Skip to main content
Log in

Optimization of Cellulose Nanofibril Production under Enzymatic Pretreatment and Evaluation of Dislocations in Plant Fibers

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Dislocations are weak and discontinuous areas of plant cell walls. This study aims to evaluate the cellulase-mediated enzymatic pretreatment as a mechanical-chemical initiator of dislocations in unbleached and bleached fibers of commercial Eucalyptus kraft pulp, comparing both before and after the formation of micro/nanofibers in the mechanical process, in addition to evaluating the dislocations themselves. Four enzyme complexes were evaluated, of which three were endoglucanase (A, B and C) and one was a mixture of endoglucanase and exoglucanase (D), in addition to a control pretreatment. During the mechanical treatment of the fibers pretreated with enzyme B, samples were collected at pass/cycles 0, 5, 10, 15, 20, 25 and 30 in the mechanical fibrillator. The dislocations were evaluated using a polarized light microscope to analyze the index of dislocations (ID), dislocation angle and curvature index, while the crystallinity was analyzed by Raman spectroscopy. For bleached fibers, a reduction in the ID occurred with enzyme C and an increase with enzyme B, while for unbleached fibers, the ID did not change significantly. During the mechanical treatment, the enzyme did not cause a reduction in the fiber length (FL) but allowed a significant increase in the ID up to 20 passages for all pretreated fibers, with and without enzymes. The dislocation angle decreased with the enzymatic action and with the curvature index. The results show that the enzymatic pretreatment can affect the integrity of the fibers, increasing the number of dislocations and amorphous regions and decreasing the length of the cellulose chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. C. Arantes, L. E. Silva, D. F. Wood, C. G. Almeida, G. H. D. Tonoli, J. E. Oliveira, J. P. Siva, T. G. Williams, W. J. Orts, and M. L. Bianchi, Carbohydr. Polym., 207, 100 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. V. Bindiganavile, M. Y. Boluk, M. El-Bakkari, and J. Gonçalves, U. S. Patent, 2019/0062211 A1 (2019).

  3. L. R. Rodrigues, E. R. Rodrigues, C. B. Albani, A. S. Reis, D. M. Louzada, and V. P. Della Sagrillo, Cerâmica, 65, 169 (2019).

    Article  CAS  Google Scholar 

  4. P. Claro, A. Campos, A. Corrêa, V. Rodrigues, B. Luchesi, L. Silva, G. H. D. Tonoli, L. Mattoso, and J. Marconcini, Cellulose, 26, 2453 (2019).

    Article  CAS  Google Scholar 

  5. S. Nie, K. Zhang, X. Lin, C. Zhang, D. Yan, H. Liang, and S. Wang, Carbohydr. Polym., 181, 1136 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. A. S. Fonseca, S. Panthapulakkal, S. K. Konar, M. Sain, L. Bufalino, J. Raabe, I. P. A. Miranda, M. A. Martins, and G. H. D. Tonoli, Ind. Crops Prod., 131, 203 (2019).

    Article  CAS  Google Scholar 

  7. X. Liu, Y. Jiang, L. Wang, X. Song, C. Qin, and S. Wang, Ind. Crops Prod., 146, 112201 (2020).

    Article  CAS  Google Scholar 

  8. H. Zhou, F. S. John, and J. Y. Zhu, Cellulose, 26, 543 (2019).

    Article  CAS  Google Scholar 

  9. T. L. Ogeda and D. F. Petri, Quimica Nova, 33, 1549 (2010).

    Article  CAS  Google Scholar 

  10. L. G. Thygesen and M. R. Asgharipour, J. Mater. Sci., 43, 3670 (2008).

    Article  CAS  Google Scholar 

  11. L. Sparnochia and M. A. Castro, Cellulose, 53, 911 (2019).

    CAS  Google Scholar 

  12. J. Kouko, M. Jajcinovic, W. Fischer, A. Ketola, U. Hirn, and E. Retulainen, Cellulose, 26, 1995 (2019).

    Article  CAS  Google Scholar 

  13. P. Ander, L. Hildén, and G. Daniel, BioResources, 3, 477 (2008).

    CAS  Google Scholar 

  14. J. C. Moulin and J. T. Lima, Holzforschung, 73, 269 (2019).

    Article  CAS  Google Scholar 

  15. H. J. Kim, Y. Liu, A. D. French, C. M. Lee, and S. H. Kim, Cellulose, 25, 49 (2018).

    Article  CAS  Google Scholar 

  16. C. F. Tedjani, O. B. Mya, and A. Rebiai, Sustain. Chem. Pharm., 17, 100307 (2020).

    Article  Google Scholar 

  17. L. Syrine, M. Jabli, S. B. Abdessalem, and S. G. Almalki, Int. J. Biol. Macromol., 145, 1106 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. C. O. Ufodike, V. O. Eze, M. F. Ahmed, A. Oluwalowo, J. G. Park, Z. Liang, and H. Wang, Int. J. Biol. Macromol., 146, 916 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. W. Robinson, Transações Filosóficas da Sociedade Real de Londres. Série B., 210, 372 (1921).

    Google Scholar 

  20. L. G. Thygesen and N. Gierlinger, J. Struct. Biol., 182, 219 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. L. G. Thygesen, J. Mater. Sci., 43, 1311 (2008).

    Article  CAS  Google Scholar 

  22. M. Imai, A. Furujo, and J. Sugiyama, Cellulose, 26, 7653 (2019).

    Article  CAS  Google Scholar 

  23. A. Hernandez-Estrada, M. Reza, and M. Hughes, BioResources, 15, 2579 (2020).

    CAS  Google Scholar 

  24. A. F. Wallis, R. H. Wearne, and P. J. Wright, Appita J., 49, 262 (1996).

    Google Scholar 

  25. M. Guimarães, V. R. Botaro, K. M. Novack, F. Neto, W. Pires, L. M. Mendes, and G. H. D. Tonoli, J. Nanosci. Nanotechnol., 15, 6751 (2015).

    Article  PubMed  CAS  Google Scholar 

  26. S. Mirmehdi, P. R. G. Hein, C. I. G. D. L. Sarantópoulos, M. V. Dias, and G. H. D. Tonoli, Food Packaging and Shelf Life, 15, 87 (2018).

    Article  Google Scholar 

  27. S. Mirmehdi, M. L. C. Oliveira, P. R. G. Hein, M. V. Dias, C. I. G. D. L. Sarantópoulos, and G. H. D. Tonoli, J. Wood Chem. Technol., 38, 233 (2018).

    Article  CAS  Google Scholar 

  28. M. Guimãres Junior, F. G. Teixeira, and G. H. D. Tonoli, Cellulose, 25, 1823 (2018).

    Article  CAS  Google Scholar 

  29. M. C. Dias, M. C. Mendonça, R. A. P. Damásio, U. L. Zidanes, F. A. Mori, S. R. Fereira, and G. H. D. Tonoli, Holzforschung, 73, 1036 (2019).

    Article  CAS  Google Scholar 

  30. A. F. S. Durães, J. C. Moulin, M. C. Dias, M. C. Mendonça, R. A. P. Damásio, L. G. Thygesen, and G. H. D. Tonoli, Holzforschung, 74, 949 (2020).

    Article  CAS  Google Scholar 

  31. R. M. Sá, C. S. Miranda, and N. M. José, Mater. Res., 18, 225 (2015).

    Article  CAS  Google Scholar 

  32. U. P. Agarwal, R. R. Reiner, and S. A. Ralph, Cellulose, 17, 721 (2010).

    Article  CAS  Google Scholar 

  33. U. P. Agarwal, R. R. Reiner, and S. A. Ralph, J. Agr. Food Chem., 61, 103 (2013).

    Article  CAS  Google Scholar 

  34. J. M. Dinwoodie, Wood Sci. Technol., 8, 56 (1974).

    Article  Google Scholar 

  35. M. Yoshida, Y. Liu, S. Uchida, S. Kaneko, H. Ichinose, K. Satoshi, and F. Kiyoharu, Biotechnol. Biochem., 72, 805 (2008).

    Article  CAS  Google Scholar 

  36. K. Öhgren, R. Bura, J. Saddler, and G. Zacchi, Bioresour. Technol., 98, 2503 (2007).

    Article  PubMed  CAS  Google Scholar 

  37. B. J. Hidayat, C. Felby, K. S. Johansen, and L. G. Thygesen, Cellulose, 19, 1481 (2012).

    Article  CAS  Google Scholar 

  38. M. Suchy, T. Hakala, H. Kangas, E. Kontturi, T. Tekla, T. Pursula, and T. Vuorinen, Holzforschung, 63, 736 (2009).

    Article  CAS  Google Scholar 

  39. N. Gurnagul, D. H. Page, and M. G. Paice, Nord. Pulp Pap. Res. J., 3, 154 (1992).

    Google Scholar 

  40. A. A. Klyosov, Biochemistry, 29, 10585 (1990).

    Article  Google Scholar 

  41. J. T. Wallace, Master Thesis, North Carolina State University, USA, 2006.

  42. L. G. Thygesen, B. J. Hidayat, K. S. Johansen, and C. Felby, J. Ind. Microbiol. Biotechnol., 38, 983 (2011).

    Article  CAS  Google Scholar 

  43. S. Rao, Master Thesis, Georgia Institute of Technology, USA, 2009.

  44. I. Siró and D. Plackett, Cellulose, 17, 459 (2010).

    Article  CAS  Google Scholar 

  45. K. Nyholm, P. Ander, S. Bardage, and D. Geoffrey, Nord. Pulp Pap. Res. J., 16, 376 (2001).

    Article  CAS  Google Scholar 

  46. D. H. Page, R. S. Seth, B. D. Jordan, and M. C. Barbe, “Transactions of the 8th Fundamental Research Symposium”, Vol.1, p. 227, Mechanical Engineering Publications Ltd., London, 1985.

    Google Scholar 

  47. O. L. Forgacs, Tappi J., 44, 112 (1961).

    CAS  Google Scholar 

  48. D. H. Page, Fundamentals of Papermaking, 1, 38 (1989).

    Google Scholar 

  49. C. Laine, X. Wang, M. Tenkanen, and A. Varhimo, Holzforschung, 58, 233 (2004).

    Article  CAS  Google Scholar 

  50. W. Y. Hamad, N. Gurnagul, and D. Gulati, Holzforschung, 66, 711 (2012).

    Article  CAS  Google Scholar 

  51. S. Guo, H. Zhan, C. Zhang, S. Fu, A. Heijnesson-Hultén, J. Basta, and T. Greschik, BioResources, 4, 1006 (2009).

    CAS  Google Scholar 

  52. I. González, S. Boufi, M. A. Pèlach, M. Alcalà, F. Vilaseca, and P. Mutjé, BioResources, 7, 5167 (2012).

    Article  Google Scholar 

  53. A. N. Nakagaito and H. Yano, Appl. Phys. A, 78, 547 (2004).

    Article  CAS  Google Scholar 

  54. I. Omholt, TAPPI Intl. Paper Physics Conference Proceedings, p.515, TAPPI Press, Atlanta, 1999.

    Google Scholar 

  55. V. Kunnari, P. Jetsu, and E. Retulainen, Proceedings of 23rd Symp. International Association of Packaging Research Institutes (IAPRI), Windsor, UK, 2007.

  56. N. Gierlinger and M. Schwanninger, Plantphysiology, 140, 1246 (2006).

    CAS  Google Scholar 

  57. A. Jähn, M. W. Schröder, M. Füting, K. Schenzel, and W. Diepenbrock, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 58, 2271 (2002).

    Article  Google Scholar 

  58. U. P. Agarwal, R. H. Atalla, and I. Forsskahl, Holzforschung, 49, 300 (1995).

    Article  CAS  Google Scholar 

  59. A. P. P. Alves, L. P. de Oliveira, A. A. Castro, R. Neumann, L. F. de Oliveira, H. G. Edwards, and A. C. Sant’Ana, Vib. Spectrosc., 86, 324 (2016).

    Article  CAS  Google Scholar 

  60. H. G. M. Edwards, D. W. Farwell, and D. Webster, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 53, 2383 (1997).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support (133628/2017-5) provided by the National Council for Scientific and Technological Development (CNPq), the State of Minas Gerais Research Foundation (FAPEMIG) and the Brazilian Federal Agency for the Support and Evaluation of Graduate Education-CAPES, (FinanceCode001) for the financial support provided, as well as of Novozymes A/S for donating the enzymes. The authors also thank the Federal University of Lavras, MG, Brazil, for providing access to the department of wood science and technology, and the Klabin SA company for suppling the cellulose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisson Farley Soares Durães.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durães, A.F.S., Moulin, J.C., de Amorim dos Santos, A. et al. Optimization of Cellulose Nanofibril Production under Enzymatic Pretreatment and Evaluation of Dislocations in Plant Fibers. Fibers Polym 22, 1810–1821 (2021). https://doi.org/10.1007/s12221-021-0810-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0810-7

Keywords

Navigation