Skip to main content

Advertisement

Log in

Massive Upland to Wetland Conversion Compensated for Historical Marsh Loss in Chesapeake Bay, USA

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Sea level rise leads to coastal transgression, and the survival of ecosystems depends on their ability to migrate inland faster than they erode and submerge. We compared marsh extent between nineteenth-century maps and modern aerial photographs across the Chesapeake Bay, the largest estuary in North America, and found that Chesapeake marshes have maintained their spatial extent despite relative sea level rise rates that are among the fastest in the world. In the mapped region (i.e., 25% of modern Chesapeake Bay marshland), 94 km2 of marsh was lost primarily to shoreline erosion, whereas 101 km2 of marsh was created by upland drowning. Simple projections over the entire Chesapeake region suggest that approximately 100,000 acres (400 km2) of uplands have converted to wetlands and that about a third of all present-day marsh was created by drowning of upland ecosystems since the late nineteenth century. Marsh migration rates were weakly correlated with topographic slope and the amount of development of adjacent uplands, suggesting that additional processes may also be important. Nevertheless, our results emphasize that the location of coastal ecosystems changes rapidly on century timescales and that sea level rise does not necessarily lead to overall habitat loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anisfeld, S.C., K.R. Cooper, and A.C. Kemp. 2017. Upslope development of a tidal marsh as a function of upland land use. Global Change Biology 23, 755–766. https://doi.org/10.1111/gcb.13398.

  • Balke, T., M. Stock, K. Jensen, T.J. Bouma, and M. Kleyer. 2016. A global analysis of the seaward salt marsh extent: The importance of tidal range. Water Resources Research 52: 3775–3786.

    Article  Google Scholar 

  • Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Koch, A.C. Stier, and B.R. Silliman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81: 169–193.

    Article  Google Scholar 

  • Beckett, L.H., A.H. Baldwin, and M.S. Kearney. 2016. Tidal marshes across a Chesapeake Bay subestuary are not keeping up with sea-level rise. PLoS ONE 11(7): e0159753. https://doi.org/10.1371/journal.pone.0159753.

  • Brinson, M.M., R.R. Christian, and L.K. Blum. 1995. Multiple states in the sea-level induced transition from terrestrial forest to estuary. Estuaries 18: 648–659.

    Article  CAS  Google Scholar 

  • Byrn, R.J., and G.L. Anderson. 1978. Shoreline erosion in tidewater Virginia. Special Report in Applied Marine Science and Ocean Engineering 111, Virginia Institute of Marine Science, Gloucester Pt, VA, 102. http://ccrm.vims.edu/gis_data_maps/shoreline_inventories/virginia/scan_reports/TidewaterShorelineErosion.pdf.

  • Cadol, D., A. Elmore, S. Guinn, K.A.M. Engelhardt, and G. Sanders. 2016. Modeled tradeoffs between developed land protection and tidal habitat maintenance during rising sea levels. PLoS ONE 11(10): e0164875. https://doi.org/10.1371/journal.pone.0164875.

  • Cahoon, D.R., P.F. Hensel, T. Spencer, D.J. Reed, and N.S. McKee. 2006. Coastal vulnerability to relative sea-level rise: Wetland elevation trends and process controls. Ecological Studies 190: 271–292.

    Article  Google Scholar 

  • Chesapeake Bay Program: Tidal wetland abundance. 2015.http://www.chesapeakebay.net/indicators/indicator/tidal_wetlands_abundance.

  • Church, J.A., P.U. Clark, A. Cazenave, J.M. Gregory, S. Jevrejeva, A. Levermann, M.A. Merrifield, G.A. Milne, R.S. Nerem, P.D. Nunn, A.J. Payne, W.T. Pfeffer, D. Stammer, and A.S. Unnikrishnan. 2013. Sea level change. In Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

    Google Scholar 

  • Clark, J.S. 1986. Coastal forest tree populations in a changing environment, southeastern Long Island, New York. Ecological Monographs 56: 259–277.

    Article  Google Scholar 

  • Clough, J., A. Polaczyk, and M. Popato. 2016. Modeling the potential effects of sea-level rise on the coast of New York: Integrating mechanistic accretion and stochastic uncertainty. Environmental Modelling & Software 84: 349–362.

    Article  Google Scholar 

  • Collins, B.D., and A.J. Sheikh. 2005. Historical reconstruction, classification and change analysis of Puget Sound tidal marshes. Puget Sound River History Project Report to: Washington Department of Natural Resources. http://www.pugetsoundnearshore.org/supporting_documents/historical_shoreline_dnr.pdf.

  • Corbett, D.R., J.P. Walsh, S.R. Riggs, D.V. Ames, and S.J. Culver. 2008. Shoreline change within the Albemarle-Pamlico estuarine system, North Carolina. 1907–2007 Centennial. https://www.ecu.edu/cs-acad/icsp/upload/EstuarineShorelineChangeDec2008.pdf.

  • Craft, C., J. Clough, J. Ehman, S. Joye, R. Park, S. Pennings, H. Guo, and M. Machmuller. 2009. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. The ecological society of America. Frontiers in Ecology and the Environment 7 (2): 73–78.

    Article  Google Scholar 

  • Crosby, S.C., D.F. Sax, M.E. Palmer, H.S. Booth, L.A. Deegan, M.D. Berness, and H.M. Leslie. 2016. Salt marsh persistence is threatened by predicted sea-level rise. Estuarine, Coastal and Shelf Science 181: 93–99.

    Article  Google Scholar 

  • Curray, J.R. 2016. Transgressions and regressions. In Papers in marine geology, ed. R.L. Miller, 175–203. New York: Macmillan.

    Google Scholar 

  • D’Alpaos, A., C. Da Lio, and M. Marani. 2012. Biogeomorphology of tidal landforms: Physical and biological processes shaping the tidal landscape. Ecohydrology 5: 550–562.

    Article  Google Scholar 

  • Day, J., C. Ibáñez, F. Scarton, D. Pont, P. Hensel, J. Day, and R. Lane. 2011. Sustainability of Mediterranean deltaic and lagoon wetlands with sea-level rise: The importance of river input. Estuaries and Coasts 34: 483–493.

    Article  Google Scholar 

  • Douglas, B., and M. Crowell. 2000. Long-term shoreline position prediction and error propagation. Journal of Coastal Research 16 (1): 145–152.

    Google Scholar 

  • Doyle, T.W., K.W. Krauss, W.H. Conner, and A.S. From. 2010. Predicting the retreat and migration of tidal forests along the northern Gulf of Mexico under sea-level rise. Forest Ecology and Management 259: 770–777.

    Article  Google Scholar 

  • Engelhart, S.E., B.P. Horton, B.C. Douglas, W.R. Peltier, and T.E. Törnqvist. 2009. Spatial variability of late Holocene and 20th century sea-level rise along the Atlantic coast of the United States. Geology 37: 1115–1118.

    Article  Google Scholar 

  • Enwright, N.M., K.T. Griffith, and M.J. Osland. 2016. Barriers to and opportunities for landward migration of coastal wetlands with sea-level rise. Frontiers in Ecology and the Environment 14 (6): 307–316.

    Article  Google Scholar 

  • ESRGC: Eastern Shore Regional GIS Cooperative LiDAR Services. 2015. http://lidar.salisbury.edu/arcgis/rest/services/DEM_ft.

  • Ezer, T., and W.B. Corlett. 2012. Is sea level rise accelerating in the Chesapeake Bay? A demonstration of a novel new approach for analyzing sea level data. Geophysical Research Letters 39, L19605. https://doi.org/10.1029/2012GL053435.

  • Fagherazzi, S., G. Mariotti, P. Wiberg, and K. McGlathery. 2013. Marsh collapse does not require sea level rise. Oceanography 26: 70–77.

    Article  Google Scholar 

  • Feagin, R., M. Martinez, G. Mendoza-Gonzalez, and R. Costanza. 2010. Salt marsh zonal migration and ecosystem service change in response to global sea level rise: A case study from an urban region. Ecology and Society 15(4): 14. [online] URL: http://www.ecologyandsociety.org/vol15/iss4/art14/.

  • Field, C.R., C. Gjerdrum, and C.S. Elphick. 2016. Forest resistance to sea-level rise prevents landward migration to tidal marsh. Biological Conservation 201: 363–369.

    Article  Google Scholar 

  • FitzGerald, D., M. Fenster, B. Argow, and I. Buynevich. 2008. Coastal impacts due to sea-level rise. Annual Review of Earth and Planetary Sciences 36: 601–647.

    Article  CAS  Google Scholar 

  • Ford, H., A. Garbutt, C. Ladd, J. Malarkey, and M.W. Skov. 2016. Soil stabilization linked to plant diversity and environmental context in coastal wetlands. Journal of Vegetation Science 27 (2): 259–268.

    Article  Google Scholar 

  • Friedrichs, C.T., and J.E. Perry. 2001. Tidal salt marsh morphodynamics: A synthesis. Journal of Coastal Research 27: 7–37.

    Google Scholar 

  • Ganju, N.K., N.J. Nidzjeko, and M.L. Kirwan. 2013. Inferring tidal wetland stability from channel sediment fluxes: Observations and a conceptual model. Journal of Geophysical Research Earth Surface 118: 2045–2058.

    Article  Google Scholar 

  • Gedan, K.B., M.L. Kirwan, E. Wolanski, E.B. Barbier, and B.R. Silliman. 2011. The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm. Climatic Change 106 (1): 7–29.

    Article  Google Scholar 

  • Glick, P., J. Clough, and B. Nunley. 2008. Sea-level rise and coastal habitats in the Chesapeake Bay region. Technical Report. National Wildlife Federation. https://www.nwf.org/media/PDFs/Global-Warming/Reports/SeaLevelRiseandCoastalHabitats_ChesapeakeRegion.ashx.

  • Hussein, A.H. 2009. Modeling of sea-level rise and deforestation in submerging coastal ultisols of Chesapeake Bay. Soil Science Society of America Journal 73 (1): 185.

    Article  CAS  Google Scholar 

  • Kearney, M.S., E.G. Russell, and J.C. Stevenson. 1988. Marsh loss in Nanticoke Estuary, Chesapeake Bay. Geographical Review 78 (2): 205–220.

    Article  Google Scholar 

  • Kearney, M.S., and J.C. Stevenson. 1991. Island land loss and marsh vertical accretion rate evidence for historical sea-level changes in Chesapeake Bay. Journal of Coastal Research 7 (2): 403–415.

    Google Scholar 

  • Kearney, M.S., A.S. Rogers, J.R.G. Townshend, E. Rizzo, and D. Stutzer. 2002. Landsat imagery shows decline of coastal marshes in Chesapeake and Delaware Bays. Eos, Transactions American Geophysical Union 83 (16): 173–184.

    Article  Google Scholar 

  • Kemp, A.C., B.P. Horton, S.J. Culver, D.R. Corbett, O. van de Plassche, W.R. Gehrels, B.C. Douglas, and A.C. Parnell. 2009. Timing and magnitude of recent accelerated sea-level rise (North Carolina, United States). Geology 37: 1035–1038.

    Article  Google Scholar 

  • Kirwan, M.L., and J.P. Megonigal. 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504: 53–60.

    Article  CAS  Google Scholar 

  • Kirwan, M.L., S. Temmerman, E. Skeehan, G. Guntenspergen, and S. Fagherazzi. 2016a. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change 6: 253–260.

    Article  Google Scholar 

  • Kirwan, M.L., G.R. Guntenspergen, A. D’Alpaos, J.T. Morris, S.M. Mudd, and S. Temmerman. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters 37: L23401. https://doi.org/10.1029/2010GL045489.

  • Kirwan, M.L., J.L. Kirwan, and C.A. Copenheaver. 2007. Dynamics of an estuarine forest and its response to rising sea level. Journal of Coastal Research 232: 457–463.

    Article  Google Scholar 

  • Kirwan, M.L., and G.R. Guntenspergen. 2012. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. Journal of Ecology 100: 764–770.

    Article  Google Scholar 

  • Kirwan, M.L., D.C. Walters, W.G. Reay, and J.A. Carr. 2016b. Sea level driven marsh expansion in a coupled model of marsh erosion and migration. Geophysical Research Letters 43: 4366–4373.

    Article  Google Scholar 

  • Krauss, K.W., A.S. From, T.W. Doyle, T.J. Doyle, and M.J. Barry. 2011. Sea-level rise and landscape change influence mangrove encroachment onto marsh in the Ten Thousand Islands region of Florida, USA. Journal of Coastal Conservation 15: 629–638.

    Article  Google Scholar 

  • Marani, M., A. D’Alpaos, S. Lanzoni, and M. Santalucia. 2011. Understanding and predicting wave erosion of marsh edges. Geophysical Research Letters 38: L21401. https://doi.org/10.1029/2011GL048995.

  • Mariotti, G., and S. Fagherazzi. 2010. A numerical model for the coupled long-term evolution of salt marshes and tidal flats. Journal of Geophysical Research 115, F01004. https://doi.org/10.1029/2009JF001326.

  • McLoughlin, S.M., P.L. Wiberg, I. Safak, and K.J. McGlathery. 2015. Rates and forcing of marsh edge erosion in a shallow coastal bay. Estuaries and Coasts 38 (2): 620–638.

    Article  Google Scholar 

  • Moore, L. 2000. Shoreline mapping techniques. Journal of Coastal Research 16 (1): 111–124.

    Google Scholar 

  • Morris, J.T., J. Edwards, S. Crooks, and E. Reyes. 2012. Assessment of carbon sequestration potential in coastal wetlands. In Recarbonization of the biosphere, ed. R. Lal, K. Lorenz, R.F. Hüttl, B.U. Schneider, and J. von Braun, 517–531. Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  • Multi-Resolution Land Characteristics Consortium. 2016. http://www.mrlc.gov/nlcd2011.php.

  • NOAA. NOAA Shoreline Website: NOAA Historical Surveys (T-Sheets). 2015. https://shoreline.noaa.gov/intro/.

  • Perry, J.E., T.A.J.R. Barnard, J.G. Bradshaw, C.T. Friedrichs, K.J. Havens, P.A. Mason, W.I. Priest III, and G.M. Silberhorn. 2001. Creating tidal salt marshes in the Chesapeake Bay. Journal of Coastal Research 27: 179–191.

    Google Scholar 

  • Phillips, J.D. 1986. Spatial analysis of shoreline erosion, Delaware Bay, New Jersey. Annals of the Association of American Geographers 76 (1): 50–62.

    Article  Google Scholar 

  • Poulter, B., N. Christensen, and S. Qjian. 2008. Tolerance of Pinus taeda and Pinus serotine to low salinity and flooding: Implications for equilibrium vegetation dynamics. Journal of Vegetation Science 19 (1): 15–22.

    Article  Google Scholar 

  • Raabe, E.A., and R.P. Stumpf. 2015. Expansion of tidal marsh in response to sea-level rise: Gulf Coast of Florida, USA. Estuaries and Coasts 39 (1): 145–157.

    Article  Google Scholar 

  • Reed, D.J. 1995. The response of coastal marshes to sea-level rise: Survival or submergence? Earth Surface Processes and Landforms 20: 39–48.

    Article  Google Scholar 

  • Reed, D.J., D.A. Bishara, D.R. Cahoon, J. Donnelly, M. Kearney, A.S. Kolker, L.L. Leonard, R.A. Orson, and J.C. Stevenson. n.d.-bn.d.-an.d.-an.d.2008-b. Site-specific scenarios for wetlands accretion as sea level rises in the Mid-Atlantic region. Section 2.1 in. Background Documents Supporting Climate Change Science Program Synthesis and Assessment Product 4.1., Titus, J.G., and Strange, E.M. (eds.). EPA 430R07004. U.S. EPA, Washington, DC.

  • Riggs, S.R. 2001. Shoreline erosion in North Carolina estuaries: The Soundfront Series UNC-SG_01-11. North Carolina Sea Grant, Raleigh, Pub. No. N.C., UNC-SG-01-11, 69.

  • Rosen, P.S. 1980. Erosion susceptibility of the Virginia Chesapeake Bay shoreline. Marine Geology 34: 45–59.

    Article  Google Scholar 

  • Sallenger, A.H.S., K.S. Doran, and P.A. Howd. 2012. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nature Climate Change 2: 884–888.

    Article  Google Scholar 

  • Schepers, L., Kirwan, M., Guntenspergen, G., and Temmerman, S., 2017. Spatio-temporal development of vegetation die-off in a submerging coastal marsh. Limnology and Oceanography 62: 137–150.

  • Schwimmer, R.A. 2001. Rates and processes of marsh shoreline erosion in Rehoboth Bay, Delaware, U.S.A. Journal of Coastal Research 17 (3): 678–683.

    Google Scholar 

  • Scott, M., L. McDermott, E. Silva, and E. Watson. 2009. Digital spatial data capture of marsh extent in Blackwater National Wildlife Refuge, 1938 and 2006. Eastern Shore GIS Cooperative at Salisbury University.

  • Shalowitz, A.L. 1964. Shore and sea boundaries. Washington, DC: U.S. Government Printing Office.

  • Silliman, B., P. Dixon, C. Wobus, Q. He, P. Daleo, B. Hughes, J. Willis, and M. Hester. 2016. Thresholds in marsh resilience to the Deepwater Horizon oil spill. Scientific Reports 6: 32520. https://doi.org/10.1038/srep32520.

  • Smith, J.A.M. 2013. The role of Phragmites australis in mediating inland salt marsh migration in a Mid-Atlantic Estuary. PLoS ONE 8(5): e65091. https://doi.org/10.1371/journal.pone.0065091.

  • Soil Conservation Service. 1975. Estuarine Shoreline Erosion Inventory, North Carolina. Raleigh, North Carolina: U.S. Soil Conservation Service, 71p.

  • Stevenson, J.C., M.S. Kearney, and E.C. Pendleton. 1985. Sedimentation and erosion in a Chesapeake Bay brackish marsh system. Marine Geology 67: 213–235.

    Article  Google Scholar 

  • Torio, D.D., and G.L. Chmura. 2013. Assessing coastal squeeze of tidal wetlands. Journal of Coastal Research 29 (5): 1049–1061.

    Article  Google Scholar 

  • Virginia Lidar. 2015. http://virginialidar.com/index-3.html#.V_-Z1vkrKUk.

  • Wasson, K., A. Woolfolk, and C. Fresquez. 2013. Ecotones as indicators of changing environmental conditions: Rapid migration of salt marsh-upland boundaries. Estuaries and Coasts 36: 654–664.

    Article  CAS  Google Scholar 

  • Watson, E.B., K.B. Raposa, J.C. Carey, C. Wigand, and R.S. Warren. 2016. Anthropocene survival of southern New England’s salt marshes, Estuaries and Coasts 40: 617–625.

  • Weston, N.B. 2014. Declining sediments and rising seas: An unfortunate convergence for tidal wetlands. Estuaries and Coasts 37: 1–23.

    Article  Google Scholar 

  • Williams, K., K.C. Ewel, R.P. Stumpf, F.E. Putz, and T.W. Workman. 1999. Sea-level rise and coastal forest retreat on the West Coast of Florida, USA. Ecology 80: 2045–2063.

    Article  Google Scholar 

  • Wrayf, R.D., S.P. Leatherman, and R.J. Nicholls. 1995. Historic and future land loss for upland and marsh islands in the Chesapeake Bay, Maryland, U.S.A. Journal of Coastal Research 11 (4): 1195–1202.

    Google Scholar 

Download references

Acknowledgements

The Dominion Foundation, NSF Coastal SEES 1426981, NSF LTER 1237733, NSF CAREER 1654374, U.S. Department of Energy Terrestrial Ecosystem Science Program, and the USGS Climate and Land Use Dynamics Program funded this project. We would like to thank David Wilcox, Madison Clapsaddle, VIMS Center for Coastal Resources Management and VIMS Shoreline Studies programs, and the Chesapeake Bay National Estuarine Research Reserve System for assistance with the GIS analyses. This is contribution number 3676 of the Virginia Institute of Marine Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew L. Kirwan.

Additional information

Communicated by Nancy L. Jackson

Electronic supplementary material

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schieder, N.W., Walters, D.C. & Kirwan, M.L. Massive Upland to Wetland Conversion Compensated for Historical Marsh Loss in Chesapeake Bay, USA. Estuaries and Coasts 41, 940–951 (2018). https://doi.org/10.1007/s12237-017-0336-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-017-0336-9

Keywords

Navigation