Skip to main content

Interface Interaction of Jute Fiber Reinforced PLA Biocomposites for Potential Applications

  • Chapter
  • First Online:
Green Biocomposites

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Green composites recently have attracted the attention of the researchers due to the advantages of low cost, renewable resource usage and biodegradability. In general, natural fibers being highly polar and hydrophilic have low interfacial shear strength (IFSS) with polymer matrix which is nonpolar and relatively hydrophobic in nature. The surface modification of natural fiber is necessary to improve the fiber/polymer compatibility and their interfacial adhesion. Natural fibers without surface modification embedded in a polymeric matrix generate unstable interfaces and the stress applied to the fiber/polymer composite is not efficiently transferred from the matrix to the fiber. Thus the beneficial reinforcement effect of the fiber remains under exploited. Among the available biopolymer, polylactic acid (PLA) is the most established biodegradable polymer. Surprisingly jute is the second most widely used natural fiber for reinforcing polylactide. Several chemical and physical treatments are performed to improve the fiber–matrix adhesion by reducing the difference between hydrophilic/hydrophobic characters of jute fiber and PLA matrix. Conventional chemical modification methods are alkalization, acetylation and bleaching. These methods are more frequently used due to their relative simplicity, low cost and efficiency. Permanganate treatment, silane treatment, peroxide treatment, shellac resin treatment are also commonly used as chemical treatments. However physical treatments such as plasma treatments, corona discharge treatments, UV treatments etc. are reported as more eco-friendly than chemical treatments. In this chapter a brief summary of all physical and chemical treatments of jute fiber reinforced PLA composites has been presented and the resulted mechanical properties are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulkhani A, Hosseinzadeh J, Dadashi S, Mousavi M (2015) A study of morphological, thermal, mechanical and barrier properties of PLA based biocomposites prepared with micro and nano sized cellulosic fibers. Cell Chem Technol 49(7–8):597–605

    Google Scholar 

  • Adekunle KF (2015) Surface treatments of natural fibres—a review: Part 1. Open J Polym Chem 5(03):41

    Article  Google Scholar 

  • Adomavičiūtė E, Baltušnikaite J, Jonaitienė V, Stanys S (2015) Formation and properties of textile biocomposites with PLA matrix reinforced with flax and flax/PLA weft knitted fabrics. Fibres & Textiles in Eastern Europe

    Google Scholar 

  • Agu CV, Njoku OV, Chilaka FC, Okorie SA, Agbiogwu D (2012) Physico-chemical characterization of lignocellulosic fibre from Ampelocissus cavicaulis. Int J Basic Appl Sci IJBAS-IJENS 12(3):68–77

    Google Scholar 

  • Akampumuza O, Wambua P, Ahmed A, Li W, Qin X (2016) Review of the applications of biocomposites in the automotive industry. Polym Compos. doi:10.1002/pc.23847

    Google Scholar 

  • Al-Mobarak T, Gafur MA, Mina MF (2012) Material properties of acetylated jute-mat composites. J Sci Res 5(1):13–23

    Article  Google Scholar 

  • AL-Oqla FM, Sapuan SM, Anwer T, Jawaid M, Hoque ME (2015) Natural fiber reinforced conductive polymer composites as functional materials: a review. Synth Met 206:42–54

    Article  Google Scholar 

  • Asim M, Abdan K, Jawaid M, Nasir M, Dashtizadeh Z, Ishak MR, Hoque ME, Deng Y (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015:1–16. (Article ID: 950567)

    Google Scholar 

  • Auras RA, Lim LT, Selke SE, Tsuji H (eds) (2011) Poly(lactic acid): synthesis, structures, properties, processing, and applications, vol 10. Wiley, Hoboken

    Google Scholar 

  • Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442

    Article  Google Scholar 

  • Bajpai PK, Singh I, Madaan J (2012) Development and characterization of PLA-based green composites: a review. J Thermoplast Compos Mater 0892705712439571

    Google Scholar 

  • Bodros E, Pillin I, Montrelay N, Baley C (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Technol 67(3):462–470

    Article  Google Scholar 

  • Dittenber DB, GangaRao HV (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A Appl Sci Manuf 43(8):1419–1429

    Article  Google Scholar 

  • Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596

    Article  Google Scholar 

  • Gassan J, Gutowski VS (2000) Effects of corona discharge and UV treatment on the properties of jute-fibre epoxy composites. Compos Sci Technol 60(15):2857–2863

    Article  Google Scholar 

  • Ghosh BK, Jethi A (2013) Growth and instability in world jute production: a disaggregated analysis. Int J Electron Commun Technol 4:191–195

    Google Scholar 

  • Gibeop N, Lee DW, Prasad CV, Toru F, Kim BS, Song JI (2013) Effect of plasma treatment on mechanical properties of jute fiber/poly(lactic acid) biodegradable composites. Adv Compos Mater 22(6):389–399

    Article  Google Scholar 

  • Goda K, Cao Y (2007) Research and development of fully green composites reinforced with natural fibers. J solid Mech Mater Eng 1(9):1073–1084

    Article  Google Scholar 

  • Goriparthi BK, Suman KNS, Rao NM (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos A Appl Sci Manuf 43(10):1800–1808

    Article  Google Scholar 

  • Gowda TM, Naidu ACB, Chhaya R (1999) Some mechanical properties of untreated jute fabric-reinforced polyester composites. Compos A Appl Sci Manuf 30(3):277–284

    Article  Google Scholar 

  • Haniffah WH, Sapuan SM, Abdan K, Khalid M, Hasan M, Hoque ME (2015) Kenaf fibre reinforced polypropylene composites: effect of cyclic immersion on tensile properties. Int J Polym Sci 2015:1–6. (Article ID: 872387)

    Google Scholar 

  • Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68(2):424–432

    Article  Google Scholar 

  • Islam MS, Ahmed SK (2012) The impacts of jute on environment: an analytical review of Bangladesh. J Environ Earth Sci 2(5):24–31

    Google Scholar 

  • Johansson C, Bras J, Mondragon I, Nechita P, Plackett D, Simon P, Svetec DG, Virtanen S, Baschetti MG, Breen C, Aucejo S (2012) Renewable fibers and bio-based materials for packaging applications–a review of recent developments. BioResources 7(2):2506–2552

    Article  Google Scholar 

  • John MJ, Francis B, Varughese KT, Thomas S (2008) Effect of chemical modification on properties of hybrid fiber biocomposites. Compos A Appl Sci Manuf 39(2):352–363

    Article  Google Scholar 

  • Kafi AA, Magniez K, Fox BL (2011) A surface-property relationship of atmospheric plasma treated jute composites. Compos Sci Technol 71(15):1692–1698

    Article  Google Scholar 

  • Khalil HA, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368

    Article  Google Scholar 

  • Khondker OA, Ishiaku US, Nakai A, Hamada H (2006) A novel processing technique for thermoplastic manufacturing of unidirectional composites reinforced with jute yarns. Compos A Appl Sci Manuf 37(12):2274–2284

    Article  Google Scholar 

  • Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos B Eng 44(1):120–127

    Article  Google Scholar 

  • La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos A Appl Sci Manuf 42(6):579–588

    Article  Google Scholar 

  • Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33

    Article  Google Scholar 

  • Michael FM, Khalid M, Walvekar R, Ratnam CT, Ramarad S, Siddiqui H, Hoque ME (2016a) Effect of nanofillers on the physico-mechanical properties of load bearing bone implants. Mater Sci Eng C 67:792–806

    Article  Google Scholar 

  • Michael FM, Khalid M, Ratnam CT, Walvekar R, Hoque ME, Ketabchi MR (2016b) Nanohydroxyapatite synthesis using optimized process parameters for load-bearing implant. Bull Mater Sci 39(1):133–145

    Article  Google Scholar 

  • Mitra BC (2014) Environment friendly composite materials: biocomposites and green composites. Def Sci J 64(3):244–261

    Article  Google Scholar 

  • Mukherjee T, Kao N (2011) PLA based biopolymer reinforced with natural fibre: a review. J Polym Environ 19(3):714–725

    Article  Google Scholar 

  • Mukhopadhyay S, Fangueiro R (2009) Physical modification of natural fibers and thermoplastic films for composites—a review. J Thermoplast Compos Mater 22(2):135–162

    Article  Google Scholar 

  • Nainar SMM, Begum S, Ansari MNM, Hoque ME, Aini SS, Ng MH, Ruszymah BHI (2014) Effect of compatibilizers on in vitro biocompatibility of PLA-HA bioscaffold. Bioinspired Biomim Nanobiomater 3(4):208

    Article  Google Scholar 

  • Nakamura H, Shikamoto N, Nakai A, Hamada H (2009) Effect of surface treatment on the mechanical properties of biocomposites. In: Proceedings of the 17th international conference on composite materials (ICCM 17), 27–31 July 2009, Edinburgh

    Google Scholar 

  • Paul A, Joseph K, Thomas S (1997) Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Compos Sci Technol 57(1):67–79

    Article  Google Scholar 

  • Pradeep SA, Kumar GP, Phani AR, Prasad RGSV, Hoque ME, Raghavendra HL (2015) Fabrication, characterization and in vitro osteogenic potential of polyvinyl pyrrolidone-titania (PVP-TiO) nanofibers. Anal Chem Lett 5(2):61–72

    Article  Google Scholar 

  • Ragoubi M, George B, Molina S, Bienaimé D, Merlin A, Hiver JM, Dahoun A (2012) Effect of corona discharge treatment on mechanical and thermal properties of composites based on miscanthus fibres and polylactic acid or polypropylene matrix. Compos A Appl Sci Manuf 43(4):675–685

    Article  Google Scholar 

  • Rajesh G, Prasad AVR (2014) Tensile properties of successive alkali treated short jute fiber reinforced PLA composites. Procedia Mater Sci 5:2188–2196

    Article  Google Scholar 

  • Renner K, Móczó J, Vörös G, Pukánszky B (2010) Quantitative determination of interfacial adhesion in composites with strong bonding. Eur Polym J 46(10):2000–2004

    Article  Google Scholar 

  • Royse SE (2012) Fabrication and characterization of biocomposites from polylactic acid and bamboo fibers. (Master of Science) University of Nebraska-Lincoln

    Google Scholar 

  • Sathaye A (2011) Jute fibre based composite for automotive headlining. SAE Technical Paper Series. doi:http://dx.doi.org/10.4271/2011-01-0224

  • Satyanarayana KG (2015) Recent developments in green composites based on plant fibers-preparation, structure property studies. J Bioprocess Biotech 5(2–206):1–12

    Google Scholar 

  • Satyanarayana KG, Pai BC, Sukumaran K, Pillai SGK (1990) Fabrication and properties of lignocellulosic fiber-incorporated polyester composites. In: Cheremisinoff NP (ed) Handbook of ceramics and composites, vol 1. Marcel Dekker, New York

    Google Scholar 

  • Sever K, Sarikanat M, Seki Y, Erkan G, Erdoğan ÜH, Erden S (2012) Surface treatments of jute fabric: the influence of surface characteristics on jute fabrics and mechanical properties of jute/polyester composites. Ind Crops Prod 35(1):22–30

    Article  Google Scholar 

  • Sirvaitiene A, Jankauskaite V, Bekampiene P, Kondratas A (2013) Influence of natural fibre treatment on interfacial adhesion in biocomposites. Fibres Text East Eur 21(4):123–129

    Google Scholar 

  • Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18(2):84–95

    Article  Google Scholar 

  • Wang H, Huang L, Lu Y (2009) Preparation and characterization of micro-and nano-fibrils from jute. Fibers Polym 10(4):442–445

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Sharif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Asha, A.B., Sharif, A., Hoque, M.E. (2017). Interface Interaction of Jute Fiber Reinforced PLA Biocomposites for Potential Applications. In: Jawaid, M., Salit, M., Alothman, O. (eds) Green Biocomposites. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-49382-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49382-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49381-7

  • Online ISBN: 978-3-319-49382-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics