Skip to main content

Advertisement

Log in

A Review on Solid Microneedles for Biomedical Applications

  • Review Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Microelectromechanical system (MEMS)-based microneedles are an innovative way of drug delivery that increases the permeability of the skin. It generates microscopic pores inside the skin that leads to the passive diffusion of drugs for dermal microcirculation to take place. This phenomenon helps toward efficient drug penetration. MEMS microneedles are small-sized needles usually in the micron to millimeter range, normally having a length to width of about 150–550 µm and 50–300 µm. respectively. Their tip diameter varies from 1 to 80 µm that can pierce through the epidermis layer directly to dermal tissues devoid of any pain. In this paper, a broad overview of solid microneedles for biomedical applications has been presented. The objective of this review is to collect the state of art main features related to solid microneedles. Particularly, the challenges related to solid microneedles, such as materials and methods used in the fabrication of microneedles, design and their performance, testing, safety concerns, commercialization issues, and applications, have been discussed. Microneedles can be characterized conferring to their fabrication procedure, structure, materials, general shape and size, the shape of the tip, microneedle array thickness, and applications. This comprehensive review on solid microneedles may provide significant useful information for scientists or researchers working on the design and development of solid microneedles for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nandagopal MG, Antony R, Rangabhashiyam S, Sreekumar N, Selvaraju N. Overview of microneedle system: a third generation transdermal drug delivery approach. Microsyst Technol. 2014;20(7):1249–72.

    Article  Google Scholar 

  2. Park J-H, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release. 2005;104(1):51–66.

    Article  CAS  Google Scholar 

  3. Bariya SH, Gohel MC, Mehta TA, Sharma OP. Microneedles: an emerging transdermal drug delivery system. J Pharm Pharmacol. 2012;64(1):11–29.

    Article  CAS  Google Scholar 

  4. van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans) dermal drug and vaccine delivery. J Control Release. 2012;161(2):645–55.

    Article  Google Scholar 

  5. Henry S, McAllister DV, Allen MG, Prausnitz MR. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci. 1998;87(8):922–5.

    Article  CAS  Google Scholar 

  6. Kim Y-C, Park J-H, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547–68.

    Article  CAS  Google Scholar 

  7. Indermun S, Luttge R, Choonara YE, Kumar P, Du Toit LC, Modi G, et al. Current advances in the fabrication of microneedles for transdermal delivery. J Control Release. 2014;185:130–8.

    Article  CAS  Google Scholar 

  8. Moon SJ, Lee SS, Lee H, Kwon T. Fabrication of microneedle array using LIGA and hot embossing process. Microsyst Technol. 2005;11(4–5):311–8.

    Article  CAS  Google Scholar 

  9. Cheung K, Das DB. Microneedles for drug delivery: trends and progress. Drug Delivery. 2016;23(7):2338–54.

    Article  CAS  Google Scholar 

  10. Ita K. Transdermal delivery of drugs with microneedles—potential and challenges. Pharmaceutics. 2015;7(3):90–105.

    Article  CAS  Google Scholar 

  11. Escobar-Chávez JJ, Bonilla-Martínez D, Angélica M, Molina-Trinidad E, Casas-Alancaster N, Revilla-Vázquez AL. Microneedles: a valuable physical enhancer to increase transdermal drug delivery. J Clin Pharmacol. 2011;51(7):964–77.

    Article  Google Scholar 

  12. Sivamani RK, Liepmann D, Maibach HI. Microneedles and transdermal applications. Expert Opin Drug Deliv. 2007;4(1):19–25.

    Article  CAS  Google Scholar 

  13. Donnelly RF, Singh TRR, Woolfson AD. Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Delivery. 2010;17(4):187–207.

    Article  CAS  Google Scholar 

  14. Tuan-Mahmood T-M, McCrudden MT, Torrisi BM, McAlister E, Garland MJ, Singh TRR, et al. Microneedles for intradermal and transdermal drug delivery. Eur J Pharm Sci. 2013;50(5):623–37.

    Article  CAS  Google Scholar 

  15. El-Laboudi A, Oliver NS, Cass A, Johnston D. Use of microneedle array devices for continuous glucose monitoring: a review. Diabetes Technol Ther. 2013;15(1):101–15.

    Article  CAS  Google Scholar 

  16. Iliescu F, Dumitrescu-Ionescu D, Petrescu M, Iliescu C. A review on transdermal drug delivery using microneedles: current research and perspective. Ann Acad Rom Sci Series Sci Technol Inf. 2014;7(1):734.

    Google Scholar 

  17. Quinn HL, Kearney M-C, Courtenay AJ, McCrudden MT, Donnelly RF. The role of microneedles for drug and vaccine delivery. Expert Opin Drug Deliv. 2014;11(11):1769–80.

    Article  CAS  Google Scholar 

  18. Chen W, Li H, Shi D, Liu Z, Yuan W. Microneedles as a delivery system for gene therapy. Front Pharmacol. 2016;7:137.

    Article  Google Scholar 

  19. Marwah H, Garg T, Goyal AK, Rath G. Permeation enhancer strategies in transdermal drug delivery. Drug Delivery. 2016;23(2):564–78.

    Article  CAS  Google Scholar 

  20. Thakur Singh RR, Tekko I, McAvoy K, McMillan H, Jones D, Donnelly RF. Minimally invasive microneedles for ocular drug delivery. Expert Opin Drug Deliv. 2017;14(4):525–37.

    Article  CAS  Google Scholar 

  21. Ma G, Wu C. Microneedle, bio-microneedle, and bio-inspired microneedle: a review. J Control Release. 2017;251:11–23.

    Article  CAS  Google Scholar 

  22. Kolli CS, Banga AK. Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm Res. 2008;25(1):104–13.

    Article  CAS  Google Scholar 

  23. McAllister DV, Wang PM, Davis SP, Park J-H, Canatella PJ, Allen MG, et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci. 2003;100(24):13755–60.

    Article  CAS  Google Scholar 

  24. Lin W, Cormier M, Samiee A, Griffin A, Johnson B, Teng C, et al. Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux®) technology. Pharm Res. 2001;18(12):1789–93.

    Article  CAS  Google Scholar 

  25. Wang H, et al. "Microneedle array integrated with CNT nanofilters for controlled and selective drug delivery." Journal of Microelectromechanical Systems 23.5 (2014): 1036-1044.

    Article  CAS  Google Scholar 

  26. Wei-Ze L, Mei-Rong H, Jian-Ping Z, Yong-Qiang Z, Bao-Hua H, Ting L, et al. Super-short solid silicon microneedles for transdermal drug delivery applications. Int J Pharm. 2010;389(1–2):122–9.

    Article  Google Scholar 

  27. Aoyagi S, Izumi H, and Fukuda M. "Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito's proboscis." Sensors and Actuators A: Physical 143.1 (2008): 20-28.

  28. Coulman SA, Anstey A, Gateley C, Morrissey A, McLoughlin P, Allender C, et al. Microneedle mediated delivery of nanoparticles into human skin. Int J Pharm. 2009;366(1–2):190–200.

    Article  CAS  Google Scholar 

  29. Oh J-H, Park H-H, Do K-Y, Han M, Hyun D-H, Kim C-G, et al. Influence of the delivery systems using a microneedle array on the permeation of a hydrophilic molecule, calcein. Eur J Pharm Biopharm. 2008;69(3):1040–5.

    Article  CAS  Google Scholar 

  30. Ding Z, Verbaan FJ, Bivas-Benita M, Bungener L, Huckriede A, van den Berg DJ, et al. Microneedle arrays for the transcutaneous immunization of diphtheria and influenza in BALB/c mice. J Control Release. 2009;136(1):71–8.

    Article  CAS  Google Scholar 

  31. Han M, Kim DK, Kang SH, Yoon H-R, Kim B-Y, Lee SS, et al. Improvement in antigen-delivery using fabrication of a grooves-embedded microneedle array. Sens Actuators, B Chem. 2009;137(1):274–80.

    Article  Google Scholar 

  32. Jin CY, Han MH, Lee SS, Choi YH. Mass producible and biocompatible microneedle patch and functional verification of its usefulness for transdermal drug delivery. Biomed Microdevice. 2009;11(6):1195–203.

    Article  CAS  Google Scholar 

  33. Kim Y-C, Quan F-S, Compans RW, Kang S-M, Prausnitz MR. Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J Control Release. 2010;142(2):187–95.

    Article  CAS  Google Scholar 

  34. Park J-H, Choi S-O, Seo S, Choy YB, Prausnitz MR. A microneedle roller for transdermal drug delivery. Eur J Pharm Biopharm. 2010;76(2):282–9.

    Article  CAS  Google Scholar 

  35. Gomaa YA, Morrow DI, Garland MJ, Donnelly RF, El-Khordagui LK, Meidan VM. Effects of microneedle length, density, insertion time and multiple applications on human skin barrier function: assessments by transepidermal water loss. Toxicol In Vitro. 2010;24(7):1971–8.

    Article  CAS  Google Scholar 

  36. Donnelly RF, Morrow DI, Fay F, Scott CJ, Abdelghany S, Singh RRT, et al. Microneedle-mediated intradermal nanoparticle delivery: potential for enhanced local administration of hydrophobic pre-formed photosensitisers. Photodiagn Photodyn Ther. 2010;7(4):222–31.

    Article  CAS  Google Scholar 

  37. Römgens A, Bader D, Bouwstra J, Baaijens F, Oomens C. Monitoring the penetration process of single microneedles with varying tip diameters. J Mech Behav Biomed Mater. 2014;40:397–405.

    Article  Google Scholar 

  38. Zhang W, Gao J, Zhu Q, Zhang M, Ding X, Wang X, et al. Penetration and distribution of PLGA nanoparticles in the human skin treated with microneedles. Int J Pharm. 2010;402(1–2):205–12.

    CAS  Google Scholar 

  39. Nguyen J, Ita KB, Morra MJ, Popova IE. The influence of solid microneedles on the transdermal delivery of selected antiepileptic drugs. Pharmaceutics. 2016;8(4):33.

    Article  Google Scholar 

  40. Hoang MT, Ita KB, Bair DA. Solid microneedles for transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride. Pharmaceutics. 2015;7(4):379–96.

    Article  CAS  Google Scholar 

  41. Uddin MJ, Scoutaris N, Klepetsanis P, Chowdhry B, Prausnitz MR, Douroumis D. Inkjet printing of transdermal microneedles for the delivery of anticancer agents. Int J Pharm. 2015;494(2):593–602.

    Article  CAS  Google Scholar 

  42. Witting M, Obst K, Pietzsch M, Friess W, Hedtrich S. Feasibility study for intraepidermal delivery of proteins using a solid microneedle array. Int J Pharm. 2015;486(1–2):52–8.

    Article  CAS  Google Scholar 

  43. Dang N, Liu TY, Prow TW. "Nano-and microtechnology in skin delivery of vaccines." Micro and Nanotechnology in Vaccine Development. William Andrew Publishing, 2017. p. 327-341.

  44. Hu Z, Meduri CS, Ingrole RS, Gill HS, Kumar G. Solid and hollow metallic glass microneedles for transdermal drug-delivery. Appl Phys Lett. 2020;116(20):203703.

  45. Narayanan SP, Raghavan S. Solid silicon microneedles for drug delivery applications. Int J Adv Manuf. 2017;93(1–4):407–22.

    Article  Google Scholar 

  46. Chen BZ, Liu JL, Li QY, Wang ZN, Zhang XP, Shen CB, et al. Safety evaluation of solid polymer microneedles in human volunteers at different application sites. ACS Appl Bio Mater. 2019;2(12):5616–25.

    Article  CAS  Google Scholar 

  47. Lee JW, Han M-R, Park J-H. Polymer microneedles for transdermal drug delivery. J Drug Target. 2013;21(3):211–23.

    Article  CAS  Google Scholar 

  48. Li QY, Zhang JN, Chen BZ, Wang QL, Guo XD. A solid polymer microneedle patch pretreatment enhances the permeation of drug molecules into the skin. RSC Adv. 2017;7(25):15408–15.

    Article  CAS  Google Scholar 

  49. Evens T, Malek O, Castagne S, Seveno D, Van Bael A. A novel method for producing solid polymer microneedles using laser ablated moulds in an injection moulding process. Manuf Lett. 2020;24:29–32.

    Article  Google Scholar 

  50. Verbaan F, Bal S, Van den Berg D, Dijksman J, Van Hecke M, Verpoorten H, et al. Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method. J Control Release. 2008;128(1):80–8.

    Article  CAS  Google Scholar 

  51. Kaushik S, Hord AH, Denson DD, McAllister DV, Smitra S, Allen MG, et al. Lack of pain associated with microfabricated microneedles. Anesth Analg. 2001;92(2):502–4.

    Article  CAS  Google Scholar 

  52. Shin JH, et al. "C-di-GMP with influenza vaccine showed enhanced and shifted immune responses in microneedle vaccination in the skin." Drug Deliv Transl Res. 2020;10(3):815–25.

  53. Gill HS, Prausnitz MR. Coating formulations for microneedles. Pharm Res. 2007;24(7):1369–80.

    Article  CAS  Google Scholar 

  54. Bilal M, Mehmood S, Raza A, Hayat U, Rasheed T, Iqbal HM. Microneedles in smart drug delivery. Adv Wound Care. 2021;10(4):204–19.

    Article  Google Scholar 

  55. Ma X, Peng W, Su W, Yi Z, Chen G, Chen X, et al. Delicate assembly of ultrathin hydroxyapatite nanobelts with nanoneedles directed by dissolved cellulose. Inorg Chem. 2018;57(8):4516–23.

    Article  CAS  Google Scholar 

  56. Li J, Liu B, Zhou Y, Chen Z, Jiang L, Yuan W, et al. Fabrication of a Ti porous microneedle array by metal injection molding for transdermal drug delivery. PLoS One. 2017;12(2):e0172043.

  57. Ullah A, Kim CM, Kim GM. Porous polymer coatings on metal microneedles for enhanced drug delivery. R Soc Open Sci. 2018;5(4):171609.

  58. Li Y, Zhang H, Yang R, Laffitte Y, Schmill U, Hu W, et al. Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. Microsyst Nanoeng. 2019;5(1):1–11.

    Article  Google Scholar 

  59. He X, Sun J, Zhuang J, Xu H, Liu Y, Wu D. Microneedle system for transdermal drug and vaccine delivery: devices, safety, and prospects. Dose-Response. 2019;17(4):1559325819878585.

    Article  CAS  Google Scholar 

  60. Lee JW, Park J-H, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29(13):2113–24.

    Article  CAS  Google Scholar 

  61. Chen X, Prow TW, Crichton ML, Jenkins DW, Roberts MS, Frazer IH, et al. Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin. J Control Release. 2009;139(3):212–20.

    Article  CAS  Google Scholar 

  62. Chen J, Qiu Y, Zhang S, Yang G, Gao Y. Controllable coating of microneedles for transdermal drug delivery. Drug Dev Ind Pharm. 2015;41(3):415–22.

    Article  CAS  Google Scholar 

  63. Wang PM, Cornwell M, Hill J, Prausnitz MR. Precise microinjection into skin using hollow microneedles. J Investig Dermatol. 2006;126(5):1080–7.

    Article  CAS  Google Scholar 

  64. Chen M-C, Ling M-H, Lai K-Y, Pramudityo E. Chitosan microneedle patches for sustained transdermal delivery of macromolecules. Biomacromol. 2012;13(12):4022–31.

    Article  CAS  Google Scholar 

  65. Bodhale DW, Nisar A, Afzulpurkar N. Structural and microfluidic analysis of hollow side-open polymeric microneedles for transdermal drug delivery applications. Microfluid Nanofluid. 2010;8(3):373–92.

    Article  CAS  Google Scholar 

  66. Teo AL, Shearwood C, Ng KC, Lu J, Moochhala S. Transdermal microneedles for drug delivery applications. Mater Sci Eng, B. 2006;132(1–2):151–4.

    Article  CAS  Google Scholar 

  67. Park J-H, Prausnitz MR. Analysis of mechanical failure of polymer microneedles by axial force. J Korean Phys Soc. 2010;56(4):1223.

    Article  CAS  Google Scholar 

  68. Raja Rajeswari, N., P. Malliga, and B. K. Gnanavel. "Buckling analysis of hollow microneedle in transdermal drug delivery." ASME International Mechanical Engineering Congress and Exposition. Vol. 50534. American Society of Mechanical Engineers, 2016.

  69. O’Mahony C. Structural characterization and in-vivo reliability evaluation of silicon microneedles. Biomed Microdevice. 2014;16(3):333–43.

    Article  Google Scholar 

  70. Ashraf MW, Tayyaba S, Afzulpurkar N. Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications. Int J Mol Sci. 2011;12(6):3648–704.

    Article  CAS  Google Scholar 

  71. Davis SP, Landis BJ, Adams ZH, Allen MG, Prausnitz MR. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J Biomech. 2004;37(8):1155–63.

    Article  Google Scholar 

  72. Kong X, Zhou P, Wu C. Numerical simulation of microneedles’ insertion into skin. Comput Methods Biomech Biomed Engin. 2011;14(9):827–35.

    Article  CAS  Google Scholar 

  73. Gupta J, Gill HS, Andrews SN, Prausnitz MR. Kinetics of skin resealing after insertion of microneedles in human subjects. J Control Release. 2011;154(2):148–55.

    Article  CAS  Google Scholar 

  74. Leone M, Van Oorschot BH, Nejadnik MR, Bocchino A, Rosato M, Kersten G, et al. Universal applicator for digitally-controlled pressing force and impact velocity insertion of microneedles into skin. Pharmaceutics. 2018;10(4):211.

    Article  CAS  Google Scholar 

  75. Olatunji O, Das DB, Garland MJ, Belaid L, Donnelly RF. Influence of array interspacing on the force required for successful microneedle skin penetration: theoretical and practical approaches. J Pharm Sci. 2013;102(4):1209–21.

    Article  CAS  Google Scholar 

  76. Gittard SD, Chen B, Xu H, Ovsianikov A, Chichkov BN, Monteiro-Riviere NA, et al. The effects of geometry on skin penetration and failure of polymer microneedles. J Adhes Sci Technol. 2013;27(3):227–43.

    Article  CAS  Google Scholar 

  77. Kochhar JS, Soon WJ, Choi J, Zou S, Kang L. Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin. J Pharm Sci. 2013;102(11):4100–8.

    Article  CAS  Google Scholar 

  78. Cha KJ, Kim T, Park SJ, Kim DS. Simple and cost-effective fabrication of solid biodegradable polymer microneedle arrays with adjustable aspect ratio for transdermal drug delivery using acupuncture microneedles. J Micromech Microeng. 2014;24(11):115015.

  79. Lin L, Pisano AP. Silicon-processed microneedles. J Microelectromech Syst. 1999;8(1):78–84.

    Article  Google Scholar 

  80. Griss P, Stemme G. Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfer. J Microelectromech Syst. 2003;12(3):296–301.

    Article  Google Scholar 

  81. Wang J, Lu J, Ly SY, Vuki M, Tian B, Adeniyi WK, et al. Lab-on-a-cable for electrochemical monitoring of phenolic contaminants. Anal Chem. 2000;72(11):2659–63.

    Article  CAS  Google Scholar 

  82. Martanto W, Moore JS, Couse T, Prausnitz MR. Mechanism of fluid infusion during microneedle insertion and retraction. J Control Release. 2006;112(3):357–61.

    Article  CAS  Google Scholar 

  83. Martanto W, Moore JS, Kashlan O, Kamath R, Wang PM, O’Neal JM, et al. Microinfusion using hollow microneedles. Pharm Res. 2006;23(1):104–13.

    Article  CAS  Google Scholar 

  84. Ovsianikov A, Chichkov B, Mente P, Monteiro-Riviere N, Doraiswamy A, Narayan R. Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery. Int J Appl Ceram Technol. 2007;4(1):22–9.

    Article  CAS  Google Scholar 

  85. Cai B, Xia W, Bredenberg S, Li H, Engqvist H. Bioceramic microneedles with flexible and self-swelling substrate. Eur J Pharm Biopharm. 2015;94:404–10.

    Article  CAS  Google Scholar 

  86. Martanto W, Davis SP, Holiday NR, Wang J, Gill HS, Prausnitz MR. Transdermal delivery of insulin using microneedles in vivo. Pharm Res. 2004;21(6):947–52.

    Article  CAS  Google Scholar 

  87. Kim K, Lee J-B. High aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnector. Microsyst Technol. 2007;13(3):231–5.

    CAS  Google Scholar 

  88. Verbaan F, Bal S, Van den Berg D, Groenink W, Verpoorten H, Lüttge R, et al. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J Control Release. 2007;117(2):238–45.

    Article  CAS  Google Scholar 

  89. Badran M, Kuntsche J, Fahr A. Skin penetration enhancement by a microneedle device (Dermaroller®) in vitro: dependency on needle size and applied formulation. Eur J Pharm Sci. 2009;36(4–5):511–23.

  90. Donnelly RF, Singh TRR, Garland MJ, Migalska K, Majithiya R, McCrudden CM, et al. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv Func Mater. 2012;22(23):4879–90.

    Article  CAS  Google Scholar 

  91. Donnelly RF, Moffatt K, Alkilani AZ, Vicente-Pérez EM, Barry J, McCrudden MT, et al. Hydrogel-forming microneedle arrays can be effectively inserted in skin by self-application: a pilot study centred on pharmacist intervention and a patient information leaflet. Pharm Res. 2014;31(8):1989–99.

    Article  CAS  Google Scholar 

  92. Sammoura F, Kang J, Heo Y-M, Jung T, Lin L. Polymeric microneedle fabrication using a microinjection molding technique. Microsyst Technol. 2007;13(5–6):517–22.

    Article  CAS  Google Scholar 

  93. Aoyagi S, Izumi H, Fukuda M. Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito’s proboscis. Sens Actuators, A. 2008;143(1):20–8.

    Article  CAS  Google Scholar 

  94. Yi-Gui L, Chun-Sheng Y, Jing-Quan L, Susumu S. Fabrication of a polymer micro needle array by mask-dragging x-ray lithography and alignment x-ray lithography. Chin Phys Lett. 2011;28(3):038101.

  95. Bediz B, Korkmaz E, Khilwani R, Donahue C, Erdos G, Falo LD, et al. Dissolvable microneedle arrays for intradermal delivery of biologics: fabrication and application. Pharm Res. 2014;31(1):117–35.

    Article  CAS  Google Scholar 

  96. Sullivan SP, Koutsonanos DG, del Pilar MM, Lee JW, Zarnitsyn V, Choi S-O, et al. Dissolving polymer microneedle patches for influenza vaccination. Nat Med. 2010;16(8):915.

    Article  CAS  Google Scholar 

  97. Allen EA, O’Mahony C, Cronin M, O’Mahony T, Moore AC, Crean AM. Dissolvable microneedle fabrication using piezoelectric dispensing technology. Int J Pharm. 2016;500(1–2):1–10.

    Article  CAS  Google Scholar 

  98. Miyano T, Tobinaga Y, Kanno T, Matsuzaki Y, Takeda H, Wakui M, et al. Sugar micro needles as transdermic drug delivery system. Biomed Microdevice. 2005;7(3):185–8.

    Article  CAS  Google Scholar 

  99. Donnelly RF, Morrissey A, McCarron PA, Woolfson DA. Microstructured devices for transdermal drug delivery and minimally-invasive patient monitoring. Recent Pat Drug Delivery Formulation. 2007;1(3):195–200.

    Article  CAS  Google Scholar 

  100. Lee K, Lee CY, Jung H. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials. 2011;32(11):3134–40.

    Article  CAS  Google Scholar 

  101. Brazzle JD, Papautsky I, Frazier AB. Hollow metallic micromachined needle arrays. Biomed Microdevice. 2000;2(3):197–205.

    Article  CAS  Google Scholar 

  102. Chandrasekaran S, Brazzle JD, Frazier AB. Surface micromachined metallic microneedles. J Microelectromech Syst. 2003;12(3):281–8.

    Article  Google Scholar 

  103. Chandrasekaran S, Frazier AB. Characterization of surface micromachined metallic microneedles. J Microelectromech Syst. 2003;12(3):289–95.

    Article  Google Scholar 

  104. Stoeber B, Liepmann D. "Design, fabrication and testing of a MEMS syringe." Proceedings of Solid-State Sensor and Actuator Workshop. 2002.

  105. Narayan RJ, Doraiswamy A, Chrisey DB, Chichkov BN. Medical prototyping using two photon polymerization. Mater Today. 2010;13(12):42–8.

    Article  CAS  Google Scholar 

  106. Wu Y, Qiu Y, Zhang S, Qin G, Gao Y. Microneedle-based drug delivery: studies on delivery parameters and biocompatibility. Biomed Microdevice. 2008;10(5):601–10.

    Article  CAS  Google Scholar 

  107. Haq M, Smith E, John DN, Kalavala M, Edwards C, Anstey A, et al. Clinical administration of microneedles: skin puncture, pain and sensation. Biomed Microdevice. 2009;11(1):35–47.

    Article  CAS  Google Scholar 

  108. Stoeber B, Liepmann D. "Fluid injection through out-of-plane microneedles." 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No. 00EX451). IEEE, 2000.

  109. Paik S-J, Byun S, Lim J-M, Park Y, Lee A, Chung S, et al. In-plane single-crystal-silicon microneedles for minimally invasive microfluid systems. Sens Actuators, A. 2004;114(2–3):276–84.

    Article  CAS  Google Scholar 

  110. Wilke N, Hibert C, O’Brien J, Morrissey A. Silicon microneedle electrode array with temperature monitoring for electroporation. Sens Actuators, A. 2005;123:319–25.

    Article  Google Scholar 

  111. Choi JW, et al. "Insertion force estimation of various microneedle array-type structures fabricated by a microstereolithography apparatus." 2006 SICE-ICASE International Joint Conference. IEEE, 2006.

  112. Shibata T, et al. "Fabrication and mechanical characterization of microneedle array for cell surgery." TRANSDUCERS 2007-2007 International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2007.

  113. Tu J, Reeves N. Feasibility study of microneedle fabrication from a thin nitinol wire using a CW single-mode fiber laser. Open Engineering. 2019;9(1):167–77.

    Article  CAS  Google Scholar 

  114. Ambrose CG, Clanton TO. Bioabsorbable implants: review of clinical experience in orthopedic surgery. Ann Biomed Eng. 2004;32(1):171–7.

    Article  Google Scholar 

  115. Jiang J, Moore JS, Edelhauser HF, Prausnitz MR. Intrascleral drug delivery to the eye using hollow microneedles. Pharm Res. 2009;26(2):395–403.

    Article  CAS  Google Scholar 

  116. Parker E, Rao M, Turner K, Meinhart C, MacDonald N. Bulk micromachined titanium microneedles. J Microelectromech Syst. 2007;16(2):289–95.

    Article  CAS  Google Scholar 

  117. Yoshida K, Lewinsky I, Nielsen M, Hylleberg M. Implantation mechanics of tungsten microneedles into peripheral nerve trunks. Med Biol Eng Compu. 2007;45(4):413–20.

    Article  Google Scholar 

  118. Chiang K, Amal R, Tran T. Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Adv Environ Res. 2002;6(4):471–85.

    Article  CAS  Google Scholar 

  119. Katwal R, Kaur H, Sharma G, Naushad M, Pathania D. Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity. J Ind Eng Chem. 2015;31:173–84.

    Article  CAS  Google Scholar 

  120. Azimi S, Sandoughsaz A, Amirsolaimani B, Naghsh-Nilchi J, Mohajerzadeh S. Three-dimensional etching of silicon substrates using a modified deep reactive ion etching technique. J Micromech Microeng. 2011;21(7):074005.

  121. Datta P, Goettert J. Method for polymer hot embossing process development. Microsyst Technol. 2007;13(3–4):265–70.

    CAS  Google Scholar 

  122. Arya J, et al. "Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects." Biomaterials 2017;128:1–7.

  123. Linder V, Gates BD, Ryan D, Parviz BA, Whitesides GM. Water‐soluble sacrificial layers for surface micromachining. Small. 2005;1(7):730–6.

  124. Zhang P, Dalton C, Jullien GA. Design and fabrication of MEMS-based microneedle arrays for medical applications. Microsyst Technol. 2009;15(7):1073–82.

    Article  Google Scholar 

  125. Wang MW, Arifin F, Huang JY. "Optimization of the micro molding of a biconcave structure." Int J Technol. 2019;269–79.

  126. Ray P, Mac DB. Determination of the optimal load path for tube hydroforming processes using a fuzzy load control algorithm and finite element analysis. Finite Elem Anal Des. 2004;41(2):173–92.

    Article  Google Scholar 

  127. Ali B, Ashraf MW, Tayyaba S. Simulation, fuzzy analysis and development of ZnO nanostructure-based piezoelectric MEMS energy harvester. Energies. 2019;12(5):807.

    Article  CAS  Google Scholar 

  128. Afzal MJ, Ashraf MW, Tayyaba S, Hossain MK, Afzulpurkar N. Sinusoidal microchannel with descending curves for varicose veins implantation. Micromachines. 2018;9(2):59.

    Article  Google Scholar 

  129. Zhang Z, Feng Q, Cai M, Huang L, Jiang Y. Research on stress-etching complex microstructure of aluminum alloy in laser electrochemical machining. Int J Adv Manuf Technol. 2015;81(9):2157–65.

    Article  Google Scholar 

  130. Bassu M, Surdo S, Strambini LM, Barillaro G. Electrochemical micromachining as an enabling technology for advanced silicon microstructuring. Adv Func Mater. 2012;22(6):1222–8.

    Article  CAS  Google Scholar 

  131. Hurtony T, Bonyár A, Gordon P. Microstructure comparison of soldered joints using electrochemical selective etching. Materials Science Forum: Trans Tech Publ; 2013. p. 367–72.

    Google Scholar 

  132. Kim K-W, Jeong J-S, An K-H, Kim B-J. A study on the microstructural changes and mechanical behaviors of carbon fibers induced by optimized electrochemical etching. Compos B Eng. 2019;165:764–71.

    Article  CAS  Google Scholar 

  133. Zhang P, Jullien GA. "Microneedle arrays for drug delivery and fluid extraction." 2005 International Conference on MEMS, NANO and Smart Systems. IEEE, 2005.

  134. Martanto, W, et al. "Transdermal delivery of insulin using microneedles in vivo." Pharm Res. 2004;21(6):947–52.

  135. Xue P, Zhang L, Xu Z, Yan J, Gu Z, Kang Y. Blood sampling using microneedles as a minimally invasive platform for biomedical diagnostics. Appl Mater Today. 2018;13:144–57.

    Article  Google Scholar 

  136. Chen B, Wei J, Iliescu C. Sonophoretic enhanced microneedles array (SEMA)—improving the efficiency of transdermal drug delivery. Sens Actuators, B Chem. 2010;145(1):54–60.

    Article  CAS  Google Scholar 

  137. Chen B, Wei J, Tay FE, Wong YT, Iliescu C. Silicon microneedle array with biodegradable tips for transdermal drug delivery. Microsyst Technol. 2008;14(7):1015–9.

    Article  CAS  Google Scholar 

  138. Yan K, Todo H, Sugibayashi K. Transdermal drug delivery by in-skin electroporation using a microneedle array. Int J Pharm. 2010;397(1–2):77–83.

    Article  CAS  Google Scholar 

  139. Roxhed N, Griss P, Stemme G. Membrane-sealed hollow microneedles and related administration schemes for transdermal drug delivery. Biomed Microdevice. 2008;10(2):271–9.

    Article  CAS  Google Scholar 

  140. Matteucci M, Fanetti M, Casella M, Gramatica F, Gavioli L, Tormen M, et al. Poly vinyl alcohol re-usable masters for microneedle replication. Microelectron Eng. 2009;86(4–6):752–6.

    Article  CAS  Google Scholar 

  141. Emam M, Abashiya Y, Chareunsack B, Skordos J, Oh J, Choi Y, et al. A novel microdevice for the treatment of hydrocephalus: design and fabrication of an array of microvalves and microneedles. Microsyst Technol. 2008;14(3):371–8.

    Article  CAS  Google Scholar 

  142. Hsu CC, et al. "Fabrication of microneedles." 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2007.

  143. Pearton M, Kang S-M, Song J-M, Kim Y-C, Quan F-S, Anstey A, et al. Influenza virus-like particles coated onto microneedles can elicit stimulatory effects on Langerhans cells in human skin. Vaccine. 2010;28(37):6104–13.

    Article  CAS  Google Scholar 

  144. Crichton ML, Ansaldo A, Chen X, Prow TW, Fernando GJ, Kendall MA. The effect of strain rate on the precision of penetration of short densely-packed microprojection array patches coated with vaccine. Biomaterials. 2010;31(16):4562–72.

    Article  CAS  Google Scholar 

  145. Kim Y-C, Quan F-S, Compans RW, Kang S-M, Prausnitz MR. Formulation of microneedles coated with influenza virus-like particle vaccine. AAPS PharmSciTech. 2010;11(3):1193–201.

    Article  CAS  Google Scholar 

  146. Chu LY, Prausnitz MR. Separable arrowhead microneedles. J Control Release. 2011;149(3):242–9.

    Article  CAS  Google Scholar 

  147. Yan G, Warner KS, Zhang J, Sharma S, Gale BK. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery. Int J Pharm. 2010;391(1–2):7–12.

    Article  CAS  Google Scholar 

  148. Song J-M, Kim Y-C, Barlow PG, Hossain MJ, Park K-M, Donis RO, et al. Improved protection against avian influenza H5N1 virus by a single vaccination with virus-like particles in skin using microneedles. Antiviral Res. 2010;88(2):244–7.

    Article  CAS  Google Scholar 

  149. Zhou C-P, Liu Y-L, Wang H-L, Zhang P-X, Zhang J-L. Transdermal delivery of insulin using microneedle rollers in vivo. Int J Pharm. 2010;392(1–2):127–33.

    Article  CAS  Google Scholar 

  150. Ita K. Transdermal delivery of drugs with microneedles: strategies and outcomes. Journal of Drug Delivery Science and Technology. 2015;29:16–23.

    Article  CAS  Google Scholar 

  151. Quan F-S, Kim Y-C, Compans RW, Prausnitz MR, Kang S-M. Dose sparing enabled by skin immunization with influenza virus-like particle vaccine using microneedles. J Control Release. 2010;147(3):326–32.

    Article  CAS  Google Scholar 

  152. Al-Japairai KAS, Mahmood S, Almurisi SH, Venugopal JR, Hilles AR, Azmana M, et al. Current trends in polymer microneedle for transdermal drug delivery. Int J Pharm. 2020.

  153. Roth RR, James WD. Microbiology of the skin: resident flora, ecology, infection. J Am Acad Dermatol. 1989;20(3):367–90.

    Article  CAS  Google Scholar 

  154. Widera G, Johnson J, Kim L, Libiran L, Nyam K, Daddona PE, et al. Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system. Vaccine. 2006;24(10):1653–64.

    Article  CAS  Google Scholar 

  155. Mikszta JA, Alarcon JB, Brittingham JM, Sutter DE, Pettis RJ, Harvey NG. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat Med. 2002;8(4):415–9.

    Article  CAS  Google Scholar 

  156. Wang PM, Cornwell M, Prausnitz MR. Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technol Ther. 2005;7(1):131–41.

    Article  CAS  Google Scholar 

  157. Burris GHDD, Prausnitz M. Effect of microneedle design on pain in human volunteers. Clin J Pain. 2008;24:585–94.

    Article  Google Scholar 

  158. Matriano JA, Cormier M, Johnson J, Young WA, Buttery M, Nyam K, et al. Macroflux® microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm Res. 2002;19(1):63–70.

    Article  CAS  Google Scholar 

  159. Jiang J, Gill HS, Ghate D, McCarey BE, Patel SR, Edelhauser HF, et al. Coated microneedles for drug delivery to the eye. Invest Ophthalmol Vis Sci. 2007;48(9):4038–43.

    Article  Google Scholar 

  160. Laurent PE, Bourhy H, Fantino M, Alchas P, Mikszta JA. Safety and efficacy of novel dermal and epidermal microneedle delivery systems for rabies vaccination in healthy adults. Vaccine. 2010;28(36):5850–6.

    Article  Google Scholar 

  161. Gill HS, Denson DD, Burris BA, Prausnitz MR. Effect of microneedle design on pain in human subjects. Clin J Pain. 2008;24(7):585.

    Article  Google Scholar 

  162. Bal SM, Caussin J, Pavel S, Bouwstra JA. In vivo assessment of safety of microneedle arrays in human skin. Eur J Pharm Sci. 2008;35(3):193–202.

    Article  CAS  Google Scholar 

  163. van der Maaden K, Yu H, Sliedregt K, Zwier R, Leboux R, Oguri M, et al. Nanolayered chemical modification of silicon surfaces with ionizable surface groups for pH-triggered protein adsorption and release: application to microneedles. J Mater Chem B. 2013;1(35):4466–77.

    Article  Google Scholar 

  164. Vicente-Perez EM, Larrañeta E, McCrudden MT, Kissenpfennig A, Hegarty S, McCarthy HO, et al. Repeat application of microneedles does not alter skin appearance or barrier function and causes no measurable disturbance of serum biomarkers of infection, inflammation or immunity in mice in vivo. Eur J Pharm Biopharm. 2017;117:400–7.

    Article  CAS  Google Scholar 

  165. Xie L, Zeng H, Sun J, Qian W. Engineering microneedles for therapy and diagnosis: a survey. Micromachines. 2020;11(3):271.

    Article  Google Scholar 

  166. Sabri AH, Ogilvie J, Abdulhamid K, Shpadaruk V, McKenna J, Segal J, et al. Expanding the applications of microneedles in dermatology. Eur J Pharm Biopharm. 2019;140:121–40.

    Article  Google Scholar 

  167. Hao Y, Li W, Zhou X, Yang F, Qian Z. Microneedles-based transdermal drug delivery systems: a review. J Biomed Nanotechnol. 2017;13(12):1581–97.

    Article  CAS  Google Scholar 

  168. Bhatnagar S, Dave K, Venuganti VVK. Microneedles in the clinic. J Control Release. 2017;260:164–82.

    Article  CAS  Google Scholar 

  169. Sachdeva V, K Banga A. Microneedles and their applications. Recent Pat Drug Deliv Formul. 2011;5(2):95–132.

  170. Zhao Z, Chen Y, Shi Y. Microneedles: a potential strategy in transdermal delivery and application in the management of psoriasis. RSC Adv. 2020;10(24):14040–9.

    Article  CAS  Google Scholar 

  171. Serrano-Castañeda P, Escobar-Chavez JJ, Rodríguez-Cruz IM, Melgoza LM, Martinez-Hernandez J. Microneedles as enhancer of drug absorption through the skin and applications in medicine and cosmetology. J Pharm Pharm Sci. 2018;21:73–93.

    Article  Google Scholar 

  172. Hirobe S, Azukizawa H, Matsuo K, Zhai Y, Quan Y-S, Kamiyama F, et al. Development and clinical study of a self-dissolving microneedle patch for transcutaneous immunization device. Pharm Res. 2013;30(10):2664–74.

    Article  CAS  Google Scholar 

  173. Lhernould MS, Tailler S, Deleers M, Delchambre A. Review of patents for microneedle application devices allowing fluid injections through the skin. Recent Pat Drug Deliv Formul. 2015;9(2):146–57.

  174. Bora P, Kumar L, Bansal AK. Microneedle technology for advanced drug delivery: evolving vistas. Review Article, Department of Pharmaceutical Technology, NIPER, CRIPS. 2008;9(1).

  175. Caffarel-Salvador E, Donnelly RF. Transdermal drug delivery mediated by microneedle arrays: innovations and barriers to success. Curr Pharm Des. 2016;22(9):1105–17.

  176. Halder J, Gupta S, Kumari R, Gupta GD, Rai VK. Microneedle array: applications, recent advances, and clinical pertinence in transdermal drug delivery. J Pharm Innov. 2020:1–8.

  177. Donnelly RF, Singh TRR, Alkilani AZ, McCrudden MT, O’Neill S, O’Mahony C, et al. Hydrogel-forming microneedle arrays exhibit antimicrobial properties: potential for enhanced patient safety. Int J Pharm. 2013;451(1–2):76–91.

    Article  CAS  Google Scholar 

  178. Bragazzi NL, Orsi A, Ansaldi F, Gasparini R, Icardi G. Fluzone® intra-dermal (Intanza®/Istivac® Intra-dermal): an updated overview. Hum Vaccin Immunother. 2016;12(10):2616–27.

    Article  Google Scholar 

  179. Levin Y, Kochba E, Kenney R. Clinical evaluation of a novel microneedle device for intradermal delivery of an influenza vaccine: are all delivery methods the same? Vaccine. 2014;32(34):4249–52.

    Article  CAS  Google Scholar 

  180. Garland MJ, Migalska K, Mahmood TMT, Singh TRR, Woolfson AD, Donnelly RF. Microneedle arrays as medical devices for enhanced transdermal drug delivery. Expert Rev Med Devices. 2011;8(4):459–82.

    Article  CAS  Google Scholar 

  181. Jana BA, Wadhwani AD. Microneedle–future prospect for efficient drug delivery in diabetes management. Indian journal of pharmacology. 2019;51(1):4.

    Article  CAS  Google Scholar 

  182. Ali B, ElMahdy N, Elfar NN. Microneedling (Dermapen) and Jessner’s solution peeling in treatment of atrophic acne scars: a comparative randomized clinical study. J Cosmet Laser Ther. 2019;21(6):357–63.

    Article  Google Scholar 

  183. McCrudden MT, McAlister E, Courtenay AJ, González-Vázquez P, Raj Singh TR, Donnelly RF. Microneedle applications in improving skin appearance. Exp Dermatol. 2015;24(8):561–6.

    Article  Google Scholar 

  184. Davis SP, Martanto W, Allen MG, Prausnitz MR. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans Biomed Eng. 2005;52(5):909–15.

    Article  Google Scholar 

  185. Godin B, Touitou E. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev. 2007;59(11):1152–61.

    Article  CAS  Google Scholar 

  186. Chu LY, Choi S-O, Prausnitz MR. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs. J Pharm Sci. 2010;99(10):4228–38.

    Article  CAS  Google Scholar 

  187. Gill HS, Prausnitz MR. Pocketed microneedles for drug delivery to the skin. J Phys Chem Solids. 2008;69(5–6):1537–41.

    Article  CAS  Google Scholar 

  188. Yang M, Zahn JD. Microneedle insertion force reduction using vibratory actuation. Biomed Microdevice. 2004;6(3):177–82.

    Article  CAS  Google Scholar 

  189. Pettis RJ, Harvey AJ. Microneedle delivery: clinical studies and emerging medical applications. Ther Deliv. 2012;3(3):357–71.

    Article  CAS  Google Scholar 

  190. Shin CI, Jeong SD, Rejinold NS, Kim Y-C. Microneedles for vaccine delivery: challenges and future perspectives. Ther Deliv. 2017;8(6):447–60.

    Article  CAS  Google Scholar 

  191. Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249–58.

    Article  CAS  Google Scholar 

  192. Sharma S, Hatware K, Bhadane P, Sindhikar S, Mishra DK. Recent advances in microneedle composites for biomedical applications: advanced drug delivery technologies. Mater Sci Eng C. 2019;103:109717.

  193. Liu G-S, Kong Y, Wang Y, Luo Y, Fan X, Xie X, et al. Microneedles for transdermal diagnostics: recent advances and new horizons. Biomaterials. 2020;232:119740.

  194. Meng F, Hasan A, Babadaei MMN, Kani PH, Talaei AJ, Sharifi M, et al. Polymeric-based microneedle arrays as potential platforms in development of drugs delivery systems. J Adv Res. 2020.

  195. Nagarkar R, Singh M, Nguyen HX, Jonnalagadda S. A review of recent advances in microneedle technology for transdermal drug delivery. J Drug Delivery Sci Technol. 2020:101923.

  196. Rad ZF, Nordon RE, Anthony CJ, Bilston L, Prewett PD, Arns J-Y, et al. High-fidelity replication of thermoplastic microneedles with open microfluidic channels. Microsyst Nanoeng. 2017;3(1):1–11.

    Google Scholar 

  197. Gittard SD, Ovsianikov A, Chichkov BN, Doraiswamy A, Narayan RJ. Two-photon polymerization of microneedles for transdermal drug delivery. Expert Opin Drug Deliv. 2010;7(4):513–33.

    Article  CAS  Google Scholar 

  198. Abidin HEZ, Ooi PC, Tiong TY, Marsi N, Ismardi A, Noor MM, et al. Stress and deformation of optimally shaped silicon microneedles for transdermal drug delivery. J Pharm Sci. 2020;109(8):2485–92.

    Article  Google Scholar 

  199. Economidou SN, Pissinato Pere CP, Okereke M, Douroumis D. Optimisation of design and manufacturing parameters of 3D printed solid microneedles for improved strength, sharpness, and drug delivery. Micromachines. 2021;12(2):117.

    Article  Google Scholar 

  200. Joshi M, Pathak S, Sharma S, Patravale V. Design and in vivo pharmacodynamic evaluation of nanostructured lipid carriers for parenteral delivery of artemether: Nanoject. Int J Pharm. 2008;364(1):119–26. https://doi.org/10.1016/j.ijpharm.2008.07.032

    Article  CAS  Google Scholar 

  201. Manoj H, et al. Microneedles: Current trends and applications. Microfluidics and Bio-MEMS. Jenny Stanford Publishing, 2020;275-342.

  202. Zhao Z, Chen Y, Shi Y Microneedles: A potential strategy in transdermal delivery and application in the management of psoriasis. Rsc Advances 2020;10(24):14040-14049.

  203. Jeong H-R, et al. "Considerations in the use of microneedles: pain, convenience, anxiety and safety." J Drug Target. 2017;25(1):29–40.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Waseem Ashraf.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, N., Ashraf, M.W. & Tayyaba, S. A Review on Solid Microneedles for Biomedical Applications. J Pharm Innov 17, 1464–1483 (2022). https://doi.org/10.1007/s12247-021-09586-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-021-09586-x

Keywords

Navigation