Skip to main content
Log in

Lions-Type Properties for the p-Laplacian and Applications to Quasilinear Elliptic Equations

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, our goal is to establish two kinds of generalized version of Lions-type theorems for the p-Laplacian and then apply them to investigate the existence of solutions of quasilinear elliptic equations with the critical exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Our manuscript has no associated data. No data was used or created in this study.

References

  1. Abdellaoui, B., Peral, I.: Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian with a critical potential. Ann. Mat. Pura Appl. 182(3), 247–270 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, D.R., Xiao, J.: Nonlinear potential analysis on Morrey spaces and their capacities. Indiana Univ. Math. J. 53(6), 1629–1663 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Badiale, M., Rolando, S.: A note on nonlinear elliptic problems with singular potentials. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 17(1), 1–13 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Badiale, M., Benci, V., Rolando, S.: A nonlinear elliptic equation with singular potential and applications to nonlinear field equations. J. Eur. Math. Soc. 9(3), 355–381 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Badiale, M., Guida, M., Rolando, S.: Compactness and existence results for the p-Laplace equation. J. Math. Anal. Appl. 451(1), 345–370 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baldelli, L., Brizi, Y., Filippucci, R.: On symmetric solutions for (p, q)-Laplacian equations in \(R^N\) with critical terms. J. Geom. Anal. 32(4), 1–25 (2022)

    Article  MATH  Google Scholar 

  7. Benci, V., Fortunato, D.: Variational Methods in Nonlinear Field Equations, Solitary Waves, Hylomorphic Solitons and Vortices. Springer Monogr. Math., Springer, Cham (2014)

    Book  MATH  Google Scholar 

  8. Brézis, H., Lieb, E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buchheit, A.A., Rjasanow, S.: Ground state of the Frenkel-Kontorova model with a globally deformable substrate potential. Phys. D 406, 132298 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carrião, P.C., Demarque, R., Miyagaki, O.H.: Nonlinear biharmonic problems with singular potentials. Commun. Pure Appl. Anal. 13(6), 2141–2154 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng, Z., Su, Y.: Lions-type theorem of the fractional Laplacian and applications. Dyn. Partial Differ. Equ. 18(3), 211–230 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fife, P.C.: Asymptotic states for equations of reaction and diffusion. Bull. Am. Math. Soc. 84(5), 693–728 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Filippucci, R., Pucci, P., Robert, F.: On a p-Laplace equation with multiple critical nonlinearities. J. Math. Pures Appl. 91(2), 156–177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ghoussoub, N., Yuan, C.: Multiple solutions for quasi-linear PDEs involving the critical Hardy and Sobolev exponents. Trans. Am. Math. Soc. 352(12), 5703–5743 (2000)

    Article  MATH  Google Scholar 

  15. Kawohl, B., Horak, J.: On the geometry of the \(p\)-Laplacian operator. Discret. Contin. Dyn. Syst. Ser. S 10(4), 799–813 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Math. Iberoam. 1(2), 145–201 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Math. Iberoam. 1(1), 45–121 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The Locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The Locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 223–283 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Monticelli, D.D., Punzo, F., Sciunzi, B.: Nonexistence of stable solutions to quasilinear elliptic equations on Riemannian manifolds. J. Geom. Anal. 27(4), 3030–3050 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Palatucci, G., Pisante, A.: Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calc. Var. Partial Differ. Equ. 50(3–4), 799–829 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Su, J., Wang, Z., Willem, M.: Weighted Sobolev embedding with unbounded and decaying radial potentials. J. Differ. Equ. 238, 201–219 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Su, J., Tian, R.: Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations. Commun. Pure Appl. Anal. 9(4), 885–904 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Su, J., Tian, R.: Weighted Sobolev type embeddings and coercive quasilinear elliptic equations on \({\mathbb{R} }^{N}\). Proc. Am. Math. Soc. 140(3), 891–903 (2012)

    Article  MATH  Google Scholar 

  25. Terracini, S.: On positive entire solutions to a class of equations with a singular coefficient and critical exponent. Adv. Differ. Equ. 1(2), 241–264 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Vincent, C., Phatak, S.: Accurate momentum-space method for scattering by nuclear and Coulomb potentials. Phys. Rev. 10, 391–394 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaosheng Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or other conflict of interest that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by Key Program of University Natural Science Research Fund of Anhui Province (KJ2020A0292).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Su, Y. Lions-Type Properties for the p-Laplacian and Applications to Quasilinear Elliptic Equations. J Geom Anal 33, 99 (2023). https://doi.org/10.1007/s12220-022-01150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01150-4

Keywords

Mathematics Subject Classification

Navigation