Skip to main content
Log in

Laccase/TEMPO-mediated Graft Hydrophobization of Jute Fibers to Enhance the Mechanical Properties of Jute/PLA Composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this work, the hydrophobization of lignocellulosic jute fibers was achieved via the laccase/TEMPO-mediated grafting of octadecylamine (OA) on their surface, with the aim to improve the interfacial compatibility with nonpolar polylactic acid (PLA) resins in fiber-reinforced composites. The modified jute fibers were analyzed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS). The characteristic vibrations of methylene groups and the increase in the surface C/O ratio of the jute fibers after the enzymatic treatment indicated that OA molecules were successfully grafted onto the jute fiber surface mediated by the laccase/TEMPO system. It was shown that the grafted jute fibers had increased surface hydrophobicity and reduced polarity with water contact angle of 124.2 °, diiodomethane contact angle of 94.1 ° and surface free energy of 11.44 mJ/m2, which were attributed to the presence of the OA nonpolar alkyl chains on their surface. The tensile, bending, and dynamic mechanical properties of the hydrophobized jute/PLA composites were enhanced, which suggested stronger interfacial adhesion between the jute fibers and the PLA matrix. The mechanical stability was investigated by water immersion measurements and it was found that the modified jute/PLA composites were better in this regards than the control jute/PLA composites. Therefore, this enzymatic hydrophobic modification could be used as an effective and eco-friendly method to produce natural lignocellulosic fiber-reinforced composites with excellent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Zini and M. Scandola, Polym. Compos., 32, 1905 (2011).

    Article  CAS  Google Scholar 

  2. R. Mishra, J. Wiener, J. Militky, M. Petru, B. Tomkova, and J. Novotna, Fiber. Polym., 21, 619 (2020).

    Article  CAS  Google Scholar 

  3. S. Kalia, B. S. Kaith, and I. Kaur, Polym. Eng. Sci., 49, 1253 (2009).

    Article  CAS  Google Scholar 

  4. A. O. A. S. Sait and V. Subramaniam, Int. J. Res. Eng. Technol., 3, 14 (2014).

    Google Scholar 

  5. P. Uawongsuwan, Y. Q. Yang, and H. Hamada, J. Appl. Polym. Sci., 132, 41819 (2015).

    Article  Google Scholar 

  6. K. T. B. Padal, K. Ramji, and V. V. S. Prasad, Int. J. Eng. Res., 3, 333 (2014).

    Article  Google Scholar 

  7. M. Ejaz, M. M. Azad, A. U. R. Shah, S. K. Afaq, and J. I. Song, Fiber. Polym., 21, 2635 (2020).

    Article  CAS  Google Scholar 

  8. G. Lo Re, M. Morreale, R. Scaffaro, and F. P. La Mantia, Polym. Int., 61, 1542 (2012).

    Article  CAS  Google Scholar 

  9. M. Hughes, J. Mater. Sci., 47, 599 (2012).

    Article  CAS  Google Scholar 

  10. L. A. Pothan and S. Thomas, J. Appl. Polym. Sci., 91, 3856 (2004).

    Article  CAS  Google Scholar 

  11. B. Kord, J. Thermoplast. Compos. Mater., 26, 296 (2013).

    Article  Google Scholar 

  12. A. Abdullah, K. K. Magniez, and B. L. Fox, Compos. Sci. Technol., 71, 1692 (2011).

    Article  Google Scholar 

  13. X. Hou, L. Zhang, J. Wizi, X. Liao, B. Ma, and Y. Yang, J. Appl. Polym. Sci., 134, 45058 (2017).

    Article  Google Scholar 

  14. C. Huang, X. Li, Y. Zhang, Y. Feng, J. Qu, H. He, and H. Shen, J. Thermoplast. Compos. Mater., 28, 777 (2015).

    Article  CAS  Google Scholar 

  15. M. M. Rahman, N. Sharmin, R. A. Khan, K. Dey, and M. Haque, J. Thermoplast. Compos. Mater., 25, 249 (2012).

    Article  CAS  Google Scholar 

  16. K. Song, Y. Ji, L. Wang, Y. Wei, and Z. Yu, J. Clean. Prod., 196, 1169 (2018).

    Article  CAS  Google Scholar 

  17. R. M. Bongiovanni, S. Marchi, E. Zeno, A. Pollicino, and R. R. Thomas, Colloids Surf. A, 418, 52 (2013).

    Article  CAS  Google Scholar 

  18. M. T. Zafar, S. N. Maiti, and A. K. Ghosh, Fiber Polym., 17, 266 (2016).

    Article  CAS  Google Scholar 

  19. N. Le Moigne, M. Longerey, J. M. Taulemesse, J. C. Bénézet, and A. Bergeret, Ind. Crops Prod., 52, 481 (2014).

    Article  CAS  Google Scholar 

  20. G. S. Nyanhongo, T. Kudanga, E. N. Prasetyo, and G. M. Guebitz, Adv. Biochem. Eng./Biotechnol., 125, 47 (2011).

    CAS  Google Scholar 

  21. S. Slagman, H. Zuilhof, and M. C. R. Franssen, ChemBioChem, 19, 288 (2018).

    Article  CAS  Google Scholar 

  22. D. S. Riva and R. K. Sharma, Appl. Biochem. Biotechnol., 160, 1760 (2010).

    Article  Google Scholar 

  23. T. Kudanga, G. S. Nyanhongo, G. M. Guebitz, and S. Burton, Enzyme Microb. Technol., 48, 195 (2011).

    Article  CAS  Google Scholar 

  24. S. Kalia, K. Thakur, A. Kumar, and A. Celli, J. Mol. Catal. B: Enzym., 102, 48 (2014).

    Article  CAS  Google Scholar 

  25. J. Garcia-Ubasart, T. Vidal, A. L. Torres, and O. J. Rojas, Biomacromolecules, 14, 1637 (2013).

    Article  CAS  Google Scholar 

  26. A. Dong, Y. Yu, J. Yuan, Q. Wang, and X. Fan, Appl. Surf. Sci., 301, 418 (2014).

    Article  CAS  Google Scholar 

  27. X. Ni, A. Dong, X. Fan, Q. Wang, Y. Yu, and A. Cavaco-Paulo, Polym. Compos., 38, 1327 (2017).

    Article  CAS  Google Scholar 

  28. X. Ni, A. Dong, X. Fan, Q. Wang, Y. Yu, and A. Cavaco-Paulo, Fiber. Polym., 16, 2276 (2015).

    Article  CAS  Google Scholar 

  29. K. Thakur, S. Kalia, B. S. Kaith, D. Pathania, and A. Kumar, RSC Adv., 5, 76844 (2015).

    Article  CAS  Google Scholar 

  30. T. Kudanga, E. N. Prasetyo, P. Widsten, A. Kandelbauer, S. Jury, C. Heathcote, J. Sipilä, H. Weber, G. S. Nyanhongo, and G. M. Guebitz, Bioresour. Technol., 101, 2793 (2010).

    Article  CAS  Google Scholar 

  31. H. Wu, J. Noro, Q. Wang, X. Fan, C. Silva, and A. Cavaco-Paulo, RSC Adv., 6, 90427 (2016).

    Article  CAS  Google Scholar 

  32. T. Kudanga, E. N. Prasetyo, J. Sipilä, G. M. Guebitz, and G. S. Nyanhongo, J. Biotechnol., 149, 81 (2010).

    Article  CAS  Google Scholar 

  33. A. Dong, X. Fan, Q. Wang, Y. Yu, and A. Cavaco-Paulo, Int. J. Biol. Macromol., 79, 353 (2015).

    Article  CAS  Google Scholar 

  34. S. Mathew and P. Adlercreutz, Bioresour. Technol., 100, 3576 (2009).

    Article  CAS  Google Scholar 

  35. D. Jaušovec, R. Vogrinčič, and V. Kokol, Carbohydr. Polym., 116, 74 (2015).

    Article  Google Scholar 

  36. J. Liu, R. Pelton, J. M. Obermeyer, and A. Esser, Biomacromolecules, 14, 2953 (2013).

    Article  CAS  Google Scholar 

  37. S. Shi, R. Pelton, Q. Fu, and S. Yang, Ind. Eng. Chem. Res., 53, 4748 (2014).

    Article  CAS  Google Scholar 

  38. Q. Fang, H. Cui, and G. Du, Wood Sci. Technol., 50, 285 (2016).

    Article  CAS  Google Scholar 

  39. Y. Li, J. Adhes. Sci. Technol., 28, 215 (2014).

    Article  CAS  Google Scholar 

  40. S. K. Ramamoorthy, F. Bakare, R. Herrmann, and M. Skrifvars, Cellulose, 22, 2507 (2015).

    Article  CAS  Google Scholar 

  41. S. K. Ramamoorthy, Q. Di, K. Adekunle, and M. Skrifvars, J. Reinf. Plast. Compos., 31, 1191 (2012).

    Article  CAS  Google Scholar 

  42. M. Rajesh, K. Jayakrishna, M. T. H. Sultan, M. Manikandan, V. Mugeshkannan, A. U. M. Shah, and S. N. A. Safri, J. Mater. Res. Technol., 9, 10305 (2020).

    Article  Google Scholar 

  43. A. Espert, F. Vilaplana, and S. Karlsson, Compos. Part A, 35, 1267 (2004).

    Article  Google Scholar 

  44. M. Jacob, B. Francis, and S. Thomas, Polym. Compos., 27, 671 (2006).

    Article  CAS  Google Scholar 

  45. C. K. Hong, I. Hwang, N. Kim, D. H. Park, B. S. Hwang, and C. Nah, J. Ind. Eng. Chem., 14, 71 (2008).

    Article  CAS  Google Scholar 

  46. M. Zhou, J. Yan, Y. Li, C. Geng, C. He, K. Wang, and Q. Fu, RSC Adv., 3, 26418 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Zhejiang Provincial Natural Science Foundation of China (LGG18E030005), International Cooperation Project of Shaoxing University (2019LGGH1002), Open Project Program of Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University (KLET1703), China Postdoctoral Science Foundation (2019M652273), Jiangxi Excellent Young Talents Program (20192BCB23030), Jiangsu Key Research & Development Plan (BE2018349), and International Joint Research Laboratory for EcoTextile Technology (IJRLETT) at Jiangnan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, A., Teklu, K.M., Wang, W. et al. Laccase/TEMPO-mediated Graft Hydrophobization of Jute Fibers to Enhance the Mechanical Properties of Jute/PLA Composites. Fibers Polym 23, 243–253 (2022). https://doi.org/10.1007/s12221-021-0125-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0125-8

Keywords

Navigation