and V. de Lorenzo (2015) SEVA 2.0: an update of the Standard European Vector Architecture for de-/re-construction of bacterial functionalities. Nucleic Acids Res. 43: D1183–D1189.

    Article  PubMed  CAS  Google Scholar 

  37. Martínez-García, E., A. Goñi-Moreno, B. Bartley, J. McLaughlin, L. Sánchez-Sampedro, H. Pascual del Pozo, C. P. Hernández, A. S. Marletta, D. De Lucrezia, G. Sánchez-Fernández, S. Fraile, and V. de Lorenzo (2020) SEVA 3.0: an update of the Standard European Vector Architecture for enabling portability of genetic constructs among diverse bacterial hosts. Nucleic Acids Res. 48: D1164–D1170.

    Article  CAS  PubMed  Google Scholar 

  38. Bugg, T. D. H., J. J. Williamson, and G. M. M. Rashid (2020) Bacterial enzymes for lignin depolymerisation: new biocatalysts for generation of renewable chemicals from biomass. Curr. Opin. Chem. Biol. 55: 26–33.

    Article  CAS  PubMed  Google Scholar 

  39. Choudhary, A., H. Purohit, and P. S. Phale (2017) Benzoate transport in Pseudomonas putida CSV86. FEMS Microbiol. Lett. 364: fnx118.

    Article  CAS  Google Scholar 

  40. Nichols, N. N. and C. S. Harwood (1997) PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J. Bacteriol. 179: 5056–5061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tan, K., C. Chang, M. Cuff, J. Osipiuk, E. Landorf, J. C. Mack, S. Zerbs, A. Joachimiak, and F. R. Collart (2013) Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids. Proteins. 81: 1709–1726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fujita, M., K. Mori, H. Hara, S. Hishiyama, N. Kamimura, and E. Masai (2019) A TonB-dependent receptor constitutes the outer membrane transport system for a lignin-derived aromatic compound. Commun. Biol. 2: 432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vermaas, J. V., R. A. Dixon, F. Chen, S. D. Mansfield, W. Boerjan, J. Ralph, M. F. Crowley, and G. T. Beckham (2019) Passive membrane transport of lignin-related compounds. Proc. Natl. Acad. Sci. USA. 116: 23117–23123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beckham, G. T., C. W. Johnson, E. M. Karp, D. Salvachúa, and D. R. Vardon (2016) Opportunities and challenges in biological lignin valorization. Curr. Opin. Biotechnol. 42: 40–53.

    Article  CAS  PubMed  Google Scholar 

  45. Singh, R., P. Singh, and R. Sharma (2014) Microorganism as a tool of bioremediation technology for cleaning environment: a review. Proc. Int. Acad. Ecol. Environ. Sci. 4: 1–6.

    CAS  Google Scholar 

  46. Morales, G., J. F. Linares, A. Beloso, J. P. Albar, J. L. Martínez, and F. Rojo (2004) The Pseudomonas putida Crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds. J. Bacteriol. 186: 1337–1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hernández-Arranz, S., R. Moreno, and F. Rojo (2013) The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy. Environ. Microbiol. 15: 227–241.

    Article  PubMed  CAS  Google Scholar 

  48. Johnson, C. W., P. E. Abraham, J. G. Linger, P. Khanna, R. L. Hettich, and G. T. Beckham (2017) Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440. Metab. Eng. Commun. 5: 19–25.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Abdelaziz, O. Y., K. Li, P. Tunå, and C. P. Hulteberg (2018) Continuous catalytic depolymerisation and conversion of industrial kraft lignin into low-molecular-weight aromatics. Biomass Conv. Bioref. 8: 455–470.

    Article  CAS  Google Scholar 

  50. Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, and M. Ladisch (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673–686.

    Article  CAS  PubMed  Google Scholar 

  51. Banerjee, S., G. Mishra, and A. Roy (2019) Metabolic engineering of bacteria for renewable bioethanol production from cellulosic biomass. Biotechnol. Bioprocess Eng. 24: 713–733.

    Article  CAS  Google Scholar 

  52. Puchałka, J., M. A. Oberhardt, M. Godinho, A. Bielecka, D. Regenhardt, K. N. Timmis, J. A. Papin, and V. A. P. M. Dos Santos (2008) Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput. Biol. 4: e1000210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Basu, A., S. K. Apte, and P. S. Phale (2006) Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86. Appl. Environ. Microbiol. 72: 2226–2230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dvořák, P. and V. de Lorenzo (2018) Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization of cellobiose, xylose, and glucose. Metab. Eng. 48: 94–108.

    Article  PubMed  CAS  Google Scholar 

  55. Vinuselvi, P. and S. K. Lee (2012) Engineered Escherichia coli capable of co-utilization of cellobiose and xylose. Enzyme Microb. Technol. 50: 1–4.

    Article  CAS  PubMed  Google Scholar 

  56. Lee, J., J. N. Saddler, Y. Um, and H. M. Woo (2016) Adaptive evolution and metabolic engineering of a cellobiose- and xylose-negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose. Microb. Cell Fact. 15: 20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wang, Y., F. Horlamus, M. Henkel, F. Kovacic, S. Schläfle, R. Hausmann, A. Wittgens, and F. Rosenau (2019) Growth of engineered Pseudomonas putida KT2440 on glucose, xylose, and arabinose: Hemicellulose hydrolysates and their major sugars as sustainable carbon sources. GCB Bioenergy. 11: 249–259.

    Article  CAS  Google Scholar 

  58. Sánchez-Pascuala, A., L. Fernandez-Cabezon, V. de Lorenzo, and P. I. Nikel (2019) Functional implementation of a linear glycolysis for sugar catabolism in Pseudomonas putida. Metab. Eng. 54: 200–211.

    Article  PubMed  CAS  Google Scholar 

  59. Averesch, N. J. H. and J. O. Krömer (2018) Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds-present and future strain construction strategies. Front. Bioeng. Biotechnol. 6: 32.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Johnson, C. W., D. Salvachúa, P. Khanna, H. Smith, D. J. Peterson, and G. T. Beckham (2016) Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity. Met. Eng. Commun. 3: 111–119.

    Article  Google Scholar 

  61. Jung, H. M., M. Y. Jung, and M. K. Oh (2015) Metabolic engineering of Klebsiella pneumoniae for the production of cis,cis-muconic acid. Appl. Microbiol. Biotechnol. 99: 5217–5225.

    Article  CAS  PubMed  Google Scholar 

  62. Lee, J. H. and V. F. Wendisch (2017) Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. J. Biotechnol. 257: 211–221.

    Article  CAS  PubMed  Google Scholar 

  63. Lee, S., D. Nam, J. Y. Jung, M. K. Oh, B. I. Sang, and R. J. Mitchell (2012) Identification of Escherichia coli biomarkers responsive to various lignin-hydrolysate compounds. Bioresour. Technol. 114: 450–456.

    Article  CAS  PubMed  Google Scholar 

  64. da Silva, E. A. B., M. Zabkova, J. D. Araújo, C. A. Cateto, M. F. Barreiro, M. N. Belgacem, and A. E. Rodrigues (2009) An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chem. Eng. Res. Des. 87: 1276–1292.

    Article  CAS  Google Scholar 

  65. Sainsbury, P. D., E. M. Hardiman, M. Ahmad, H. Otani, N. Seghezzi, L. D. Eltis, and T. D. H. Bugg (2013) Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem. Biol. 8: 2151–2156.

    Article  CAS  PubMed  Google Scholar 

  66. Graf, N. and J. Altenbuchner (2014) Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid. Appl. Microbiol. Biotechnol. 98: 137–149.

    Article  CAS  PubMed  Google Scholar 

  67. Rodriguez, A., D. Salvachúa, R. Katahira, B. A. Black, N. S. Cleveland, M. Reed, H. Smith, E. E. K. Baidoo, J. D. Keasling, B. A. Simmons, G. T. Beckham, and J. M. Gladden (2017) Base-catalyzed depolymerization of solid lignin-rich streams enables microbial conversion. ACS Sustainable Chem. Eng. 5: 8171–8180.

    Article  CAS  Google Scholar 

  68. Van Duuren, J. B. J. H., D. Wijte, A. Leprince, B. Karge, J. Puchałka, J. Wery, V. A. P. M. Dos Santos, G. Eggink, and A. E. Mars (2011) Generation of a catR deficient mutant of P. putida KT2440 that produces cis, cis-muconate from benzoate at high rate and yield. J. Biotechnol. 156: 163–172.

    Article  CAS  PubMed  Google Scholar 

  69. Vardon, D. R., M. A. Franden, C. W. Johnson, E. M. Karp, M. T. Guarnieri, J. G. Linger, M. J. Salm, T. J. Strathmann, and G. T. Beckham (2015) Adipic acid production from lignin. Energy Envrion. Sci. 8: 617–628.

    Article  CAS  Google Scholar 

  70. Salvachúa, D., C. W. Johnson, C. A. Singer, H. Rohrer, D. J. Peterson, B. A. Black, A. Knapp, and G. T. Beckham (2018) Bioprocess development for muconic acid production from aromatic compounds and lignin. Green Chem. 20: 5007–5019.

    Article  Google Scholar 

  71. Brodin, M., M. Vallejos, M. T. Opedal, M. C. Area, and G. Chinga-Carrasco (2017) Lignocellulosics as sustainable resources for production of bioplastics — A review. J. Clean. Prod. 162: 646–664.

    Article  CAS  Google Scholar 

  72. Zhang, X., R. Luo, Z. Wang, Y. Deng, and G. Q. Chen (2009) Application of (R)-3-hydroxyalkanoate methyl esters derived from microbial polyhydroxyalkanoates as novel biofuels. Biomacromolecules. 10: 707–711.

    Article  CAS  PubMed  Google Scholar 

  73. Wang, S. Y., Z. Wang, M. M. Liu, Y. Xu, X. J. Zhang, and G. Q. Chen (2010) Properties of a new gasoline oxygenate blend component: 3-hydroxybutyrate methyl ester produced from bacterial poly-3-hydroxybutyrate. Biomass Bioenergy. 34: 1216–1222.

    Article  CAS  Google Scholar 

  74. Tomizawa, S., J. A. Chuah, K. Matsumoto, Y. Doi, and K. Numata (2014) Understanding the limitations in the biosynthesis of polyhydroxyalkanoate (PHA) from lignin derivatives. ACS Sustainable Chem. Eng. 2: 1106–1113.

    Article  CAS  Google Scholar 

  75. Wang, X., L. Lin, J. Dong, J. Ling, W. Wang, H. Wang, Z. Zhang, and X. Yu (2018) Simultaneous improvements of Pseudomonas cell growth and polyhydroxyalkanoate production from a lignin derivative for lignin-consolidated bioprocessing. Appl. Environ. Microbiol. 84: e01469–01418.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, H. H., X. R. Zhou, Q. Liu, and G. Q. Chen (2011) Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida. Appl. Microbiol. Biotechnol. 89: 1497–1507.

    Article  CAS  PubMed  Google Scholar 

  77. Tran, T. T. and T. C. Charles (2020) Lactic acid containing polymers produced in engineered Sinorhizobium meliloti and Pseudomonas putida. PLoS One. 15: e0218302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Eş, I., A. M. Khaneghah, F. J. Barba, J. A. Saraiva, A. S. Sant’Ana, and S. M. B. Hashemi (2018) Recent advancements in lactic acid production-a review. Food Res. Int. 107: 763–770.

    Article  PubMed  CAS  Google Scholar 

  79. Johnson, C. W. and G. T. Beckham (2015) Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin. Met. Eng. 28: 240–247.

    Article  CAS  Google Scholar 

  80. Yang, J., J. H. Son, H. Kim, S. Cho, J. Na, Y. J. Yeon, and J. Lee (2019) Mevalonate production from ethanol by direct conversion through acetyl-CoA using recombinant Pseudomonas putida, a novel biocatalyst for terpenoid production. Microb. Cell Fact. 18: 168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Lee, J. H., S. Lama, J. R. Kim, and S. H. Park (2018) Production of 1,3-propanediol from glucose by recombinant Escherichia coli BL21 (DE3). Biotechnol. Bioprocess Eng. 23: 250–258.

    Article  CAS  Google Scholar 

  82. Nijkamp, K., R. G. M. Westerhof, H. Ballerstedt, J. A. M. De Bont, and J. Wery (2007) Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose. Appl. Microbiol. Biotechnol. 74: 617–624.

    Article  CAS  PubMed  Google Scholar 

  83. Yu, S., M. R. Plan, G. Winter, and J. O. Krömer (2016) Metabolic engineering of Pseudomonas putida KT2440 for the production of para-hydroxy benzoic acid. Front. Bioeng. Biotechnol. 4: 90.

    PubMed  PubMed Central  Google Scholar 

  84. Wierckx, N. J. P., H. Ballerstedt, J. A. M. de Bont, and J. Wery (2005) Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl. Environ. Microbiol. 71: 8221–8227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Beller, H. R., A. V. Rodrigues, K. Zargar, Y. W. Wu, A. K. Saini, R. M. Saville, J. H. Pereira, P. D. Adams, S. G. Tringe, C. J. Petzold, and J. D. Keasling (2018) Discovery of enzymes for toluene synthesis from anoxic microbial communities. Nat. Chem. Biol. 14: 451–457.

    Article  CAS  PubMed  Google Scholar 

  86. Kwon, K. K., D. H. Lee, S. J. Kim, S. L. Choi, E. Rha, S. J. Yeom, B. Subhadra, J. Lee, K. J. Jeong, and S. G. Lee (2018) Evolution of enzymes with new specificity by high-throughput screening using DmpR-based genetic circuits and multiple flow cytometry rounds. Sci. Rep. 8: 2659.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Ho, J. C. H., S. V. Pawar, S. J. Hallam, and V. G. Yadav (2018) An improved whole-cell biosensor for the discovery of lignintransforming enzymes in functional metagenomic screens. ACS Synth. Biol. 7: 392–398.

    Article  CAS  PubMed  Google Scholar 

  88. Strachan, C. R., R. Singh, D. VanInsberghe, K. Ievdokymenko, K. Budwill, W. W. Mohn, L. D. Eltis, and S. J. Hallam (2014) Metagenomic scaffolds enable combinatorial lignin transformation. Proc. Natl. Acad. Sci. USA. 111: 10143–10148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jha, R. K., J. M. Bingen, C. W. Johnson, T. L. Kern, P. Khanna, D. S. Trettel, C. E. M. Strauss, G. T. Beckham, and T. Dale (2018) A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution. Metab. Eng. Commun. 6: 33–38.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kim, H. J., H. Jeong, and S. J. Lee (2018) Synthetic biology for microbial heavy metal biosensors. Anal. Bioanal. Chem. 410: 1191–1203.

    Article  CAS  PubMed  Google Scholar 

  91. Nguyen, N. H., J. R. Kim, and S. Park (2018) Application of transcription factor-based 3-hydroxypropionic acid biosensor. Biotechnol. Bioprocess Eng. 23: 564–572.

    Article  CAS  Google Scholar 

  92. Gui, Q., T. Lawson, S. Shan, L. Yan, and Y. Liu (2017) The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors. 17: 1623.

    Article  CAS  PubMed Central  Google Scholar 

  93. Kohlstedt, M., S. Starck, N. Barton, J. Stolzenberger, M. Selzer, K. Mehlmann, R. Schneider, D. Pleissner, J. Rinkel, J. S. Dickschat, J. Venus, J. B. J. H. van Duuren, and C. Wittmann (2018) From lignin to nylon: cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metab. Eng. 47: 279–293.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intelligent Synthetic Biology Center of the Global Frontier Program (2015M3A6A8065831), the Bio & Medical Technology Development Program (2018M3A9H3024746), and the Basic Science Research Program (2019R1A2C1090726) through the National Research Foundation, and the Research Initiative Program of KRIBB.

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong Hyun Sung.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Sohn, JH., Bae, JH. et al. Current Status of Pseudomonas putida Engineering for Lignin Valorization. Biotechnol Bioproc E 25, 862–871 (2020). https://doi.org/10.1007/s12257-020-0029-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0029-2

Keywords

Navigation