Skip to main content
Log in

On Symmetric Solutions for (pq)-Laplacian Equations in \({\mathbb {R}}^N\) with Critical Terms

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We prove existence and multiplicity results in \(\mathbb R^N\) for an elliptic problem of (pq)-Laplacian type with a nonlinearity involving both a critical term and a subcritical term with a positive real parameter \(\lambda \). In particular, nonnegative nontrivial weights satisfying some symmetry conditions with respect to a certain group T are included in the nonlinearity. We prove first the existence of at least one solution with positive energy for \(\lambda \) sufficiently small using Mountain Pass Theorem, then we obtain the existence of infinitely many weak solutions with positive (finite) energy for every \(\lambda \) positive applying Fountain Theorem. Our proofs use variational methods and concentration compactness principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baldelli, L., Brizi, Y., Filippucci, R.: Multiplicity results for (\(p, q\))-Laplacian equations with critical exponent in \({\mathbb{R}}^N\) and negative energy. Calc. Var. PDE 60, 30 (2021)

    MATH  Google Scholar 

  3. Baldelli, L., Filippucci, R.: Existence of solutions for critical (\(p, q\))-Laplacian equations in \({\mathbb{R}}^N\). Abstr. Appl. Math. 24 pp (2022)

  4. Bartsch, T.: Infinitely many solutions of a symmetric Dirichlet problem. Nonlinear Anal. 20, 1205–1216 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartsch, T., Willem, M.: Infinitely many nonradial solutions of a Euclidean scalar field equation. J. Funct. Anal. 117, 447–460 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben-Naoum, A.K., Troestler, C., Willem, M.: Extrema problems with critical Sobolev exponents on unbounded domains. Nonlinear Anal. 26, 823–833 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bessaga, C., Pelczyński, A.: Selected Topics in Infinite-Dimensional Topology, Mathematical Monographs, vol. 58, p. 353. PWN Polish Scientific Publishers, Warsaw (1975)

  8. Bianchi, G., Chabrowski, J., Szulkin, A.: On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent. Nonlinear Anal. 25, 41–59 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bianchi, G., Egnell, H.: A variational approach to the equation \(\Delta u + Ku ^{(n+2)/(n-2)}=0\) in \({\mathbb{R}}^N\). Arch. Ration. Mech. Anal. 122, 159–182 (1993)

    Article  MATH  Google Scholar 

  10. Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Byeon, J., Wang, Z.: Standing waves with critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165, 295–316 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chabrowski, J.: On the existence of \(G\)-symmetric entire solutions for semilinear elliptic equations. Rend. Circ. Mat. Palermo 41, 413–440 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chabrowski, J.: On multiple solutions for the nonhomogeneous \(p\)-Laplacian with a critical Sobolev exponent. Differ. Integr. Equ. 8, 705–716 (1995)

    MathSciNet  MATH  Google Scholar 

  15. Chabrowski, J.: Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents. Calc. Var. Partial Differ. Equ. 3, 493–512 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chaves, M.F., Ercole, G., Miyagaki, O.H.: Existence of a nontrivial solutions for a (\(p, q\))-Laplacian and \(p\)-critical exponent in \({\mathbb{R}}^N\). Bound. Value Probl. 236, 15 (2014)

    MATH  Google Scholar 

  17. Cherfils, L., Il‘yasov, Y.: On the stationary solutions of generalized reaction diffusion equations with (\(p, q\))-Laplacian. Commun. Pure. Appl. Anal. 4, 9–22 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Deng, Z., Huang, Y.: Multiple symmetric results for quasilinear elliptic systems involving singular potentials and critical Sobolev exponents in \({\mathbb{R}}^N\). Abstr. Appl. Anal. 14 pp (2014)

  19. Deng, Y.B., Zhou, H.S., Zhu, X.P.: On the existence and \(L^p({\mathbb{R}}^N)\) bifurcation for the semilinear elliptic equation. J. Math. Anal. Appl. 154, 116–133 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Derrick, G.H.: Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys. 5, 1252–1254 (1964)

    Article  MathSciNet  Google Scholar 

  21. Figueiredo, G.M.: Existence and multiplicity of solutions for a class of (\(p, q\)) elliptic problems with critical exponent. Math. Nachr. 286, 1129–1141 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Figueiredo, G.M., Radulescu, V.D.: Nonhomogeneous equations with critical exponential growth and lack of compactness. Opuscola Math. 40, 71–92 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Filippucci, R., Pucci, P., Radulescu, V.D.: Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions. Comm. Partial Differ. Equ. 33, 706–717 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Filippucci, R., Pucci, P., Robert, F.: On a \(p\)-Laplace equation with multiple critical nonlinearities. J. Math. Pures Appl. 91, 156–177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: \(L^p\) Spaces. Springer Monographs in Mathematics, xiv+599 pp. Springer, New York (2007)

  26. Garcia Azorero, J., Peral Alonso, I.: Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Am. Math. Soc. 323, 877–895 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ge, B., Radulescu, V.D.: Infinitely many solutions for a non-homogeneous differential inclusion with lack of compactness. Adv. Nonlinear Stud. 19, 625–637 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ghergu, M., Singh, G.: On a class of mixed Choquard-Schrödinger-Poisson system. Discrete Contin. Dyn. Syst. S 12, 207–309 (2019)

    MATH  Google Scholar 

  29. Hausdorff, F.: Set Theory, 352 pp. Chelsea Publishing Co., New York (1962)

  30. Hsu, T.S.: Multiplicity results for \(p\)-Laplacian with critical nonlinearity of concave-convex type and sign-changing weight functions. Abstr. Appl. Anal. 24 pp (2009)

  31. Huang, C., Jia, G., Zhang, T.: Multiplicity of solutions for a quasilinear elliptic equation with (\(p, q\))-Laplacian and critical exponent on \({\mathbb{R}}^N\). Bound. Value Probl. 147, 18 (2018)

    Google Scholar 

  32. Huang, Y.: On multiple solutions of quasilinear equations involving the critical Sobolev exponent. J. Math. Anal. Appl. 231, 142–160 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ishiwata, M., \({\hat{O}}\)tani, M.: Concentration compactness principle at infinity with partial symmetry and its application. Nonlinear Anal. 51, 391–407 (2002)

  34. Kazdan, J., Warner, F.: Existence and conformal deformations of metrics with prescribed Gaussian and scalar curvature. Ann. Math. 101, 317–331 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, G.B., Martio, O.: Stability in obstacle problem. Math. Scand. 75, 87–100 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, G., Zhang, G.: Multiple solutions for the (\(p, q\))-Laplacian problem with critical exponent. Acta Math. Sci. Ser. B 29, 903–918 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Lions, P.L.: The concentration-compacteness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lions, P.L.: The concentration-compacteness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lions, P.L.: The concentration-compacteness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana 1, 145–201 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lions, P.L.: The concentration-compacteness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoamericana 1, 45–121 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lions, P.L.: Symmetries and the concentration-compacteness method. Res. Notes Math. 127, 47–56 (1985)

    Google Scholar 

  42. Marano, S.A., Marino, G., Papageorgiou, N.S.: On a Dirichlet problem with (\(p, q\))-Laplacian and parametric concave-convex nonlinearity. J. Math. Anal. Appl. 475, 1093–1107 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mosconi, S., Squassina, M.: Nonlocal problems at nearly critical growth. Nonlinear Anal. 136, 84–101 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Olver, P.J.: Applications of Lie groups to differential equations. Second edition, Graduate Texts in Mathematics, 107, Springer, New York , XXVIII, 513 (1993)

  45. Palais, R.S.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19–30 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  46. Papageorgiou, N.S., Radulescu, V.D., Repovs, D.D.: Nonlinear analysis-theory and methods. Springer, Cham, xi+577 pp (2019)

  47. Rabinowitz, P.H.: Minimax methods in critical point theory with application to differential equations, CBMS Regional Conference Series in Mathematics, 65, Published for the Conf. Board of the Math. Sc., Washington, DC; by the AMS, Providence, RI, viii+100 pp (1986)

  48. Shi, X., Radulescu, V.D., Repovs, D.D., Zhang, Q.: Multiple solutions of double phase variational problems with variable exponent. Adv. Calc. Var. 13, 385–401 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. de Silva, E.A.B., Soares, S.H.M.: Quasilinear Dirichlet problems in \({\mathbb{R}}^N\) with critical growth. Nonlinear Anal. 43, 1–20 (2001)

    Article  MathSciNet  Google Scholar 

  50. Su, J., Wang, Z., Willem, M.: Nonlinear Schrödinger equations with unbounded and decaying radial potentials. Commun. Contemp. Math. 9, 571–583 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Swanson, C.A., Yu, L.S.: Critical \(p\)-Laplacian problems in \({\mathbb{R}}^N\). Ann. Math. Pura Appl. 169, 233–250 (1995)

    Article  MATH  Google Scholar 

  52. Waliullah, S.: Minimizers and symmetric minimizers for problems with critical Sobolev exponent. Topol. Methods Nonlinear Anal. 34, 291–326 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Willem, M.: Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24, x+162 pp. Birkhäuser Boston Inc, Boston, MA (1996)

Download references

Acknowledgements

LB and RF are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). RF was partly supported by Fondo Ricerca di Base di Ateneo Esercizio 2017-19 of the University of Perugia, named Problemi con non linearità dipendenti dal gradiente and by INdAM-GNAMPA Project 2020 titled Equazioni alle derivate parziali: problemi e modelli (Prot_U-UFMBAZ-2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Filippucci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldelli, L., Brizi, Y. & Filippucci, R. On Symmetric Solutions for (pq)-Laplacian Equations in \({\mathbb {R}}^N\) with Critical Terms. J Geom Anal 32, 120 (2022). https://doi.org/10.1007/s12220-021-00846-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-021-00846-3

Keywords

Mathematics Subject Classification

Navigation