Skip to main content

Advertisement

Log in

Rates and Forcing of Marsh Edge Erosion in a Shallow Coastal Bay

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Salt marshes can experience a significant land loss through erosion and retreat of their perimeter edges. Rates of shoreline change between 1957 and 2007 were determined for four salt marshes in a Virginia coastal bay using aerial photographs and the Digital Shoreline Analysis System (DSAS). High average rates of lateral erosion of 1.0–1.6 m year−1 were found at three marshes, while the edge of the fourth marsh, along the mainland edge of the bay, remained stable. Erosion rates were temporally consistent during the 50-year period at the three eroding sites, although there was a significant spatial variation in rates of change along the length of the edges at these sites. A simple parametric wave model and the SWAN (Simulating WAves Nearshore) spectral wave model were used to calculate incident wave energy flux along the marsh boundaries at each of the sites. Values of wave energy flux agreed fairly well between the two models but are sensitive to the manner in which wave energy flux is calculated. A stronger relationship was found between wave energy flux and volumetric erosion rates along the marsh edges than with lateral erosion rates. This is an important consideration when examining the effects of future sea level rise on marsh loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Addo, K.A., M. Walkden, and J.P. Mills. 2008. Detection, measurement and prediction of shoreline recession in Accra, Ghana. ISPRS Journal of Photogrammetry and Remote Sensing 63: 543–558.

    Article  Google Scholar 

  • Booij, N., R.C. Ris, and L.H. Holthuijsen. 1999. A third-generation wave model for coastal regions. 1. Model description and validation. Journal of Geophysical Research 104: 7649–7666.

    Article  Google Scholar 

  • Boorman, L.A. 1999. Salt marshes—present functioning and future change. Mangroves and Salt Marshes 3: 227–241.

    Article  Google Scholar 

  • Borrelli, M. 2009. 137 years of shoreline change in Pleasant Bay: 1868–2005, 29. Harwich: Pleasant Bay Resource Management Alliance. Technical report submitted to the Pleasant Bay Resource Management Alliance.

    Google Scholar 

  • Bouma, T.J., M.B. De Vries, E. Low, L. Kusters, P.M.J. Herman, I.C. Tanczos, S. Temmerman, A. Hesselink, P. Meire, and S. van Regenmortel. 2005. Flow hydrodynamics on a mudflat and in salt marsh vegetation: identifying general relationships for habitat characterizations. Hydrobiologia 540: 259–274.

    Article  Google Scholar 

  • Brooks, S.M., and T. Spencer. 2010. Temporal and spatial variations in recession and sediment release from soft rock cliffs, Suffolk coast, UK. Geomorphology 124: 26–41.

    Article  Google Scholar 

  • Callaghan, D.P., T.J. Bouma, P. Klaassen, D. van der Wal, M.J.F. Stive, and P.M.J. Herman. 2010. Hydrodynamic forcing on salt-marsh development: distinguishing the relative importance of waves and tidal flows. Estuarine, Coastal and Shelf Science 89: 73–88.

    Article  Google Scholar 

  • Carniello, L., A. Defina, S. Fagherazzi, and L. D’Alpaos. 2005. A combined wind wave-tidal model for the Venice lagoon, Italy. Journal of Geophysical Research 110, F04007. doi:10.1029/2004JF000232.

    Article  Google Scholar 

  • Christiansen, T. 1998. Sediment deposition on a tidal salt marsh. M.S. Thesis, University of Virginia, 125 p.

  • Cowart, L., J.P. Walsh, and D.R. Corbett. 2010. Analyzing estuarine shoreline change: a case study of Cedar Island, North Carolina. Journal of Coastal Research 26(5): 817–830.

    Article  Google Scholar 

  • Cowart, L., D.R. Corbett, and J.P. Walsh. 2011. Shoreline change along sheltered shorelines: insights from the Neuse River Estuary, NC, USA. Remote Sensing 3: 1516–1534.

    Article  Google Scholar 

  • Cox, R., R.A. Wadsworth, and A.G. Thomson. 2003. Long-term changes in salt marsh extent affected by channel deepening in a modified estuary. Continental Shelf Research 23: 1833–1846.

    Article  Google Scholar 

  • D’Alpaos, L., and A. Defina. 2007. Mathematical modeling of tidal hydrodynamics in shallow lagoons: a review of open issues and applications to the Venice lagoon. Computers & Geosciences 33: 476–496.

    Article  Google Scholar 

  • Day Jr., J.W., F. Scarton, A. Rismondo, and D. Are. 1998. Rapid deterioration of a salt marsh in Venice lagoon, Italy. Journal of Coastal Research 14(2): 583–590.

    Google Scholar 

  • Defina, A. 2000. Two dimensional shallow flow equations for partially dry areas. Water Resources Research 36: 3251–3264.

    Article  Google Scholar 

  • DeLaune, R.D., R.H. Baumann, and J.G. Gosselink. 1983. Relationships among vertical accretion, coastal submergence, and erosion in a Louisiana Gulf Coast marsh. Journal of Sedimentary Petrology 53: 147–157.

    Google Scholar 

  • Downs, L.L., R.J. Nicholls, S.P. Leatherman, and J. Hautzenroder. 1994. Historic evolution of a marsh island: Bloodsworth Island, Maryland. Journal of Coastal Research 10(4): 1031–1044.

    Google Scholar 

  • Erwin, R.M., G.M. Sanders, and D.J. Posser. 2004. Changes in lagoonal marsh morphology at selected northeastern Atlantic Coast sites of significance to migratory waterbirds. Wetlands 24(4): 891–903.

    Article  Google Scholar 

  • Esteves, L.S., J.J. Williams, A. Nock, and G. Lymbery. 2009. Quantifying shoreline changes along the Sefton Coast (UK) and the implications for research-informed coastal management. Journal of Coastal Research, SI 56 (Proceedings of the 10th International Coastal Symposium), 602–606. Lisbon, Portugal, ISSN 0749–0258.

  • Eulie, D.O., J.P. Walsh, and D.R. Corbett. 2013. High-resolution analysis of shoreline change and application of balloon-based aerial photography, Albemarle-Pamlico Estuarine System, North Carolina, USA. Limnology and Oceanography: Methods 11: 151–160.

    Article  Google Scholar 

  • Fagherazzi, S., and P.L. Wiberg. 2009. Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow intertidal basins. Journal of Geophysical Research 114, F03022.

    Article  Google Scholar 

  • Fagherazzi, S., L. Carniello, L. D’Alpaos, and A. Defina. 2006. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. Proceedings of the National Academy of Sciences 103(22): 8337–8341.

    Article  CAS  Google Scholar 

  • Fagherazzi, S., G. Maiotti, P.L. Wiberg, and K.J. McGlathery. 2013. Marsh collapse does not require sea level rise. Oceanography 26: 70–77.

    Article  Google Scholar 

  • Feagin, R.A., S.M. Lozanda-Bernard, T.M. Ravens, I. Moller, K.M. Yeager, and A.H. Baird. 2009. Does vegetation prevent wave erosion of salt marsh edges? Proceedings of the National Academy of Sciences 106: 10109–10113.

    Article  CAS  Google Scholar 

  • Finkelstein, K., and C.S. Hardaway. 1988. Late Holocene sedimentation and erosion of estuarine fringing marshes, York River, Virginia. Journal of Coastal Research 4(3): 447–456.

    Google Scholar 

  • Fletcher, C., J. Rooney, M. Barbee, S.C. Lim, and B. Richmond. 2004. Mapping shoreline change using digital orthophotogrammetry on Maui, Hawaii. Journal of Coastal Research SI(38): 106–124.

    Google Scholar 

  • Gorokhovich, Y., and A. Leiserowiz. 2012. Historical and future coastal changes in Northwest Alaska. Journal of Coastal Research 28(1A): 174–186.

    Article  Google Scholar 

  • Hayden, B.P., and N.R. Hayden. 2003. Decadal and century-long changes in storminess at long-term ecological research sites. In Climate variability and ecosystem response at long-term ecological research sites, ed. D. Greenland, D.G. Goodwin, and R.C. Smith, 262–285. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Higinbotham, C.B., M. Alber, and A.C. Chalmers. 2004. Analysis of tidal marsh vegetation patterns in two Georgia estuaries using aerial photography and GIS. Estuaries 27(4): 670–683.

    Article  Google Scholar 

  • Hughes, M.L., P.F. McDowell, and W.A. Marcus. 2006. Accuracy assessment of georectified aerial photographs: implications for measuring lateral channel movement in a GIS. Geomorphology 74: 1–16.

    Article  Google Scholar 

  • Jackson, C.W., C.R. Alexander, and D.M. Bush. 2012. Application of the AMBUR R package for spatio-temporal analysis of shoreline change: Jekyll Island, Georgia, USA. Computers & Geosciences 41: 199–207.

    Article  Google Scholar 

  • Kastler, J.A. 1993. Sedimentation and landscape evolution of Virginia salt marshes. Charlottesville, VA: University of Virginia, Master’s thesis, 119 p.

  • Kastler, J.A., and P.L. Wiberg. 1996. Sedimentation and boundary changes of Virginia salt marshes. Estuarine, Coastal and Shelf Science 42: 683–700.

    Article  Google Scholar 

  • Kearney, M.S., and J.C. Stevenson. 1991. Island land loss and marsh vertical accretion rate evidence for historical sea-level changes in Chesapeake Bay. Journal of Coastal Research 7(2): 403–415.

    Google Scholar 

  • Kennish, M.J. 2001. Coastal salt marsh systems in the U.S.: a review of anthropogenic impacts. Journal of Coastal Research 17(3): 731–748.

    Google Scholar 

  • Kirwan, M.L., G.R. Guntenspergen, A. D’Alpaos, J.T. Morris, S.M. Mudd, and S. Temmerman. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters 37, L23401. doi:10.1029/2010GL045489.

    Article  Google Scholar 

  • Knutson, P.L., R.A. Brochu, W.A. Seelig, and M. Inskeep. 1982. Wave damping in Spartina alterniflora marshes. Wetlands 2: 87–104.

    Article  Google Scholar 

  • Kuleli, T. 2010. Quantitative analysis of shoreline changes at the Mediterranean Coast in Turkey. Environmental Monitoring and Assessment 167: 387–397.

    Article  Google Scholar 

  • Marani, M., A. D’Alpaos, S. Lanzoni, and M. Santalucia. 2011. Understanding and predicting wave erosion of marsh edges. Geophysical Research Letters 38, L21401. doi:10.1029/2011GL048995.

    Article  Google Scholar 

  • Mariotti, G., and S. Fagherazzi. 2013. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. Proceedings of the National Academy of Sciences (PNAS) 110: 5353–5356. doi:10.1073/pnas.1219600110.

    Article  CAS  Google Scholar 

  • Mariotti, G., S. Fagherazzi, P.L. Wiberg, K.J. McGlathery, L. Carniello, and A. Defina. 2010. Influence of storm surges and sea level on shallow tidal basin erosive processes. Journal of Geophysical Research 115, C11012. doi:10.1029/2009JC005892.

    Article  Google Scholar 

  • McLoughlin, S.M. 2010. Erosional processes along salt marsh edges on the Eastern Shore of Virginia. M.S. Thesis, University of Virginia, 148 p.

  • Moeller, I., T. Spencer, and J.R. French. 1996. Wind wave attenuation over saltmarsh surfaces: preliminary results from Norfolk, England. Journal of Coastal Research 12(4): 1009–1016.

    Google Scholar 

  • Moller, I., T. Spencer, J.R. French, D.J. Leggett, and M. Dixon. 1999. Wave transformation over salt marshes: a field and numerical modeling study from North Norfolk, England. Estuarine, Coastal and Shelf Science 49: 411–426.

    Article  Google Scholar 

  • Moore, L.J., and G.B. Griggs. 2002. Long-term cliff retreat and erosion hotspots along the central shores of the Monterey Bay National Marine Sanctuary. Marine Geology 181: 265–283.

    Article  Google Scholar 

  • Morton, R.A., T. Miller, and L.J. Moore. 2004. National assessment of shoreline change: part 1: historical shoreline changes and associated coastal land loss along the U.S. Gulf of Mexico. U.S. Geological Survey Open-file Report 2004–1043, 45 p.

  • Morton, R.A., T. Miller, and L. Moore. 2005. Historical shoreline changes along the US gulf of Mexico: a summary of recent comparisons and analyses. Journal of Coastal Research 21(4): 704–709.

    Article  Google Scholar 

  • Nicholls, R.J., F.M.J. Hoozemans, and M. Marchand. 1999. Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Global Environmental Change 9: S69–S87.

    Article  Google Scholar 

  • Oertel, G.F. 2001. Hypsographic, hydro-hypsographic, and hydrological analysis of coastal bay environments, Great Machipongo Bay, Virginia. Journal of Coastal Research 17(4): 775–783.

    Google Scholar 

  • Phillips, J.D. 1986a. Coastal submergence and marsh fringe erosion. Journal of Coastal Research 2(4): 427–436.

    Google Scholar 

  • Phillips, J.D. 1986b. Spatial analysis of shoreline erosion, Delaware Bay, New Jersey. Annals of the Association of American Geographers 76(1): 50–62.

    Article  Google Scholar 

  • Priestas, A.M., and S. Fagherazzi. 2011. Morphology and hydrodynamics of wave-cut gullies. Geomorphology 131: 1–13.

    Article  Google Scholar 

  • Qi, J., C. Chen, R.C. Beardsley, W. Perrie, G.W. Cowles, and Z. Lai. 2009. An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE): implementation, validations and applications. Ocean Modelling 28: 153–166.

    Article  Google Scholar 

  • Reed, D.J. 1990. The impact of sea-level rise on coastal salt marshes. Progress in Physical Geography 14(4): 465–481.

    Article  Google Scholar 

  • Safak, I., and P.L. Wiberg. 2012. Hydrodynamics and wave-enhanced sediment transport in a barrier island-lagoon-marsh system: a model application on the eastern shore of Virginia. Salt Lake City, Utah: American Geophysical Union Ocean Sciences Meeting, OS029–9350.

    Google Scholar 

  • Sallenger, A.H., K.S. Doran, and P.A. Howd. 2012. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nature Climate Change 2: 884–888. doi:10.1038/nclimate1597.

    Article  Google Scholar 

  • Schwimmer, R.A. 2001. Rates and processes of marsh shoreline erosion in Rehoboth Bay, Delaware, U.S.A. Journal of Coastal Research 17(3): 672–683.

    Google Scholar 

  • Schwimmer, R.A., and J.E. Pizzuto. 2000. A model for the evolution of marsh shorelines. Journal of Sedimentary Research 70(5): 1026–1035.

    Article  CAS  Google Scholar 

  • Stumpf, R.P. 1983. The process of sedimentation on the surface of a salt marsh. Estuarine, Coastal and Shelf Science 17: 495–508.

    Article  Google Scholar 

  • Taube, S.R. 2013. Impacts of fringing oysters reefs on wave attenuation and marsh erosion rates. M.S. Thesis, University of Virginia, 166 p.

  • Thieler, E.R., and W.W. Danforth. 1994. Historical shoreline mapping (II): application of the digital shoreline mapping and analysis systems (DSMS/DSAS) to shoreline change mapping in Puerto Rico. Journal of Coastal Research 10(3): 600–620.

    Google Scholar 

  • Thieler, E.R., E.A. Himmelstoss, J.L. Zichichi, and A. Ergul. 2009. Digital Shoreline Analysis System (DSAS) version 4.0—an ArcGIS extension for calculating shoreline change. U.S. Geological Survey Open-File Report 2008–1278.

  • Tonelli, M., S. Fagherazzi, and M. Petti. 2010. Modeling wave impact on salt marsh boundaries. Journal of Geophysical Research 115, C09028. doi:10.1029/2009JC006026.

    Article  Google Scholar 

  • Valiela, I., E. Kinney, J. Culbertson, E. Peacock, and S. Smith. 2009. Global losses of mangroves and salt marshes. In Global loss of coastal habitats: rates, causes and consequences, ed. C.M. Duarte, 107–142. Bilbao: Fundacion BBVA.

    Google Scholar 

  • van der Wal, D., and K. Pye. 2004. Patterns, rates and possible causes of saltmarsh erosion in the Greater Thames area (UK). Geomorphology 61: 373–391.

    Article  Google Scholar 

  • van Eerdt, M.M. 1985. The influence of vegetation on erosion and accretion in salt marshes of the Oosterschelde, The Netherlands. Vegetatio 62: 367–373.

    Article  Google Scholar 

  • Wiberg, P.L., and C.R. Sherwood. 2008. Calculating wave-generated bottom orbital velocities from surface-wave parameters. Computers & Geosciences 34: 1243–1262.

    Article  Google Scholar 

  • Willis, P. 2009. The effect of hydroperiod on surface elevation and sediment accumulation in Philips Creek Salt Marsh, Virginia, USA. MA thesis. University of Virginia, Charlottesville, VA, 78 p.

  • Wray, R.D., S.P. Leatherman, and R.J. Nicholls. 1995. Historic and future land loss for upland and marsh islands in the Chesapeake Bay, Maryland, U.S.A. Journal of Coastal Research 11(4): 1195–1203.

    Google Scholar 

  • Young, I.R., and L.A. Verhagen. 1996. The growth of fetch limited waves in water of finite depth. 1. Total energy and peak frequency. Coastal Engineering 29: 47–78. doi:10.1016/S0378-3839(96)00006-3.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank John Porter for his assistance in collecting aerial photographs, the staff at the ABCRC for logistical support, Dave Richardson for help refining the DEM of Hog Island Bay, and Jenny Shultis and Gavin Bruno for their field assistance. We would also like to thank the three anonymous reviewers for their helpful comments. This research was supported by the Department of Energy NICCR program and by the National Science Foundation through the VCR-LTER (awards #DEB-0621014 and #DEB-1237733).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean M. McLoughlin.

Additional information

Communicated by Nancy L. Jackson

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 573 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLoughlin, S.M., Wiberg, P.L., Safak, I. et al. Rates and Forcing of Marsh Edge Erosion in a Shallow Coastal Bay. Estuaries and Coasts 38, 620–638 (2015). https://doi.org/10.1007/s12237-014-9841-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-014-9841-2

Keywords

Navigation